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Managing Project Risks As Knowledge Gaps

Abstract

The development of new technologies and the implementation of such technologies in new applica-
tions is a continuous effort to close technological and logistical knowledge gaps. Although knowledge
gaps can be closed by accident — like the case of Archimedes who closed an important knowledge
gap about the laws of nature while bathing — in most cases in modern times knowledge gaps are
closed by a consistent, organized effort, namely by projects.

Project Management methodologies attempt to manage the risk generated by the one-time nature
of projects. This risk is generated by the lack of knowledge and its resulting uncertainty. Tools for
managing project risks and their consequences including risk identification, risk quantification, risk
elimination, risk reduction, risk sharing, and risk control, were developed and are implemented to
some degree in many technological projects. However most of these tools are based on statistical
theory (e.g. the central limit theorem). Unfortunately, statistical theory may not be applicable to
technological projects were there is very little or no relevant previous experience at all. The question
is what can we do when past data is not an appropriate basis for future decisions.

In this paper we describe a new approach for dealing with technological projects — an approach
based on the analysis of knowledge gaps i.e. the gap between what we should know in order to
succeed in the project and what we really know.

Keywords. projects, risks, uncertainty, knowledge gaps, information gaps

1 Introduction

Following the definition of the Project Management Body Of Knowledge (PMBOK), project man-
agement is the application of knowledge, skills, tools, and techniques to project activities in order
to meet or exceed stakeholder needs and expectations from a project. Nine knowledge areas are
listed in the PMBOK one of which is project risk management. Tools and techniques for project risk
management were developed to assist project managers in identifying, analyzing, and responding to
project risks. The underlying assumption in most of these tools and techniques is that past informa-
tion is available regarding both the probability of undesired events and the effect of such events on
the project. As an example consider the PERT model (Wiest and Levy, 1969) that was developed
in the late fifties to assist project managers in estimating the probability to finish the project by a
given date. This early attempt to handle risk and uncertainty was based on a number of simplifying
assumptions including:

• It is possible to accurately estimate durations, variances, and precedence relations of project
activities.

• It is possible to use the beta distribution in representing duration uncertainties.
• It is possible to apply the central limit theorem to represent other aggregate uncertainties.
• It is correct to focus on the critical path only.
Due to the difficulties with the application of PERT, researchers tried to develop alternatives

such as Monte Carlo simulations that are less sensitive to the above assumptions. However most of
these tools and techniques are based on the idea that past information is available and can be used to
predict future outcome. In R&D projects this assumption frequently proves wrong and consequently
leads to the wrong conclusions. Practitioners and researchers have been trying ever since the early
sixties to develop better tools and techniques to handle project risks (for example (Camps 1996),
(Chapman and Ward, 1997), (Guildford, 1998), (Keil et al, 1998), (Simister, 1994)).
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A non-statistical approach for analyzing the risk associated with project scheduling is reported
in (Ben-Haim and Laufer, 1998). Unlike most models for risk management, their approach is based
on an attempt to evaluate the gap between the information available to the project manager and the
information needed to develop a reliable schedule for the project.

The knowledge gap approach is not based on past experience in terms of probability distributions,
as opposed to PERT and other statistically based scheduling models (Ben-Haim, 2001). As explained
in the next section, the idea is to allocate the total knowledge gap of the project among project
activities in a relative manner so that a focus on the widest knowledge gap(s) is possible.

In technological projects, focusing on the reduction of major technological as well as logistical
knowledge gaps is essential. By concentrating R&D efforts on these gaps a consistent effort is made
possible. For example consider the spiral model of software-project life cycles. Each time the project
goes through the spiral an attempt is made to focus on the area with the (current) widest knowledge
gap. Additional information is collected by means of lab or field experiments, simulation, analytical
studies etc.

Thus as the project evolves through the spiral cycles, knowledge gaps are reduced systematically
to the point that statistical tools for project management are useful (as past experience was generated
during past cycles) or it is clear that the knowledge gaps are too wide and the project is impossible,
thus it is abandoned or its mission is changed.

The idea and analysis of knowledge gaps is discussed in the following section. Next we discuss a
model for quantifying, analyzing and reducing the effects of knowledge gaps. Finally we demonstrate
by means of an example how knowledge gaps in technological projects can be managed.

2 Defining and Quantifying Knowledge Gaps

A simple yet effective definition of the knowledge gap is the gap between what we should know to
guarantee project success and what we really know at a given point of time. This definition is based
on several assumptions:

1. With perfect information (no uncertainty) good project planning guarantees project success
i.e. achieving project goals is guaranteed.

2. If perfect information is not available, the next best thing is information from past experience
that can be translated (by statistical analysis) to the probability to achieve the project goals
i.e. the probability of project success.

3. If only very limited past information is available, the best we can do is to non-probabilistically
estimate the knowledge gaps associated with different goals of the project and concentrate on
the widest knowledge gap associated with each goal. This can be done in a number of ways.

The simplest approach to the evaluation of knowledge gaps is by using a nominal scale. A nominal
scale ranges from a very wide knowledge gap — the only information available is a theoretical model,
to the minimal knowledge gap — information is available about the same project done in the past
(Bonen, 1969). As an example consider the development of a nuclear weapon. A possible scale could
be:

1. The only knowledge available is the theoretical relationship E = mc2. This would have been
the case in the Manhattan project if the only information known when it started was Einstein’s
theory of relativity.
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2. Information is available on a controlled laboratory experiment. This was the case in the Man-
hattan project once information about the experiment performed by Fermi in Chicago was
available.

3. Information is available on a controlled field experiment. This was the case in the Manhattan
project after the detonation of the first nuclear device in Nevada.

4. Information is available on a similar technology. This was the case in the Manhattan project
before the second bomb was used on Nagasaki (after the first bomb was used on Hiroshima).

This simple model can be refined into a scale with many more categories:

1. The only knowledge available is a theoretical relationship.

2. A lab experiment was performed successfully by a different group, but information is not
available.

3. A successful lab experiment was performed by us.

4. A prototype was tested in the field successfully by a different group, but information is not
available.

5. We tested a prototype in the field successfully.

And so on.
This nominal scale can help in identifying and focusing on major knowledge gaps in projects.

However it yields no information on the relative size of these (ordered) gaps. A model developed
for project scheduling with duration uncertainty (Ben-Haim and Laufer, 1998) can be extended to
the case of technological and logistical knowledge gaps. The scheduling model in (Ben-Haim and
Laufer, 1998) focusses on the sequence of events (some of which may partially overlap) that is most
sensitive to the lack of information. This “uncertainty-critical” sequence of events is the weakest
link in the project and its robustness is therefore the robustness of the whole project schedule. The
uncertainty-critical path is, generally, different from the classical critical path.

In the next section we present a brief summary of info-gap decision theory, which is applied in
the subsequent section to a planning problem with technological and logistical uncertainty.

3 Info-gap Decision Theory

In this section we present a brief review of those essential elements of information-gap decision theory
which are employed in the subsequent example. Further details are to be found in (Ben-Haim, 2001).
Info-gap theory provides two decision functions. The robustness function enables the planner to
maximize the immunity to failure, while the opportunity function enables the optimal exploitation
of favorable circumstances.

3.1 Info-gap Models of Uncertainty

Our quantification of uncertainty is based on non-probabilistic information-gap models. The intuition
underlying info-gap theory is the idea that uncertainty is a disparity between what the decision
maker knows and what could be known. Info-gap theory is particularly suited to situations of severe
lack of information. For instance, an info-gap arises when available information is exhausted in
constructing a ‘best model’ whose fidelity to reality is unreliable or unknown. An info-gap refers
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to that unstructured realm, beyond our current knowledge, within which lie emergent possibilities.
Info-gap models are not needed, and probability theory should be used instead, when experience or
understanding are sufficient to characterize the likelihood or systematics of recurrence.

An info-gap model is a family of nested sets. Each set corresponds to a particular degree of
uncertainty, according to its level of nesting. Each element in a set represents a possible realization
of the uncertain event.

Uncertain quantities are vectors or vector functions. Uncertainty is expressed at two levels by
info-gap models. For fixed α the set U(α, ũ) represents a degree of uncertain variability of the
uncertain quantity u around the centerpoint ũ. The greater the value of α, the greater the range
of possible variation, so α is called the uncertainty parameter and expresses the information gap
between what is known (ũ and the structure of the sets) and what needs to be known for an ideal
solution (the exact value of u). The value of α is usually unknown, which constitutes the second level
of uncertainty: the horizon of uncertain variation is unbounded.

Let ℜ denote the non-negative real numbers and let Ω be a Banach space in which the uncertain
quantities u are defined. An info-gap model U(α, ũ) is a map from ℜ × Ω into the power set of Ω.
Info-gap models obey two basic axioms. Nesting: U(α, ũ) ⊂ U(α′, ũ) if α ≤ α′. Contraction: U(0, ũ)
is the singleton set {ũ}. The axiom of nesting means that the info-gap parameter α is an ‘horizon
of uncertainty’: the range of unknown variation increases as α get larger. The contraction axiom
means that the ‘nominal’ or ‘centerpoint’ event, ũ, is possible at all horizons of uncertainty.

Info-gap models underlie two decision functions which we now describe, the robustness and the
opportunity functions, α̂(q, rc) and β̂(q, rw), which express the designer’s risk-related dilemmas de-
riving from info-gap uncertainty. They do so without employing any probabilistic concepts, models
or information. Combination of info-gap and probabilistic information is discussed in (Ben-Haim,
2001, chapter 11).

3.2 Robust Satisficing

Let δ be a vector representing the decisions to be made or the actions to be taken. For instance, δ
may be a collection of strategic choices such as investments, or project selections, or organizational
changes, etc., or δ may contain linguistic variables such as “go/no-go” or “terminate/continue” in
project management. Let R(δ, u) be a reward function depending on both the decision vector δ
and the uncertain vector u. Failure occurs if R(δ, u) does not exceed a critical minimum value, rc.
That is, rc is the minimum acceptable level of reward. The reward function expresses the quality of
performance of the system, and rc defines the failure threshold. Equivalently, R(δ, u) = rc defines
a failure surface. The critical reward rc is not immutable. Rather, the planner may adopt different
values for rc under different conditions. Multiple reward functions can also be studied, though we
do not consider this here. See (Ben-Haim, 2001).

The robustness is the greatest value of the uncertainty parameter α for which the reward function
is no less than the critical value, rc. The robustness function can be expressed as the least upper
bound of the set of tolerable α-values:

α̂(δ, rc) = max

{
α : min

u∈U(α,ũ)
R(δ, u) ≥ rc

}
(1)

When α̂(δ, rc) is large then the decision maker is immune to a wide range of uncertain variations,
while if α̂(δ, rc) is small then even small fluctuations can lead to failure. ‘Bigger is better’ for the
robustness α̂, which is a non-probabilistic assessment of the reliability. This means that the planner
will try to make the decision, δ, so as to maximize the robustness function α̂(δ, rc). Furthermore,
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values of the critical reward rc will be evaluated in terms of the associated robustness α̂(δ, rc). We
will encounter examples in section 4.

We note that decision-analysis with the robustness function is not a worst-case analysis. In
classical worst-case min-max analysis the planner minimizes the impact of the maximally damaging
case. But an info-gap model of uncertainty is an unbounded family of nested sets: U(α, ũ), for all
α ≥ 0. Consequently, there is no worst case: any adverse occurrence is less damaging than some
other more extreme event occurring at a larger value of α. What eq.(1) expresses is the greatest level
of uncertainty consistent with no-failure. When one chooses δ to maximize α̂(δ, rc) one is maximizing
the immunity to an unbounded ambient uncertainty. The closest this comes to “min-maxing” is that
the decision is chosen so that “bad” events (causing reward R less than rc) occur as “far away” as
possible (beyond a maximized value of α̂).

3.3 Opportune Windfalling

Robustness to uncertainty is important when we concentrate on the pernicious possibilities entailed by
unknown variation. However, variations can be propitious and surprises can be beneficient. Dynamic
flexibility, which is so important for survival, thrives on emergent opportunities. We can study this
aspect of decisions based on info-gap models of uncertainty with the aid of a function which is the
logical complement of the robustness function α̂.

The opportunity function β̂ is constructed in a manner similar to α̂. Let rw represent the
decision maker’s wildest dreams of reward. Naturally, dreams of success can be more or less wild, so
rw is a variable just as rc is a variable assessment of the designer’s minimum demands. The uncertain
future is propitious if even small variation can lead to great success. rw will exceed rc.

The opportunity function is defined as the least uncertainty which enables the possibility of
reward no less than rw. The opportunity function can be expressed as the greatest lower bound of
the set of propitious α-values:

β̂(δ, rw) = min

{
α : max

u∈U(α,ũ)
R(δ, u) ≥ rw

}
(2)

If β̂(δ, rw) is small, then small deviation from nominal or anticipated conditions can lead to reward as
large as rw. Uncertainty is propitious if even small fluctuations can be favorable. On the other hand,
if β̂(δ, rw) is large, then reward as great as rw can occur only at large deviation from the norm. For
any value of the decision maker’s highest aspiration, rw, a small value of β̂(δ, rw) is preferable over a
large value. Thus ‘big is bad’ and ‘small is good’ with the opportunity function β̂(δ, rw), exactly the
reverse of the calibration of the robustness function α̂(δ, rc) for which ‘bigger is better’. β̂(δ, rw) is
the complement of the robustness function α̂(δ, rc), defined in eq.(1). Both α̂ and β̂ are immunities:
α̂ is the immunity to intolerable failure while β̂ is the immunity to sweeping success. Instead of
maximizing the immunity to failure, the decision maker may choose a strategy which minimizes the
immunity to opportunity.

4 Example: Uncertain Income from a New
In-Building Communication Infrastructure

In this section we demonstrate the info-gap approach to risk assessment with highly unstructured
knowledge gaps about an in-building communication infrastructure which is in the planning and
design stage, based on (Regev, 2001). The theory is elaborated in (Ben-Haim, 2001).

6



4.1 Problem Formulation

We concentrate on the projected income from the product, in constant dollars (corrected for interest).
We distinguish three types of variables:

1. Decision variables to be chosen by the planner. These are:

p = sale price per unit ($k).

q = quality factor, a dimensionless parameter between 0 and 1 expressing an overall quality of
the system, including the range of communications coverage, maintenance, etc.

We will denote the decision variables with the vector δ = (p, q).

2. Unknown variables beyond the control of the planner. These are:

g = number of clients (e.g. buildings) to be obtained by the firm.

s(p, q) = demand function: average number of systems sold per client. This is an unknown
function of the unit price p and the quality factor q.

3. Nominal estimates of the unknown variables:

g̃ = estimate of the number of clients, g.

s̃(p, q) = estimate of the demand function s(p, q). We assume that market research shows that
this function can be separated into two parts:

s̃(p, q) = qs̃(p) (3)

where s̃(p) is the known nominal demand at maximal quality.

It is recognized that these nominal estimates are very likely greatly in error since the knowledge
upon which they are based is highly deficient.

Our assessment of risks and opportunities is based on three components: a model expressing
the projected income, a failure criterion and info-gap uncertainty models for the unknown
variables.

From balance of payment considerations, the projected income in constant dollars is:

I = pgs(p, q) (4)

The income I is the reward function for this problem, represented as R(δ, u) in eqs.(1) and (2). The
income I depends on the decision vector δ = (p, q) and on the uncertain quantities g and s(p, q).

The project is a failure if the income falls below a required critical value Ic:

I < Ic (5)

While in some situations the critical survival-level of income is rigidly determined by external factors,
quite often Ic is a parameter to be chosen in the course of the risk analysis. We will show how this
is done.

We now develop the uncertainty models. We have quite large knowledge gaps for the number
of clients g and for the demand function s(p, q). The best we can say about the value of the variable
g is that its fractional deviation from its nominal value g̃ is bounded, but the bound is unknown.

That is, the magnitude of the fractional error
|g − g̃|
g̃

is unknown. In addition, from the definition of

g as the number of clients, we know that g cannot be negative. This very limited information about
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the uncertain variation of g is quantified by the following info-gap model, which is a family of nested
sets of g-values, each set corresponding to a value αg of the (unknown) maximal fractional variation:

Ug(αg, g̃) = {g : max[0, g̃(1− αg)] ≤ g ≤ g̃(1 + αg)} , αg ≥ 0 (6)

Thus Ug(αg, g̃) is the set of non-negative values of g (the unknown number of future clients) whose
fractional deviation from the nominal value g̃ is no greater than αg. The range of uncertain variation
of g grows as αg gets larger, so αg is the uncertainty parameter for the size of the clientele. Eq.(6) is
an info-gap model for the uncertainty in g. We note two levels of uncertainty in an info-gap model
such as eq.(6). First, the value of g varies in an unknown manner within an interval, for fixed value
of the uncertainty parameter αg. Second, the size of this interval — the horizon of uncertainty αg

— is unknown.
Our knowledge of the demand function s(q, p) is not much better. As the economist Frank Knight

wrote: the demand function “not only cannot be foreseen accurately, but there is no basis for saying
that the probability of its being of one sort rather than another is of a certain value” (Knight, 1951,
p.120). We must accept the possibility of substantial fluctuations around the known nominal demand
function qs̃(p). However, we have information indicating how the range of fractional variation changes
with unit price. We express this in the following envelope-bound info-gap model for uncertainty in
the demand function s(p, q), which must be non-negative:

Us(αs, s̃) =
{
s(p, q) : max

(
0, qs̃(p)[1− αsψ(p)]

)
≤ s(p, q) ≤ qs̃(p)[1 + αsψ(p)]

}
, αs ≥ 0 (7)

where ψ(p) is a known envelope function. Us(αs, s̃) is the set of non-negative demand functions
s(p, q) whose fractional deviation from the nominal demand function qs̃(p) is no greater than αsψ(p).
The uncertainty parameter αs is modulated by the envelope function ψ(p). The value of the horizon
of uncertainty αs, however, is unknown.

4.2 Robustness and Opportunity

We now apply the ideas of robust satisficing and opportune windfalling to this example, based
on the discussion in section 3. These are strategies for risk assessment and decision-making.

Decision δ entails the choice of price p and quality q for the communication systems. The ro-
bustness of decision δ to uncertainty in the demand function s(p, q), at given uncertainty αg in the
size of the clientele g, is the greatest value of the info-gap uncertainty parameter αs, for which the
income I is no less than the critical, survival-level value Ic, for all realizations of the demand function
s(p, q) up to uncertainty αs, and for all clientele sizes up to info-gap αg. Stated mathematically, the
robustness function is:

α̂(δ, Ic, αg) = max {αs : I ≥ Ic, for all s ∈ Us(αs, s̃) and all g ∈ Ug(αg, g̃)} (8)

The robustness α̂(δ, Ic, αg) assesses the immunity to uncertainty of decision δ for satisficing the degree
of income I. α̂(δ, Ic, αg) is a function of the level of income which is deemed necessary for ‘survival’,
Ic. It is important to stress that Ic is a parameter of the decision procedure, and need not be chosen
a priori. Rather, trade-off between robustness, α̂, and performance, Ic, is explored to assist in the
choice of Ic as well as in the choice of the decision δ.

At any level of critical income Ic, it is better to have more robustness rather than less. That is,
‘bigger is better’ with α̂. Thus a preference ordering on available decisions, δ, is generated by the
robustness function. We prefer δ over δ⋆ if we are more immune to uncertainty with δ than with δ⋆

at the same value of Ic:
δ ≻ δ⋆ if α̂(δ, Ic, αg) > α̂(δ⋆, Ic, αg) (9)
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While the robustness function addresses the pernicious aspect of uncertainty, we may also be
interested in propitious opportunities entailed in the uncertainty. The opportunity entailed in
decision δ is the lowest level of uncertainty which is necessary to enable, though not guarantee, that
a given highly desirable level of income can be achieved. While Ic is the lowest acceptable level of
income, let Iw represent a large and very attractive level of income:

Ic ≪ Iw (10)

Income at the level of Iw is not necessary for survival, but would be a highly successful windfall
outcome of decision δ. The ‘windfalling’ strategy enables but does not guarantee Iw, in contrast
to the satisficing strategy based on α̂ which tries to guarantee Ic. The windfalling opportunity
function is the least value of the info-gap uncertainty parameter αs, for which the income I is no
less than the windfall value Iw, for at least one realization of the demand function s(p, q) up to
uncertainty αs, and for at least one clientele size up to info-gap αg. Stated mathematically, the
opportunity function is:

β̂(δ, Iw, αg) = min {αs : I ≥ Iw, for some s ∈ Us(αs, s̃) and some g ∈ Ug(αg, g̃)} (11)

β̂(δ, Iw, αg) is the immunity to windfall, the lowest level of uncertainty at which windfall is possible.

A small value of β̂(δ, Iw, αg) is desirable since that means that the barrier to windfall is low. Thus
‘big is bad’ for the opportunity function, while ‘bigger is better’ for the robustness function. Thus,
unlike eq.(9), the preference ordering induced by the opportunity function is that we prefer δ over
δ⋆ if the barrier to windfall is lower with δ than with δ⋆:

δ ≻ δ⋆ if β̂(δ, Iw, αg) < β̂(δ⋆, Iw, αg) (12)

The preference orderings of eqs.(9) and (12) may or may not agree.
The robustness and opportunity functions, defined in eqs.(8) and (11), are readily found, based

on the projected income model of eq.(4) and the info-gap models of uncertainty, eqs.(6) and (7).
First let us define:

ρ(δ) =
Ic

pg̃qs̃(p)
(13)

which is the ratio of the survival-level of income, Ic, to the income based on the nominal model. One
would normally expect ρ < 1, expressing the anticipation that nominally the project will at least
enable survival. Otherwise, one would not launch the project. We now find the immunity functions
to be:

α̂(δ, Ic, αg) =
1

ψ(p)

[
1− ρ(δ)

1− αg

]
(14)

β̂(δ, Iw, αg) =
1

ψ(p)

[
ρ(δ)

1 + αg

Iw
Ic

− 1

]
(15)

If eq.(14) is negative than the robustness is zero, representing the fact that arbitrarily small variations
can lead to failure. (In addition, the robustness, α̂(δ, Ic, αg), must satisfy α̂ψ ≤ 1, due to the non-
negativity of the demand function in the info-gap model of eq.(7).) Similarly, if eq.(15) is negative
then the opportunity function β̂ is set equal to zero indicating that windfall can occur even under
nominal conditions. (We do not require β̂ψ ≤ 1, since the opportunity function, β̂(δ, Iw, αg), samples
the upper inequality in the info-gap model of eq.(7), unlike α̂(δ, Ic, αg) which samples the lower
inequality.)
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Eqs.(14) and (15) allow the planner to explore the significance of various choices of the decision
vector δ, as well as the implication of various anticipations of survival income Ic or windfall income
Iw. In any case, recalling that ‘bigger is better’ for α̂ and ‘big is bad’ for β̂, we see that the planner
will tend to try to increase α̂ and to reduce β̂.

The robustness and opportunity functions can be either antagonistic or sympathetic. The
former occurs if a given change in δ causes α̂ and β̂ to change in the same direction, meaning that
one improves while the other gets worse. On the other hand, the immunities, α̂ and β̂, are sympathetic
if a change in δ causes simultaneous improvement in both.

For instance, if we consider a single decision variable, δi (either p or q), then the robustness and
opportunity functions are sympathetic at decision point δ, with respect to changes in δi, if and only
if:

∂α̂

∂δi

∂β̂

∂δi
< 0 (16)

The immunity functions are antagonistic if this product is positive, and they are ‘indifferent’ if it is
zero.

More generally, considering a variation dδ in the decision vector, the net change in the robustness
is:

dα̂ =

(
∂α̂

∂δ

)T

dδ (17)

An analogous expression represents the net change in β̂. The immunity functions are sympathetic if
and only if their net changes are in opposite directions. Thus the immunity functions are sympathetic
at decision point δ if and only if [dα̂][dβ̂] < 0. That is:[(

∂α̂

∂δ

)T

dδ

](∂β̂
∂δ

)T

dδ

 < 0 (18)

The immunities are indifferent or antagonistic if this product is zero or positive, respectively.
In the next section we will demonstrate how eqs.(14)–(18) are used in the systematic search

for those desirable configurations in which both robustness and opportunity can be simultaneously
enhanced.
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Figure 1: Robustness (α̂) and opportunity (β̂) vs. income-aspiration levels Ic and Iw.

4.3 Results

In this section we will discuss the planning and risk-assessment applications of the immunity functions,
robustness α̂(δ, Ic, αg) and opportunity β̂(δ, Iw, αg). We will consider the variation of robustness and
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opportunity with:
• income aspiration, Ic and Iw.
• quality factor q.
• unit price p.

6
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0
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0 1.00.5
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0

Figure 2: Robustness α̂(δ, Ic, αg) and opportunity β̂(δ, Iw, αg) vs. quality factor q. Ic = $5 × 106,
Iw = $10× 106.

Income aspiration. Ic is the income deemed necessary for survival of the firm. This is rarely a
hard and fast value, especially when evaluated in the context of the robustness which varies according
to the value of Ic. From eqs.(13) and (14) we see that α̂ decreases linearly with Ic, as shown in fig. 1.
This expresses the irrevocable trade-off between demanded income Ic, and immunity to failure α̂: the
greater the demanded income, the lower the robustness to uncertainty in the demand. The choice of
Ic is important since it influences the choice of the decision variables p and q via its influence on the
robustness, as we will see later.

To understand how the robustness-analysis can alter the firm’s aspirations for income, suppose
that initially the firm considers an income Ic,0 as essential for survival, but finds that the associated
robustness is quite large. It would be reasonable for the firm to revise its aspirations and choose
a larger minimum-income requirement: Ic,1 > Ic,0. Alternatively, if the robustness of Ic,0 is very
small, (meaning that even small fluctuations of either demand or clientele could result in failure),
then the firm will either abandon the project or revise its aspirations downward, Ic,1 < Ic,0, resulting
in greater robustness and possibly a different choice of δ.

Another important trade-off is discovered by studying the relation between the robustness α̂ and
the uncertainty αg in the size of the clientele. Recall that α̂(δ, Ic, αg) is the robustness to uncertainty
αs in the demand function s(p, q), and that α̂(δ, Ic, αg) is a function of the uncertainty αg in the size
of the clientele. We see from eq.(14) that the robustness α̂(δ, Ic, αg) increases as αg decreases. This
relation is in fact bilateral: robustness to fluctuations in one variable increases as the uncertainty in
the other variable decreases.

Now consider the opportunity function in eq.(15), which increases linearly with the aspiration for
windfall income Iw, as shown in fig. 1. This is also a trade-off, though different from the α̂-vs.-Ic
trade-off. In the present case, as the aspiration for great windfall reward Iw increases, the growing
value of β̂ means that greater ambient uncertainty must be tolerated: “Nothing ventured, nothing
gained”.

Quality factor. We now consider the variation of the immunity functions, α̂(δ, Ic, αg) and

β̂(δ, Iw, αg), with change of the quality factor, q, as shown in figs. 2 and 3. In these figures the
nominal number of clients is g̃ = 1000 and the uncertainty parameter for g is αg = 0.25 which, from
eq.(6), means that variations up to 25% in g are considered. The nominal demand function at unit
quality is s̃(p) = −2.8p + 12.96 (p in units of 103$), meaning that the demand nominally decreases
linearly with price. The uncertainty-envelope for the demand function, ψ(p), is a quadratic function
ψ(p) = 1

6p
2 − 0.8p + 1, which also decreases with price for p < 3.75[k$]. At large price the nominal
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demand is lower and the actual demand tends to fluctuate less than at low price where demand and
variation are both large.

From eqs.(13)–(15) we note that q occurs in α̂ and β̂ only in the denominator of ρ, so that the
robustness function increases monotonically while the opportunity function decreases monotonically
with increasing q. Therefore, from eq.(16), we learn that robustness and opportunity vary sympathet-
ically with respect to product quality: they both improve with increasing quality. Optimists beware!
This is not a foregone conclusion, and need not be true if the envelope function ψ(p) depended also
on q.

6
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β̂

p = 0.5 [k$]

Quality, q
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Figure 3: Robustness α̂(δ, Ic, αg) and opportunity β̂(δ, Iw, αg) vs. quality factor q. Ic = $1 × 106,
Iw = $4× 106.

The value of q at which these curves cross, if there is such a point (as occurs in figs. 2 and 3),
is significant. It is the lowest value of quality at which windfall income, I ≥ Iw, can occur at a
level of ambient uncertainty which cannot entail failure, I < Ic. There is a particular incentive for
choosing q no less than this value. For instance, in fig. 3 we see that, at a unit price of p = 1.2
[k$], quality q > 0.2 assures that the robustness is large enough to enable windfall without allowing
failure. However, at the lower unit price p = 0.5 [k$], this favorable situation arises only at q > 0.4.

We now consider figs. 2 and 3 in more detail. The two frames in fig. 2 show results for rather
high aspiration levels: Ic = $5 × 106 and Iw = $10 × 106, while the frames in fig. 3 represent lower
aspirations: Ic = $1× 106 and Iw = $4× 106.

Comparing the two frames in fig. 2 we see that the higher unit price (righthand frame) results in
greater robustness (α̂) and lower immunity to windfall (β̂) than the lower unit price. Consequently
the value of quality q at which the curves cross is lower (q ≈ 0.5) at the higher unit price than at
the lower price (q ≈ 0.6). We conclude that by raising the price, even accounting for the decreasing
nominal demand, the robustness and opportunity both improve and the quality can be correspond-
ingly reduced without jeopardizing the performance as measured by either satisficing or windfalling
the income.

Similar conclusions are supported by comparing the two frames in fig. 3. Comparing figs. 2 and
3, however, we note that the lower income aspirations (fig. 3) require relatively lower unit prices
in order to maintain the same level of robustness and opportunity. This is not surprising since α̂
increases and β̂ decreases with decreasing Ic and Iw (fig. 1). For instance, comparing the frames
figs. 2 and 3 at which p = 1.2 [k$], at the same value of quality, q = 0.6, we see that in fig. 3 α̂ = 2.9
and β̂ = 0, while in fig. 2 α̂ = 0.13 and β̂ = 0.57. We also note that reducing the aspiration lowers
the value of q at which the curves cross.

In short, consideration of robustness to uncertainty, as well as opportunity from uncertainty,
both point to the advantage of greater rather than lower quality. Furthermore, these curves en-
able the planner to assess the import of price and quality trade-offs on the background of various
income-aspiration levels. Our analysis is of course not complete because, in this example, we are not
considering uncertainty in the cost of production, only the uncertain projected income.
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Unit price. We now consider the effect of unit price p on the robustness and opportunity
functions. The dependence of the immunity functions on p is rather complicated, since p appears in
eqs.(14) and (15) in the envelope ψ(p) and in the denominator of ρ as the product ps̃(p). However,
the discussion (and choice) of p can be simplified a bit.

Note that in eq.(7), the info-gap model for uncertainty in the demand function s(p, q), the frac-
tional variation of the actual demand compared with the nominal demand is αψ(p). This means
that the greatest fractional variation of s which can be tolerated without failure is α̂(δ, Ic, αg)ψ(p)
(provided that α̂ψ ≤ 1). Likewise, the lowest fractional variation of s which must be accepted in
order to enable windfall is β̂(δ, Iw, αg)ψ(p) (we do not require β̂ψ ≤ 1). For instance, a value of
α(δ, Ic, αg)ψ(p) = 0.5 indicates that, in the presence of fractional uncertainty αg in the clientele g,
the project can tolerate 50% fluctuation in the demand function without falling below the income level
Ic. In short, it is the weighted immunity functions, α̂ψ and β̂ψ, which are economically meaningful.
Hence we have plotted these envelope-weighted immunity functions in fig. 4.

Fig. 4 shows the weighted immunity functions at low and high income aspirations (left and right
frames, respectively). The clientele uncertainty parameter is αg = 0.25, the nominal size of the
clientele is g̃ = 1000, and the nominal demand function at unit quality is s̃(p) = −2.8p + 12.96, as
before.

The quality factor, q, is different in the two frames. This shows that the lower level of income-
aspiration is feasible at a much lower product-quality than the higher aspiration level, at roughly the
same levels of unit price.

The weighted robustness and immunity functions are sympathetic: an increase in unit price p
enhances the robustness and reduces the immunity to windfall. That is, the slopes of α̂ψ and β̂ψ
have opposite signs in fig. 4.

Note that the robustness is worse but the opportunity is better at the higher than at the lower
level of income aspiration. This is possible because q is different in the two frames, in contrast to the
trends displayed in fig. 1 where q is constant. For instance, at p = 1.3 [k$], α̂ψ = 0.45 and β̂ψ = 0.32
at the lower aspiration levels, while α̂ψ = 0.083 and β̂ψ = 0.10 at the higher aspiration levels. What
this means is that, for these particular values of Ic and Iw, the greater critical reward is less feasible,
or more vulnerable to failure, than the lower critical reward. However, the greater windfall reward is
more accessible than the lower value. This comparison will enter the decision maker’s deliberations
on whether to adopt low or high income aspiration, and whether to produce the product at low or
high quality.

The value of p at which the curves cross is significant: it is the least value of price at which
windfall Iw is possible at a level of uncertainty at which satisficing with income Ic is guaranteed. We
note that this price is slightly greater at the higher aspiration than at the lower (1.3 [k$] vs. 1.15
[k$]). This too will contribute to the planner’s decision on the most desirable configuration of the
product and of the project.

5 Summary

Projects are one-time undertakings. Consequently they are performed under uncertainty and are
subject to risk. The management of risk is based on the philosophy that it is better to be proactive
in managing projects rather than to be reactive. By identifying the sources of risk early on in the
project life cycle and by focusing on the major sources of risk, management can select the proper
policies for handling the risk. Such policies include risk elimination for instance by selecting a
different design approach or a different technology; risk reduction such as by using redundancy in
the design; risk sharing by outsourcing risky parts of the project to a partner or a contractor with
better knowledge of the technology; and risk absorption for example by using proper time- and
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Figure 4: Weighted robustness α̂(δ, Ic, αg)ψ(p) and weighted opportunity β̂(δ, Iw, αg)ψ(p) vs. price
p.

budget-buffers. These policies are all dependent on proper risk quantification. In some projects
past experience is a good source of information for risk quantification. Knowing the frequency at
which a particular risky event occurred in similar projects in the past and the effect of such an event
on the project’s success is the best source of information for project risk quantification. However,
in most R&D projects such information is not available and managers frequently (and rightly) feel
that statistical risk quantification techniques are not implementable due to lack of information. The
knowledge gap approach presented in this paper is an alternative to statistical methods for R&D
projects performed in a high-risk environment. The approach is designed to help managers to focus
on the high-risk areas of the project and to take the appropriate steps to manage and mitigate such
risks.

In summary, this paper develops the following ideas.

1. Robustness, in the info-gap approach, is the greatest magnitude of uncertain variation which
will not cause project failure. A project with high robustness is very immune to uncertainty
and thus has low risk. A project with low robustness is very vulnerable to failure and thus
is risky. Robustness is quantified with the info-gap robustness function α̂(δ, rc) where δ is the
vector of decision variables and rc is a critical, survival-level of reward. α̂(δ, rc) generates a
robust satisficing decision strategy.

2. Opportunity, from an info-gap perspective, is the least level of uncertainty which enables, but
does not necessarily guarantee, highly desirable windfall reward. A project is highly opportune
if windfall is possible even at low uncertainty. Opportunity is quantified with the info-gap
opportunity function β̂(δ, rw) where rw is a high level of windfall reward. β̂(δ, rw) generates an
opportune windfalling decision strategy.

3. Decisions: The info-gap methodology provides the planner with decision functions — α̂ and
β̂ — for evaluating the decision variables with respect to robustness and opportunity. This is
the basis for making desirable operational and planning decisions.
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