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Abstract

When animals are transported and pass through cus-
toms, some of them may have dangerous infectious
diseases. Typically, due to the cost of testing, not
all animals are tested: a reasonable selection must be
made. How to test effectively, yet avoid cataclysmic
events? First, we extend a model proposed in the lit-
erature for the detection of invasive species to suit our
purpose. Secondly, we explore and compare two deci-
sion methodologies on the problem at hand, namely,
info-gap theory and imprecise probability theory, both
of which are designed to handle severe uncertainty.
We show that, under rather general conditions, ev-
ery info-gap solution is maximal with respect to a
suitably chosen imprecise probability model, and that
therefore, perhaps surprisingly, the set of maximal op-
tions can be inferred at least partly—and sometimes
entirely—from an info-gap analysis.

Keywords. exotic disease, lower prevision, info-gap,
maximality, minimax, robustness, inspection, proto-
col

1 Introduction

This paper concerns the inspection of imported herds
of animals for signs of known or unknown major exotic
infectious diseases. On the one hand, imports and
exports of animals represent a significant contribution
to the UK economy. On the other hand, there is a real
risk of animal diseases being introduced. Imports are
therefore subject to strict controls at the UK border
under EU and national rules. Fèvre et al. [6] review
the problems associated with animal movement and
the spread of disease.

We will build further on the work of Moffitt et al.
[10], who study inspection protocols for shipping con-
tainers of invasive species, employing info-gap theory
[1] to model the severely uncertain number of infested
items. The aim of their study is to realistically take

into account economical considerations (actual costs
of testing, and of invasive species passing through cus-
toms), whilst also soundly handling the enormous un-
certainty.

A key feature of their, and also our, problem is that
exact probabilities of the constituent events are very
hard to come by [9]. This motivates the use of ro-
bust uncertainty models and decision tools, such as
info-gaps [1] (i.e. robust satisficing) as in the original
study, but also imprecise probabilities [12], as we will
do in this paper.

Our study, using both decision methodologies, leads
us to surmise a connection between info-gap analy-
sis and imprecise probability theory (Γ-minimax and
maximality in particular). We prove that the per-
ceived connection is no coincidence, and we establish a
rigorous theoretical link between the two approaches.

The paper is organised as follows. Section 2 intro-
duces the problem of animal inspection, defines the
model, discusses various uncertainties involved, and
derives an expression for the expected loss under a
simple binomial model for infection. Section 3 solves
the inspection problem, first using an info-gap model,
and then using an imprecise probability model (with
maximality). These results are discussed in Section 4,
where we formally define an info-gap model based on
a nested set of imprecise probability models, and es-
tablish the theoretical connections between info-gap,
Γ-minimax, and maximality. Section 5 concludes the
paper.

2 Animal Herd Testing

In this section, we extend a model, proposed by [10]
for the detection of invasive species, to suit our pur-
pose:

• we explicitly take specificity and sensitivity into
account in order to allow for imperfect testing,



• we take into account an additional cost term for
terminating the herd in case an infection is de-
tected, and

• we model the occurrence of diseased animals in
the herd as a binomial process, under a worst-
case assumption of independence of infections be-
tween animals.

2.1 Model Description

Consider a herd of n animals, of which m are tested—
the problem is to choose m optimally. The uncer-
tain number of diseased animals in the herd is de-
noted by d. The test has sensitivity—the probabil-
ity that a diseased animal tests positive—equal to p,
and specificity—the probability that a healthy animal
tests negative—equal to q.

Testing m animals costs c(m) utiles. If d diseased an-
imals pass inspection undetected, we incur a cost of
a(d) utiles. When at least one diseased animal is de-
tected, then, typically, the whole herd is terminated,
costing t(n) utiles.

Following [10, p. 295, Sec. 3], in the numerical exam-
ples that follow, we take

c(m) = 1000− 2000m+ 1000m2 (m ≥ 1)

a(d) =

{
0 if d = 0

a if d ≥ 1
(a = 10 000 000)

Moffitt et al. [10] consider n between 250 and 2 500,
do not need to consider the cost of termination (t(n) =
0), and assume perfect testing (p = q = 1). For our
problem, we take

n = 250

t(n) = 400n = 100 000

p = 0.9999

q = 0.999

so we assume that a diseased animal tests positive
with probability 0.9999, and a healthy animal tests
negative with probability 0.999. For reference, if q =
0.999, then probability that all animals in a healthy
herd of size n = 250 test negative is qn = 0.78. These
values for p and q are reasonable in so far that, in
practice, things would be really bad if they were any
lower.

2.2 Model Uncertainties

Obviously, many of these values are rather uncertain.
The only values we are pretty certain of are the num-
ber of animals n in the herd, the cost of testing c(n),
and the cost of termination t(n).

Due to the necessity that the herd must have valid
health documentation, we would expect that the num-
ber of infected animals d would be low. Additional in-
spection by veterinary officials is costly and depends
on the inspecting official’s ability to spot signs of in-
fectious disease like pathological lesions and abnormal
behaviour. Of course, the level of experience and com-
petency will vary from official to official, but the test-
ing procedure should be thorough enough for us to be
confident of both a high sensitivity, p, and specificity,
q. In addition to this, the government would pre-
fer the most sensitive test possible (within budgetary
constraints), even if specificity was slightly compro-
mised, because a rare false positive would be better
for the prevention of disease entry than a rare false
negative. Hence, we would expect p > q. Further
discussion of this can be found in [15].

Regarding the cost a of an infection passing through
customs, some historical data is available. For exam-
ple, instances of major disease outbreaks in the last
couple of decades include BSE where public spending
was over £5 billion, and the foot and mouth outbreak
in 2001 which costed the UK government £2.6 billion
[4]. These experiences show that there is great varia-
tion in the level of costs of exotic disease outbreaks.
Due to the exceptional nature of the outbreaks, there
is limited evidence on which to base cost assessments.
Therefore, there is great uncertainty about what may
happen in the future.

Outbreaks of any particular exotic disease are gen-
erally rare or may never have occurred at all. Also,
diseases change as new strains develop, and the possi-
bility of new diseases arriving into the UK can change
rapidly. For example, until a few years ago, blue-
tongue was considered extremely unlikely, but now
we expect an outbreak every one to two years in the
UK.

In late 2009, an elicitation exercise was carried out
with government experts to help quantify the aver-
age annual costs to the UK government of exotic in-
fectious disease outbreaks and the uncertainty about
those estimates [8]. In that exercise, it was clear that
the costs are severely uncertain even when the disease
was known (for example, foot and mouth is an exotic
infectious disease). A major contributor to the un-
certainty about the overall cost was the possibility of
an outbreak of an unknown infectious disease, which
could cost anywhere from £0.5 billion to £6 billion.

The scale and costs of an outbreak will depend on
the length of time between the diseased animal enter-
ing circulation and the disease’s presence being con-
firmed, and the speed and effectiveness of the govern-
ment’s response. The eventual costs are influenced



by any public health implications and the effects of
disease controls on other industries. The main ele-
ments of the costs due to control measures include:
the disposal of and payments for culled animals; the
tracing, testing and diagnosis of animals; the clean-
ing and disinfection of infected premises; and admin-
istrative costs in managing the outbreak. The size of
these costs will vary according to the scale of the out-
break with key factors being the number of infected
premises, the numbers of animals culled, and the du-
ration of the outbreak. These types of factors are
considered in greater detail in [4] and [7].

A serious study of how all uncertainties involved could
be taken into account in the model would of course be
extremely interesting, but is beyond the goal of this
paper. Instead, in this initial study, following [10] and
many others, for now we will focus on the main un-
certainty, that is, the number of diseased animals d,
and simply assume reasonable values for the remain-
ing parameters.

2.3 Expected Loss

First, we derive the expected loss, in case all parame-
ters of the problem are perfectly known, including the
number of diseased animals d. Clearly, conditional on
d, the expected loss is:

L(m, d, p, q, c, a, t)

= c(m) + t(n) Pr(T |d) + a(d) Pr(T c|d)

where T denotes termination of the herd, that is, the
event that at least one diseased animal is detected,
and T c denotes its complement, that is, the event that
the herd passes inspection.

Let us deduce Pr(T c|d). First, if the test group of
size m is sampled randomly and without replacement,
then the probability of exactly z diseased animals in
the test group follows a hypergeometric distribution:

Pr(z|d) =

(
d
z

)(
n−d
m−z

)(
n
m

) .

Next, we calculate the probability of non-termination
given z diseased animals in the test group, that is
Pr(T c|d, z). If d = 0, then the probability of non-
termination is the probability of all healthy animals
in the sample testing negative, so Pr(T c|0, z) = qm.
If d ≥ 1, then given z diseased animals in the sample,
non-termination occurs when none of the z diseased
animals tests positive and all of the m − z healthy
animals test negative. Hence, in all cases,

Pr(T c|d, z) = (1− p)zqm−z. (1)
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L
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Figure 1: Loss as a function of the number of diseased
animals for m = 10 and m = 20.

By the law of total probability,

Pr(T c|d) =

d∑
z=0

Pr(T c|d, z) Pr(z|d)

=

d∑
z=0

(1− p)zqm−z
(
d
z

)(
n−d
m−z

)(
n
m

) . (2)

Now we have all the ingredients to calculate the total
expected loss if we choose to test m out of n animals:

L(m, d, p, q, c, a, t)

= c(m) + t(n) + (a(d)− t(n)) Pr(T c|d)

or, if a′(n, d) = a(d) − t(n) denotes the termination
adjusted cost of apocalypse,

= c(m) + t(n) + a′(n, d) Pr(T c|d)

where Pr(T c|d) is given by Eq. (2). Figure 1 depicts
the expected loss for a few typical cases.

2.4 A Binomial Model for Infection

Moffitt et al. [10] consider an info-gap model directly
over the number of diseased animals d, which leads
to a rather tricky optimisation problem. Instead, we
will consider the (highly uncertain) probability r that
an animal is infected, and derive the expected loss
as a function of r. Although we do not explore this
topic further in this paper, this also paves the way to
modelling spatial dependencies between infections in
the herd, leading to more optimal testing strategies.

So, assume that each animal has a probability r of be-
ing infected; for simplicity, for now, we assume that
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Figure 2: Expected loss L(m|r) as a function of the
test group size m, for r = 0.00010, r = 0.00025, r =
0.00050, and r = 0.00100, from bottom to top.

one animal being diseased does not affect another ani-
mal being diseased. Obviously, this will generally not
be satisfied, and more realistically, we would expect
a positive correlation, resulting in diseased animals
being clustered together in the herd. Assuming inde-
pendence essentially amounts to a worst case study:
at the other extreme end, if one diseased animal would
immediately infect the whole herd, then it would be
sufficient to test only a single animal, as d = 0 and
d = n would be the only two possibilities.

Under the worst case assumption of independence, the
probability of having d out of n animals infected is:

Pr(d|r) =

(
n

d

)
rd(1− r)n−d (3)

The expected loss is:

E(L(m, ·, p, q, c, a, t)|r)

=

n∑
d=0

L(m, d, p, q, c, a, t) Pr(d|r) (4)

From now onwards, we will simply write L(m|r) in-
stead of E(L(m, ·, p, q, c, a, t)|r) in order to simplify
notation. Figure 2 depicts L(m|r) as a function of m
for a few typical situations.

3 Decision Analysis

In this section, we explore and compare two decision
methodologies, designed for severe uncertainty, on the
problem at hand. In particular,

• we accommodate the info-gap approach sug-
gested by [10] to our extended model,

• we investigate possible ways of constructing sets
of probabilities (i.e. imprecise probability mod-
els) which are in some sense equivalent to the
proposed info-gap model, and

• we compare the decisions that these various mod-
els lead to.

3.1 Info-Gap Analysis

One approach to solve our decision problem, under
severe uncertainty about the exact probability r of a
single animal being viciously infected, is to select that
decision which meets a given performance criterion,
Lc, under the largest possible range of r. Given that
we have almost no information about r, this simple
model seems to suffice for our purpose. Obviously,
one could define many other more refined info-gap
models—and our choice of model is just one example
among many. For a much more detailed account, see
[1].

Specifically, for a given value of Lc, the largest possi-
ble range [0, h] of r for which we meet our performance
criterion is characterised by

ĥ(m,Lc) = max
h≥0

h : max
r∈[0,h]

L(m|r)︸ ︷︷ ︸
M(m,h)

≤ Lc


The value ĥ(m,Lc), as a function of Lc, is called the
robustness curve: it tells us how uncertain about r we
can be for our decision m still to meet a given level of
performance Lc.

A quick Poisson approximation reveals that as long
as exp(−nh) is sufficiently close to 1 (and this holds
for sufficiently small values of nh) the inner maximum
over r ∈ [0, h] is achieved at r = h (also see Figure 2:
the cost increases as r increases), so

M(m,h) = L(m|h)

Obviously, M(m,h) increases as the horizon of un-

certainty h increases, whence ĥ(m,Lc) as a function
of Lc is simply the inverse of M(m,h) as a function
of h. In other words, plotting M(m,h) as a function
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Figure 3: Robustness curves ĥ(m,Lc) as a function Lc

for test group sizes m = 1 (solid), m = 15 (dashed),
and m = 30 (dotted).

Lc/106 m∗ 103ĥ(m∗, Lc)
0.5 2 0.207
1.5 5 0.661
2.5 8 1.184
3.5 11 1.803

Table 1: Info-gap choice ofm, and corresponding hori-
zon of uncertainty, for various values of the critical
cost Lc.

of h for different values of m effectively gives us the
robustness curves. Figure 3 depicts them.

The choices of m which maximise robustness, for var-
ious values of the critical cost Lc, are tabulated in
Table 1. For example, at a cost of at most Lc =
2 500 000, we can safeguard against any probability of
infection r ∈ [0, 0.001 184], by testing 8 animals in the
herd.

3.2 Imprecise Probability Analysis:
Maximality

There are several ways one might go about construct-
ing an imprecise probability model for our problem.
As we have just seen, the info-gap approach hinges on
the idea of satisficing. We may start out with a level
of minimum performance that we hope to achieve, and
the analysis tells us how much uncertainty we can ac-
count for, at this price. One might also interpret it
conversely: for a given level of uncertainty, the anal-
ysis tells us how much we might potentially pay, if it
comes to the worst.

Typical decision models for imprecise probabilities
studied in the literature do not relate to satisficing,
yet, they do incorporate an idea similar to the info-
gap horizon of uncertainty: the imprecision of our

model. Concretely, consider the set Mh of all proba-
bility densities over r that are zero outside [0, h].1 We
say that a choice m dominates a choice m′, and we
write m � m′ whenever the expected loss under m is
strictly less than the expected loss under m′ over all
densities p in Mh, that is, whenever∫ ∞

0

L(m|r)p(r)dr + ε ≤
∫ ∞
0

L(m′|r)p(r)dr

for all probability densities p in Mh and some ε > 0.

This happens exactly when

min
r∈[0,h]

[L(m′|r)− L(m|r)] > 0

Note that the minr∈[0,h] operator can be thought of
as a lower expectation operator, or lower prevision
Ph—we will come back to this in Section 4.

One can easily prove that � is a partial order, whence,
a sensible way to choose m is to pick one which is not
dominated by any other option, or in other words,
which is maximal. The idea of choosing undominated
options goes back at least to Condorcet [3, pp. lvj–
lxix, 4.e Exemple]; also see [11, p. 55, Eq. (1)], [13,
Sections 3.7–3.9], and [12] for further discussion.

Given our partial order, one can easily show that an
option m is maximal if and only if

min
m′∈{0,1,...,n}

max
r∈[0,h]

[L(m′|r)− L(m|r)] ≥ 0 (5)

The inner maximum is almost always achieved at ei-
ther r = 0 or r = h, simplifying practical calcula-
tions substantially. Table 2 depicts these values for
all choices of m, and varying values of h. For ease of
comparison with the info-gap solution, we have chosen
the same values of h as those listed in Table 1.

4 Discussion

Interestingly, info-gap and maximality give essentially
the same result, with maximality refining the picture
slightly: for a given horizon of uncertainty h, the
maximal solutions are {1, . . . ,m∗}, where m∗ is the
info-gap solution. The most notable result is that all
info-gap solutions are maximal. Is this a coincidence?
Formulating info-gap theory in terms of lower previ-
sions, we show that this holds under fairly general
circumstances.

1The adventurous reader may take all finitely additive prob-
ability measures µ on [0,+∞] with µ([0, h]) = 1. We do without
this complication: because all functions involved are continu-
ous, those additional measures make no difference.



103h
m 0.207 0.661 1.184 1.803
0 −0.9 −0.9 −0.9 −0.9
1 1.1 1.1 1.1 1.1
2 1.4 3.1 3.1 3.1
3 −0.6 4.9 5.1 5.1
4 −3.1 2.9 7.1 7.1
5 −7.7 0.9 7.0 9.1
6 −14.3 −1.1 5.0 11.1
7 −22.9 −4.3 2.9 9.9
8 −33.4 −9.5 0.9 7.9
9 −46.0 −16.6 −1.1 5.8
10 −60.6 −25.9 −4.3 3.7
11 −77.2 −37.1 −9.5 1.7
12 −95.8 −50.3 −16.8 −0.4
13 −116.4 −65.6 −26.1 −2.9
14 −139.1 −82.9 −37.4 −7.4
15 −163.7 −102.2 −50.8 −14.1

Table 2: Result of Eq. (5) (divided by a factor 103 for
everything to fit in the table). A positive value means
that the corresponding choice of m is optimal for the
given horizon of uncertainty h.

4.1 Info-Gaps for Imprecise Probabilities

Let ω ∈ Ω be an uncertain parameter of interest—Ω
can be an arbitrary set. We must select a decision d
from a finite set D. The loss function L(d, ω) repre-
sents the loss (in utiles) if we choose d and ω obtains.

Info-gap theory starts out with a family of nested sets
Uh of Ω, where h is a non-negative parameter called
the horizon of uncertainty and Uh ⊆ Uh′ whenever
h ≤ h′. In our example, Uh was simply [0, h]. Follow-
ing that example, we saw that a very natural way to
model these nested sets Uh in terms of sets of proba-
bilities goes by way of a vacuous model Mh, that is,
the set of all probability densities that are zero outside
Uh.

If we denote the upper expectation induced by Mh

by Ph, then, formally, we define the info-gap solution
D∗(Lc) ⊆ D at satisficing level Lc as:

ĥ(d, Lc) = max
{
h : Ph(L(d, ·)) ≤ Lc

}
D∗(Lc) = arg max

d∈D
ĥ(d, Lc)

Note that D∗(Lc) will usually be a singleton (or, the
empty set).

Also note that the first equation may not have a so-
lution: this happens when P 0(L(d, ·)) > Lc, that is,
when d is infeasible even if we are as certain as can
be (h = 0).

Now, from the point of view of imprecise probability,

there is no compelling reason to restrict ourselves to
vacuous models. In fact, we can allow Mh to be any
set of probability densities on Ω, under one restric-
tion: a close inspection of the theory reveals that a
crucial property that the info-gap model relies on is
that the worst case cost, Ph(L(d, ·)) is increasing as
the horizon of uncertainty h increases. Whence, we
logically impose that Mh ⊆Mh′ whenever h < h′.

So, instead of starting out from a family of nested sub-
sets Uh of Ω, we start out from a family of nested sets
Mh of probability densities on Ω. One can of course
interpret this again as an info-gap model, where the
uncertain parameter is now the probability density
over Ω—also see [2, pp. 1062–1063] for an informal
discussion of this approach. The imprecise Dirich-
let model [14] is an example of such family (with
h = 1/s). For another example, see [5] for a dis-
cussion of nested sets of p-boxes and the resulting
info-gap analysis.

4.2 Main Result

The next result links the info-gap solution to the so-
called Γ-minimax2 solution (see [2, p. 1061, Fig. 14]
for an informal discussion of a very similar equivalence
between info-gap and minimax):

Theorem 1. The info-gap solution D∗(Lc) coincides
with Γ-minimax solution with respect to Ph, that is,

D∗(Lc) = arg min
d∈D

Ph(L(d, ·)),

whenever the following conditions are satisfied:

(i) for all d ∈ D, Ph(L(d, ·)) is strictly increasing as
a function of h, and

(ii) it holds that

Lc = min
d∈D

Ph(L(d, ·)). (6)

Proof. By definition, d∗ ∈ D∗(Lc) whenever, for all
d ∈ D,

ĥ(d∗, Lc) ≥ ĥ(d, Lc)

By definition of ĥ(d, Lc), this is equivalent to saying
that{

h′ : Ph′(L(d∗, ·)) ≤ Lc

}
⊇ ∪d∈D

{
h′ : Ph′(L(d, ·)) ≤ Lc

}
Rewriting the above expression, we have, equivalently,{

h′ : Ph′(L(d∗, ·)) ≤ Lc

}
⊇
{
h′ : min

d∈D
Ph′(L(d, ·)) ≤ Lc

}
2Γ-minimax minimises the upper expectation of the loss.



But, by Eq. (6), Lc = minPh(L(d, ·)), and Ph(L(d, ·))
is strictly increasing for all d as a function of h, whence
its minimum over d is strictly increasing as well. Con-
cluding, the set on the right hand side is a fancy way
of writing [0, h]. Therefore, the above is equivalent to

Ph(L(d∗, ·)) ≤ Lc

Once more by Eq. (6), this is equivalent to saying that
d∗ is a Γ-minimax solution with respect to Ph.

Interestingly, for given Lc such that

min
d∈D

P 0(L(d, ·)) ≤ Lc ≤ min
d∈D

P∞(L(d, ·))

it holds that Eq. (6) has a unique solution for h ≥ 0
whenever all Ph(L(d, ·)) are strictly increasing and
continuous in h. It is given by:

h = max

{
h′ : min

d∈D
Ph(L(d, ·)) ≤ Lc

}
(7)

This means that we are effectively free to choose Lc

under the additional assumption of continuity. To see
why we are not free to choose Lc when continuity is
not satisfied, imagine for instance that:

Ph(L(d1, ·)) =

{
h if h ≤ 1

3 + h if h > 1

Ph(L(d2, ·)) =

{
1 + h if h ≤ 1

4 + h if h > 1

Then, for Lc = 3, we have that D∗(3) = {d1, d2} be-

cause ĥ(d, 3) = 1 for both d1 and d2, yet obviously d1
is Γ-minimax (it could even be uniformly dominated
by d2). Effectively, this is simply a technical limita-
tion of the info-gap model, as any reasonable person
would probably agree with the Γ-minimax solution.

Now, it is well known that every Γ-minimax solution
is also maximal (see for instance [12]), whence, we
conclude:

Theorem 2. Suppose that, for all d ∈ D, Ph(L(d, ·))
is strictly increasing as a function of h. Let

Lc(h) = min
d∈D

Ph(L(d, ·)) (8)

Then, for all h′ ≤ h, every info-gap decision d∗ ∈
D∗(Lc(h

′)) is maximal with respect to Ph:⋃
0≤h′≤h

D∗(Lc(h
′))

⊆ {d ∈ D : (∀d′ ∈ D)(Ph(L(d′, ·)− L(d, ·)) ≥ 0)}

Proof. Use the preceding theorem, and note that ev-
ery Γ-minimax with respect to Ph′ is maximal with
respect to Ph, provided that h′ ≤ h.

Again, if in addition all Ph(L(d, ·)) are continuous
in h, then the range for Lc in the above theorem is
simply an interval:

{Lc(h
′) : h′ ≤ h}

=

[
min
d∈D

P 0(L(d, ·)),min
d∈D

Ph(L(d, ·))
]
.

Summarising, Theorem 1 provides sufficient condi-
tions3 for the info-gap solution, for fixed values of Lc

and h, to be equivalent to a Γ-minimax solution: pro-
ponents of either approach must reconcile.

Theorem 2 shows that a full fledged info-gap analysis,
varying the horizon of uncertainty along an interval
[0, h], yields an elegant approach to capture maximal
solutions. In our example, we actually find all max-
imal options—in general this may not be the case.
Still, it shows the that an info-gap analysis can be of
value even if maximality is the final goal:

• an info-gap analysis might give a rough idea of
the size of the maximal set (in particular, it pro-
vides a lower bound for it),

• the analysis can be an appealing way to represent
the maximal solution graphically, and

• as robustness curves show the trade-off between
uncertainty and cost, they are also obviously use-
ful in the process of elicitation.

5 Conclusion

We constructed a simple model for inspecting animal
herds for dangerous exotic infections, building further
on the work of Moffitt et al. [10]. We solved the prob-
lem using two popular decision methodologies suited
for dealing with severe uncertainty: info-gap analysis,
and imprecise probability theory (maximality and Γ-
minimax). We found that, in this example, the so-
lutions of both models essentially coincide, although
the way they arrive at it is very different.

We explored the theoretical link between info-gap
theory, Γ-minimax, and maximality. We established
that, under rather general conditions, every info-gap
solution is maximal. Therefore, the set of maximal
options can be inferred at least partly, and sometimes
wholly, from an info-gap analysis. Consequently, ro-
bustness curves also make sense in an imprecise prob-
ability context, for exploring maximal options, and for
elicitation, when studying the trade-off between un-
certainty and cost that is often of interest to decision
makers.

3We have not yet investigated in how far they are also nec-
essary.
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l’analyse à la probabilité des décisions rendues à
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