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Decision Making in an Uncertain
World: Information-Gap Modeling
in Water Resources Management

Keith W. Hipel, Fellow, IEEE, and Yakov Ben-Haim

Abstract—Information-gap (info-gap) modeling is put forth as a
basic approach for enhancing decision making under uncertainty,
especially when there is a high level of uncertainty and little
information is available. The great need for having realistic
techniques for describing severe uncertainty can be illustrated
in water resources management by pointing out the wide range
of uncertainties present in sustainable development when taking
into account hydrological, socioeconomic, political, and other
considerations. Some illustrative systems problems in watershed
management are utilized to explain how info-gap modeling can
be employed in practice.

Index Terms—Hydrological cycle, information-gap models, sus-
tainable development, systems modeling, uncertainty, water re-
sources management.

I. INTRODUCTION

THE PERVASIVENESS OFUNCERTAINTY

T HE mathematical concept of probability has become so
familiar and widely adopted by society that it is often

considered to be synonymous with the phenomenon of uncer-
tainty. Consider, for example, a typical weather forecaster on
the evening news who confidently declares that the chance of
precipitation tomorrow is 80%. Since tomorrow has not yet
taken place, there is certainly uncertainty as to whether or not
it will rain. Furthermore, most people feel that a probabilistic
statement regarding a future weather condition makes a lot of
sense and is intuitively appealing.

Even though probability and statistics have almost become
as familiar as common household items to most people, the fact
is that there are a range of different situations in which people
get uneasy feelings when probabilistic statements are uttered.
For instance, when engineers and other proponents for building
a large multipurpose dam in an earthquake zone calmly state
that the risk of catastrophic dam failure anytime during the
next 100 years is calculated to be a probability of 0.000 008 4
or , residents living downstream from the proposed
barrage feel very uncomfortable indeed. The inhabitants pose
questions such as “What on earth does such a tiny number
really mean?” “How can anyone possibly determine such a
small quantity when a dam has never been built at the proposed
location during the entire history of planet earth?” and “If the
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engineers are so clever, why can’t they design a dam that
is guaranteed never to fail?” In short, many citizens have no
confidence in this kind of probabilistic assessment, which they
believe to be highly unreliable and suspect.

What is required for more realistically understanding un-
certainty in situations in which little information is available,
and a probabilistic assessment appears to be like a “fish out of
water,” are alternative paradigms for describing different types
of uncertainty. Accordingly, the major objective of this paper
is to introduce the idea of information-gap (info-gap) modeling
into the water resources and systems-engineering literature for
formally structuring the uncertainty that exists between what
we know about a system and what we would like to know. By
being cognizant of the robustness-to-uncertainty of a solution
for attempting to solve a given problem, especially in highly
uncertain circumstances, society will be in a better position
to make more informed and wiser choices. As explained in
the paper, decision making under uncertainty is particularly
important in water resources management, where physical,
environmental, economical, social, political, and other uncer-
tainties often must be taken into account. Similar approaches
for better understanding uncertainty could be utilized for for-
mally describing complex-systems problems arising in many
different fields of engineering and elsewhere.

Motivating factors for having a variety of paradigms for
systematically studying uncertainty in water resources are
discussed in the next section. More specifically, in order
to approach the ideal goal of sustainable development, one
must be able to comprehend physical uncertainties within the
hydrological cycle, uncertainties prevalent within society, and
dependent interactions between society and the physical world
in which it exists. Subsequent to defining info-gap models
along with other associated concepts (including the robustness
and opportunity functions), the formal mathematical modeling
of real-world systems is discussed from a water resources
management viewpoint. Finally, info-gap models are applied
to some physical-systems problems arising in watershed man-
agement. A much more detailed presentation of Sections II and
IV, as well as comparison of info-gap modeling to probability
and fuzzy set theory, are available as a technical report [20].

II. UNCERTAINTIES IN WATER RESOURCESSYSTEMS

A. Sustainable Development

The advancement of civilization and the accompanying
dramatic increase in human population have brought about
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massive changes to the Earth’s natural environment. Within
the field of water resources, for example, the construction
and operation of systems of multipurpose reservoirs have
provided water supply and hydroelectric energy to support
the growth of large cities and big industrial developments, as
well as irrigation water for allowing more intensive agriculture
and the expansion of agriculture into regions having little
precipitation. The Chinese, for instance, currently are building
what will become the largest single multipurpose reservoir in
the world on the mighty Yangtze River (the well-known Three
Gorges Project). Although large-scale water resources projects
and other impressive undertakings by society have furnished
many economic and social benefits, much of the progress
has been made at the expense of our natural environment.
More specifically, the ongoing devastation of our natural
environment by civilization has caused adverse global changes,
including global warming or climate change, stratospheric
ozone depletion, decreased biodiversity, and pollution of our
water, land, and air [30]. In response to these and other
concerns, the World Commission on Environment and Devel-
opment [37] proposed the concept of sustainable development,
whereby the economic needs of society both now and in the
future would be balanced against the necessity of maintaining
a healthy environment [17], [31]. At the first Earth Summit, the
United Nations Conference on Environment and Development,
leaders from around the world met in Rio de Janiero in
June 1992, to discuss a wide range of environmental and
development issues fundamental to the establishment of a
sustainable basis for life on earth. Even though agreements
were reached on a range of important topics, in many cases,
the countries of the world have failed to comply. For example,
it appears that no nation will fulfill its commitment to reduce
greenhouse gas emissions to 1990 levels by the year 2000 in
order to help reduce global warming. As a matter of fact, in
Canada and the United States, emission rates have continued
to rise at a higher rate every year since 1992. Accordingly,
at subsequent international negotiations on greenhouse gases
held in Kyoto, Japan in early December 1997, a complex
agreement was reached, in which developed nations would
reduce greenhouse gases to specified levels in a little more
than a decade, and one of the mechanisms for achieving this
would be the introduction of tradeable emissions permits for
the release of certain quantities of greenhouse gases.

In order to approach the ideal goal of sustainable develop-
ment, we must first have a clear understanding of the natural
system in which we live, the dynamics of the societal system in
which we interact with one another, and the synergistic effects
of these two interdependent systems. However, these dynam-
ical systems and their interactions are extremely complex and
thereby extraordinarily difficult to comprehend and formally
model. This in turn means that we are confronted with a host of
uncertainties that must be taken into account when attempting
to make rational decisions that will permit a realistic balance
between economic development and environmental integrity.
Whether these uncertainties arise within a component of a
given system, across a number of connected components,
holistically at the overall systems level, or between dependent
systems, the general structures of these uncertainties must be

Fig. 1. Hydrological cycle.

understood. In fact, we should be aware not only of how much
we currently know about a given problem, but also we must
be cognizant of the gap between that level of knowledge and
what we need to know to fully comprehend the dimensions of
the problem. The resulting uncertainty then can be modeled
in the most appropriate fashion possible in order to enhance
decision making within a sustainable-development framework.
To appreciate the scope of uncertainties that are present
in water resources-systems management and elsewhere, an
overview is now presented, along with a brief discussion of
the influence of society upon our natural environment.

B. Hydrological Cycle

Water is an essential ingredient for supporting life on
Earth. Hence, when envisioning a physical system within
which society can be sustained, an informative conceptual
framework is the hydrological cycle. The basic idea underlying
the hydrological cycle dates back more than 400 years to the
time of the Renaissance, when Leonardo de Vinci proposed
a systems model to portray the distribution and circulation
of water on the surface of the land, underground, and in the
atmosphere. As pointed out by authors such as Whiteet al.
[36] and Bennett and Chorley [6], there are many ways in
which one can define environmental or natural systems within
a hierarchy of systems models.

Fig. 1 displays a schematic of the hydrological cycle that
is based upon the figure provided by Eagleson [10]. The
throughput to the hydrological system in Fig. 1 is water that
can occur in a liquid, solid, or vapor phase. Because the
hydrological cycle does not allow water to escape, it forms
a closed system with respect to water. Moreover, the fact that
water is a physical entity with which everyone is familiar,
makes water intuitively attractive as the system throughput,
rather than a more abstract variable such as energy. The main
agents that propel the water through the hydrological cycle
are solar energy and gravity. As noted by Eagleson [10],
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the dynamic processes of vapor formation and transport are
powered by solar energy, while precipitation formation and
the flow of liquid water are driven by gravity. In fact, the
transformation of water from one phase to another as well
as the transportation of water from one physical location to
another are the main features of the hydrological cycle.

To more rigorously understand what is taking place in the
hydrological system displayed in Fig. 1, a wide variety of
mathematical models have been developed. Some of the main
types of mathematical tools that have been constructed for
modeling different components in the hydrological cycle and
some of their interconnections are referred to in Section IV-B.
Whatever the case, the hydrological cycle possesses great com-
plexity and is very difficult to model. For example, the flow
of water through underground soil is hard to understand and
model because of the heterogeneous composition of soils and
bedrock. Moreover, pollution from industrial and agricultural
activities that is spilled onto the land can pollute underground
streams and aquifers. In fact, the hydrologic cycle furnishes
a framework for understanding how human-made pollution
can enter the hydrologic system at any point and pollute our
entire environment by following the ancient pathways traced
out by water in all of its forms. Therefore, the science of
hydrology provides solid foundations upon which many other
environmental sciences can build and interact. Whatever the
case, high uncertainty exists in virtually all aspects of the
hydrological cycle. There is a great need for realistic tools
for capturing this uncertainty, so that reasonable decisions
can be made with respect to human activities that take place
within this system and influence its behavior. Authors such as
Eagleson [10], Fallenmark [12], [13], and Kundzewicz [24]
point out that human activity and decision making can have
dramatic influences upon the hydrological cycle and hence are
an integral part of that cycle. They also describe many key
research areas in which the science of hydrology should be
expanded so that sound environmental policies can be properly
devised and implemented.

C. Interdependence of the Hydrological Cycle and Society

The hydrological cycle portrayed in Fig. 1 constitutes a
systems model of key elements of the natural world upon
which society is entirely dependent for its very existence.
Civilization has cast an artificial web of international and
other political boundaries across the entire surface of the land,
rivers, and lakes shown in the bottom left portion of Fig. 1.
Societies have expanded agricultural land and built huge cities
on the surface of the land, extracted minerals using large open-
pit mines and underground tunnels, utilized huge quantities
of freshwater from rivers and lakes as well as underground
aquifers, and exploited fish and other resources from the
oceans. Previously, humankind considered water and other
resources to be an almost infinite source of wealth and a huge
sink in which to discharge unwanted byproducts. However,
since the industrial revolution, and more dramatically during
the past few decades, the activities of society have actually
started to detrimentally affect various components of the
hydrological cycle as well as other natural systems.

Larger river basins often encompass local political regions
within a nation as well as territories in other countries. The
Danube River Basin in central Europe, for instance, covers an
expanse of 817 000 kmwithin 17 nations. Other examples
of transboundary river basins include the Mekong, Zambezi,
Great Lakes/St. Lawrence, and Rhine basins. Consequently,
from the perspective of water resources management, a practi-
cal and realistic way to implement sustainable development
and other related policies is at the level of river basins.
Recently, the nations of the Danube formulated a strategic
plan for cooperative sustainable development in the region
for the time period from 1995 to 2005 [11]. Although this is
only a meager beginning, the leadership shown by the Danube
countries and elsewhere in the world is pointing societies in
the correct direction.

III. SET MODELS OF INFO-GAP UNCERTAINTY

Classically, uncertainty is represented by probability theory,
which quantifies lack of information either in terms of the
frequency of recurrence of events, or in terms of an observer’s
subjective degrees of belief [27]. In recent decades, the theory
of fuzzy logic has emerged to provide a range of alternatives
to probability theory. Various types of uncertainties are quan-
tified with fuzzy membership functions, such as the linguistic
ambiguity of a proposition, or the possibility or the necessity
(rather than the probability) of occurrence of an event [1], [9],
[22], [38], [39].

In the historical evolution of uncertainty-thinking, fuzzy
logic is a major break from traditional probability theory.
Each of these theories reflects a different aspect of imperfect
or fragmentary information, and each does so in a different
way. Furthermore, each has developed from different classes
of applications. But despite all their differences, they share
a similarity of form. Both fuzzy logic and probability quan-
tify uncertainties with normalized mathematical functions: the
probability density or the membership function.

Can we quantify uncertainty without using distribution
functions at all? The answer, of course, is yes, and the need
to do so arises when information is scarce. Specifically, the
need for a sparse model of uncertainty occurs when we find
ourselves far over the frontier of our firm knowledge and
deep in the realm of the unknown. In such situations, we
must deal with information that is much more deficient than
is customarily handled by either probability or fuzzy logic.

Consider the following situation. Toxic waste is released
from an industrial plant into a river and flows downstream
causing damage to plant and animal life, as well as reducing
the quality of the water for human use. In assessing the
environmental impact downstream, it is necessary to account
for the local indigenous rate of absorption, consisting of
adsorption and chemical reaction of the toxic materials with
the riverbed and with other materials dissolved in the river-
water. These processes are complex and depend on many
factors such as flow rate, degree of turbulence, temperature,
concentration, and so on. These are poorly known and vary
in time and place along the river. In short, the rate of
toxic waste removal from the river depends on a function
of time, space, and other factors. Hydrological and water-



HIPEL AND BEN-HAIM: INFORMATION-GAP MODELING IN WATER RESOURCES MANAGEMENT 509

quality models can be developed to describe these removal
processes, but enormous resources are required to verify
the reliability of a comprehensive model. In lieu of the
extensive resources of money and time needed to develop a
well-grounded realistic model, an approximate model can be
adopted with the realization that it will deviate by an unknown
but possibly substantial margin from the actual behavior.
In employing an approximate model, we are acknowledging
a large information gap between whatis known and what
needs to be knownin order to make rational decisions in the
management of the toxic effluent.

This information gap is a severe form of uncertainty and
occurs often in practice. In many innovative technological
projects, very little that should be known in order to make
wise and reliable decisions is actually known. In environmental
planning, in industrial management, in social and economic
decision making, in medical diagnosis, and in other areas,
quite often the gap between what we know and what we need
to know is substantial. How can we organize our information,
and the lack thereof? How can we measure the size of this gap
to get a meaningful and robust quantification of the uncertainty
confronting the decision makers?

Returning to the toxic-effluent example, let denote
the removal rate as a function of position, time , and other
quantities , based on the best available (but possibly quite
simple) model. The actual removal-rate function
deviates in an unknown manner from the nominal model

. We have no information with which to express the
likelihood of various alternative rate functions, so we are
unable to specify a probabilistic model for the uncertainty
in the function . In fact, since the phenomenon in
question is quite complex, and since itself is a
multi-argument function and not simply a fixed number or
vector, we are hard-pressed to make any useful assertions
about plausibility among the infinite continuum of alternative
-functions. For this reason, a fuzzy model of the uncertainty

in the removal-rate function is inaccessible without introducing
far-reaching and unverified assumptions. In light of this severe
lack of information about the possible variations of the rate
function, a simple set model of uncertainty could be formulated
as the set of all functions consistent with the nominal function

up to a given level of deviation

(1)

is the set of all functions whose deviation from
is nowhere greater than. For a fixed value of , this

set represents uncertainty in the rate function by specifying a
range of variation of around the nominal rate function

. The larger the value of , the greater the range of
unknown variation, so is called the uncertainty parameter.
However, quite often the value of itself is not known, so
in fact (1) is not a single set but rather a family of nested
sets. The degree of nesting, as well as the level of uncertainty,
is expressed by the uncertainty parameter. The family of
nested sets is an info-gap model of uncertainty.
Since the sets in this family are in fact convex sets,
this is a convex info-gap of uncertainty (also called a convex

model). The info-gap model in (1) is only one of a wide
range of commonly used info-gap models. The formulation
and choice of an info-gap model depends on the type of initial
information. The theoretical development of info-gap models
with applications to nuclear assay [2], mechanical analysis [5],
and reliability theory [3] are presented elsewhere.

When we organize our information (and our ignorance)
in terms of families of sets or clusters like this, the decision
maker faces sets of rate functions that may be confronted.
Which function will actually be confronted is unknown.
Probability and possibility theories also have us think about
sets of events. In probability theory, we might evaluate the
frequency of recurrence of rate functions whose value is
less than , for instance. In possibility theory, we might
ask whether the set of functions with low rates is highly
possible. The difference is that with info-gap models of
uncertainty, we organize the events into clusters, but we
do not employ distribution functions to measure them. We
simply do not have sufficient information to formulate a
probability density or a membership function.

The distribution functions in probability or fuzzy theory are
designed to measure uncertainty and are related in particular
ways to the size of sets. Large sets will tend to have a large
probability of including events that frequently recur or that
quite possibly will happen. But here again is the crux of
the difference between distribution-based uncertainty models
and info-gap set-models. In info-gap models of uncertainty,
we can rank degrees of the information gap in terms of the
size of the uncertainty parameter, but this is much weaker
information than probability or possibility, in which the distri-
bution functions indicate recurrence frequency or plausibility.
In info-gap set models of uncertainty, we concentrate on
cluster-thinking rather than on recurrence or likelihood. Given
a particular quantum of information, we ask: “What is the
cloud of possibilities consistent with this information?” “How
does this cloud shrink, expand, and shift as our information
changes?” “What is the gap between what is known and what
could be known?” We have no recurrence information, and we
can make no heuristic or lexical judgments of likelihood.

Info-gap modeling is a stark theory of uncertainty, motivated
by severe lack of information. It does, however, have its own
particular subtlety. It is facile enough to express the idea
that uncertainty may be either pernicious or propitious. That
is, uncertain variations may be either adverse or favorable.
Adversity is the possibility of failure, while favorability is
the possibility of sweeping success. Therobustness function
is the greatest level of uncertainty consistent with no-failure.
The opportunity functionis the least level of uncertainty that
entails the possibility of sweeping success. Ifis a vector
of parameters such as time, design variables, and model
parameters, we can succinctly express the robustness and
opportunity functions as the maximum or minimum of a set
of -values

minimal requirements are satisfied

robustness (2)

sweeping success is obtained

opportunity (3)
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Fig. 2. Two robustness curves and one opportunity curve (schematic).

The robustness function is the immunity against failure,
so a large value of is desirable. In contrast, the opportu-
nity function is the immunity against sweeping success,
so a small value of is desirable.

Quite often, the degree of success is assessed by a scalar
reward function , which depends on the vector of
actions, decisions, and model parameters as well as on an
uncertain quantity whose variations are described by an info-
gap . The minimal requirement in (2) is that the reward
be no less than a critical value . Likewise, the sweeping
success in (3) is attainment of the “wildest dream” level of
reward . The robustness and opportunity functions can now
be expressed more explicitly

(4)

(5)

As explained elsewhere [4] and illustrated in Fig. 2, the
robustness function decreases monotonically in the
minimal required reward . This expresses the tradeoff be-
tween demanded reward and immunity to uncertainty. If a
large reward is required for survival, then only low immunity
to uncertainty is possible. Conversely, the opportunity function

increases monotonically in wildest-dream reward.
Sweeping success cannot be attained at low levels of ambient
uncertainty.

The locations of the robustness and opportunity curves on
the uncertainty-versus-reward plane, as in Fig. 2, reveal the
type of gambling that is expressed by these tradeoffs. Consider
the upper robustness curve , which falls to low and
vulnerable levels of uncertainty only at high-demanded reward.
Different models and prior information lead to the lower
robustness curve which, though still decreasing monotonically
with , runs more closely to the origin. The upper robustness
curve represents bolder behavior than the lower curve. At
any given level of demanded reward, a greater level of
ambient uncertainty is tolerable according to the upper curve.
Conversely, at fixed ambient uncertainty, the upper robustness
curve allows greater demanded reward than the lower curve.
Ascribing these two robustness curves to two different decision
makers (or to two distinct decision strategies), we can say
that the lower decision maker is more sensitive or averse to

uncertainty than the upper decision maker. Equivalently, the
upper curve will lead the decision maker to behavior that
would look risky or rash when viewed through the strategy
of the lower robustness curve.

IV. M ATHEMATICAL MODELING OF SYSTEMS

A. Deterministic and Indeterminate Models

Human beings develop mathematical models to capture the
key characteristics of a system or components of a system
in order to have a better understanding of how the process
works. This enables them to make improved decisions about
what to do to solve a given problem. For example, when
deciding upon how to ameliorate the flow of pollution through
the soil caused by previous dumping of liquid chemicals
on the land by local chemical plants, finite elements can
be utilized for mathematically modeling the physics of the
problem and tracing where the pollutants may travel [15], [32],
[35]. When designing a large-scale engineering project such
as a regional irrigation project, the graph model for conflict
resolution [14] can be employed for determining compromise
resolutions to the dispute arising among the proponents of
the project, environmental groups, government agencies, and
other interest groups. By definition, any mathematical model
is an approximation of reality, since it can never be the actual
physical or social system that is being modeled in the real
world. Nonetheless, by developing a model or set of models,
which is as simple as possible according to the principle
of Occam’s Razor (yet provides a reasonable explanation of
what is happening), human beings have at their disposal a
common communication medium for discussing and better
comprehending the problem at hand when trying to decide
what to do in a responsible, fair, and equitable manner.

One can classify mathematical models as being determin-
istic or indeterminate. A deterministic model is one in which
specified conditions completely establish future consequences.
A deterministic model contains no uncertainty components
based on the probability, fuzzy sets, or info-gap modeling
described in the previous section. An example of a purely
deterministic model is a set of differential equations developed
for describing a physical system. With an indeterminate model,
on the other hand, antecedent conditions do not fix unique
consequences. An indeterminate model contains probabilistic,
fuzzy, info-gap or some other version of uncertainty, possibly
together with a deterministic model. Examples of indetermi-
nate models of water resources systems containing info-gap
and probabilistic uncertainty are discussed in Section V.

One could argue, no doubt, that a carefully constructed
model furnishes a formal description of a physical or social
system, thereby removing substantial uncertainty. However,
some uncertainty remains even if the model is quite so-
phisticated. There are many reasons for the persistence and
pervasiveness of uncertainty. All models are approximations
of reality which, whether natural or societal, is extremely
complex and dynamically changing over time. Inaccuracies
and uncertainties may enter in modeling the linkage between
fundamentally different types of systems, such as in combining
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TABLE I
CLASSIFICATIONS OF STOCHASTIC MODELS

physical and socioeconomic models. Data may be deficient
and measurements may be imprecise. Furthermore, some phe-
nomena may themselves be inherently uncertain. Nonetheless,
models provide a valuable focal point for discussion and a
springboard for enhanced understanding and wise decision
making.

For a long time, mathematical modeling has been intensively
employed in water resources for tackling a wide variety of
challenging problems. The objective of the next two sections
is to outline some of the main types of mathematical models
that have been developed and employed in the field of water
resources for describing physical-systems and societal-systems
problems. Overall, probability has been utilized extensively in
both physical and societal-systems modeling. However, fuzzy
sets have only been utilized in a few instances such as in
multiple-criteria decision making. Info-gap modeling has never
been used in water resources and some ways in which it could
be utilized are illustrated in Section V. By having an array of
useful approaches for modeling uncertainty, the authors be-
lieve that decision makers will be in a more informed position
for deciding how to properly balance economic development
and maintain a healthy natural environment.

B. Physical-Systems Models

Integral and differential calculus have been extensively
utilized to model most aspects of the hydrological cycle shown
in Fig. 1. For example, sets of differential equations have been
used for modeling both surface and groundwater problems.
Because a system of differential equations is often extremely
difficult to solve analytically, difference equations and finite
elements are commonly used in practical applications. One
of a number of main challenges is to link general circulation
models largely developed in the field of meteorology, with
more localized hydrological models. Geographic information
systems provide a valuable means for systematically storing
information and furnishing valuable data for calibrating large-
scale models.

Stochastic models allow for the order of occurrence of
probabilistic events to be taken into account. Following Cox
and Miller [8], Table I describes a method for categoriz-
ing stochastic models according to the two criteria of time
and state space. Notice that time can be either discrete or
continuous and the state space or values of the variables
describing the system being modeled also can be subdivided
according to discrete and continuous values. Illustrations of
four kinds of models that can be categorized using the above
criteria are given in Table I. Markov chains, for instance, fall
under the subdivision of stochastic models, which incorporate
discrete time and discrete values of the state space in their

TABLE II
CLASSIFICATIONS OF DECISION-MAKING TECHNIQUES

mathematical structure. Stochastic differential equations can
handle continuous time and continuous values of the state
space [21], [23]. Point processes, such as Poisson processes,
model discrete values over continuous time. Stochastic models
falling in all categories in Table I have been employed for
addressing problems arising in water resources [19], [21]. For
example, when deciding upon the most economic design of
a multipurpose reservoir, a time-series model fitted to the
historical river flows can be used for simulating other possible
flow sequences that can be employed for testing alternative
reservoir designs and isolating the optimal design. Singh [32]
and Ward and Elliot [35] provide comprehensive handbooks
on the employment of mathematical models in environmental
hydrology. Moreover, Hipel and McLeod [21] provide an
informative list of key references in stochastic processes, time
series analysis, statistics, stochastic water-quality modeling,
stochastic hydrology, data collection, and forecasting.

C. Societal-Systems Models

By societal-systems models, we are referring to formal mod-
els in decision making that take into account economic, social,
or political considerations as well as pertinent results arising
from physical-systems modeling. As explained in the water-
resources literature by Hipel [18] and other authors, since the
end of World War II, more decision-making techniques have
been developed in operational research (OR) than in any other
field. OR consists of some general methodologies and many
specific techniques for studying decision-making problems.
The British initiated OR just prior to World War II when they
performed research studies into the operational aspects of radar
systems for detecting incoming enemy aircraft to the United
Kingdom. Throughout the war, the British employed OR in all
of their military services for successfully solving large-scale
military problems involving the movement of great numbers
of military personnel and huge quantities of war materials [7],
[34]. The American military also used this systems-science
approach to problem solving during the second world war,
but called it operations research. Since the war, OR has been
extensively expanded and utilized for looking at operational
problems in many different fields outside of the military, such
as management sciences, transportation engineering, water re-
sources, and industrial engineering. OR societies have sprung
up in most industrialized countries, along with the publication
of many OR journals.

Table II shows how OR methods can be categorized ac-
cording to the criteria of number of decision makers and
number of objectives. As shown in that table, most OR
techniques reflect the viewpoint of one decision maker hav-
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Fig. 3. Three interpretations of the hydrological model studied in the examples.

ing one objective. Optimization techniques, including linear
and nonlinear programming, fall under this category because
usually they are employed for minimizing costs in terms of
dollars or maximizing monetary benefits from one group’s
viewpoint, subject to various constraints. Often, both eco-
nomical and physical constraints can be incorporated into
the constraint equations in optimization problems. Many of
the probabilistic techniques like queueing theory, inventory
theory, decision theory, and Markov chains fall under the top
left cell in Table II. An example of a technique designed for
handling multiple objectives for a single decision maker is
multiple criteria decision making (MCDM). This method is
designed for finding the more preferred alternative solutions
to a problem in which discrete alternatives are evaluated
against criteria ranging from cost (a quantitative criterion)
to aesthetics (a qualitative criterion). The evaluations of the
criteria for each alternative reflect the objectives or pref-
erences of the single decision maker. MCDM constitutes
one set of decision tools in which fuzzy uncertainty has
been utilized [16], [29], [33]. In Table II, team theory is
categorized according to multiple decision makers and one
objective, because in a sporting event for instance, each
team has the single objective of winning. Finally, the graph
model for conflict resolution [14] constitutes an example of
a technique in Table II that can be used for modeling and
analyzing disputes in which there are two or more decision
makers, each of whom can have multiple objectives. Aside
from methods from the field of OR, approaches for model-
ing conflict resolution and other types of decision situations
have been developed in the areas of cognitive science and
psychology (see, for instance, Neale and Bazerman [28] and
references given therein). Whatever the case, since the early
1960’s, OR techniques have been applied extensively to water
resources management problems (see [18], [21], [25], and
[26], and references contained therein). Currently, the authors
are developing an info-gap component for the graph model
for conflict resolution in order to represent the uncertainty
present in the preferences of decision makers. However, in the
next section, info-gap models are incorporated into physical-
systems models of hydrological problems.

V. WATERSHED MANAGEMENT WITH

INFO-GAP UNCERTAINTY: SOME EXAMPLES

A. Hydrological Model

Consider a very simple hydrological model, for which three
scenarios are shown in Fig. 3. In the hydroelectric generation
system, water flows from the watershed to a collection facility
(or reservoir), then through the generating plant back out
into the environment. If the collection facility is unable to
store the arriving water, then water is diverted past the
generating plant directly to the environment, with consequent
loss of electricity generation. In the irrigation system, water
polluted with pesticides and/or fertilizers flows from farmland
to a collection facility before treatment, and then to the
environment. If the collection facility is too small, some
polluted water flows directly into the environment. In the urban
sewage system, sewage flows from the sewage system to a
large primary treatment facility, then to a second facility and
then back to the environment. Overflow of raw sewage directly
into the environment occurs if the primary plant is too small.

The basic variables are as follows.

Volume flow rate from the watershed (m/s) or mass
flow rate of pollutant (kg/s).
Volume of water (m) or mass of pollutant (kg) in the
collection facility or primary treatment plant.
Maximum capacity of the collection facility or primary
treatment plant, (m) or (kg).
Volume or mass treatment rate (m/s) or (kg/s) in
the water reclamation plant or generating facility. We
will assume the treatment rate to be constant, on
the assumption that the storage facility supplies water
continuously at this rate.
Final time or duration of the rainy season(s).

The decision maker must choose the storage capacityand
the treatment or processing rateso that the reliability against
overflow from the storage unit directly to the environment is
acceptable. The time-variation of the rate of drainagefrom
the watershed (or farmland or sewage system) is unknown, so

and must be large enough but not wasteful. We will use the
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concept of robust reliability for choosing the storage volume
and processing rate [3]. We will illustrate the method through
five examples. In the first three examples, info-gap models
of uncertainty are used. The sequence of info-gap models
progresses from very simple to more complicated models,
corresponding to increasing amounts of prior information. The
last two examples demonstrate hybrid info-gap/probabilistic
uncertainty models.

The method of robust reliability is based on a combination
of three components.

1) The process model describes the dependence of the
stored volume upon the drainage-rate function .

2) The uncertainty model describes the uncertainty in the
drainage-rate function. The uncertainty model can be
probabilistic, info-gap, or a combination of both. For
instance, time-series analysis is widely used for proba-
bilistic modeling in hydrology [19], [21].

3) The failure criterion states that the stored volume cannot
exceed the storage capacity.

These three elements are combined to assess the robustness,
, which is the greatest value of the uncertainty parameter

(which is consistent with no-failure of the process). The
decision maker must choose the smallest storage capacity
and treatment rate, for which the corresponding robustness
is acceptably large. The judgment of how large a robustness
is depends on a subjective calibration of.

The material balance in the storage facility is modeled as

(6)

The watershed flows into the storage facility at rate , and
the storage unit drains to the treatment facility at the maximum
rate all the time.

B. Example 1: Total Rainfall

Let us suppose that the drainage rate from the watershed
is constrained only by the total rainfall (or the total quantity
of sewage or pollutant) in the season. That is, we have no
information with which to constrain the instantaneous drainage
rate, except that it must be non-negative and be equal to
the total seasonal precipitation. This very limited information
about the drainage-rate uncertainty can be encoded in the
following info-gap model:

(7)

Thus, is the set of all drainage-rate functions correspond-
ing to an annual preciptation of no more thangiven in m
or kg. The uncertainty parameteris simply the total rainfall
in the season, which also is not known, and can take any non-
negative value. Thus, (7) is not a single set, but rather a family
of nested convex nests, in which, the uncertainty parameter,
also determines the level of nesting. We note that the rate of
variation of the drainage function is not constrained, and the
drainage rate may fluctuate in time by small or by arbitrarily

large amounts. The info-gap in (7) has been used extensively
in the design and analysis of measurement systems [2].

The storage facility fails if, at any time, the stored volume
(or mass) exceeds the capacity

(8)

The robustness is the greatest value of the uncertainty pa-
rameter , for which the system does not violate the failure
criterion. In order to determine the robustness, we seek the
maximum stored volume

(9)

(10)

where (10) employs (6) and (7). The robustness of the storage
facility is obtained by equating the greatest stored volume to
the maximum capacity and then solving for the uncertainty
parameter

(11)

The robustness is precisely equal to the storage capacity and
is independent of the water treatment rate.

C. Example 2: Deviation from Nominal Drainage Rate

The info-gap in (7) presumes extremely limited prior in-
formation about the uncertain drainage rate. Now consider
somewhat more extensive prior information. Let be a
known nominal drainage-rate function, and consider unknown
and possibly severe transient fluctuations around. The
following cumulative energy-bound info-gap is a good repre-
sentation of transient uncertainty in the drainage rate function

(12)

This info-gap constrains the integrated squared de-
viation of the actual from the nominal drainage rate. This
uncertainty model contains functions that deviate more or less
steadily from the nominal function, as well as functions with
transient but dramatic deviations. As before, this info-gap is
a family of nested convex sets for . (Envelope-bound
info-gap models could be used also [3], [5].)

The solution of (6) can be expressed as

(13)

Schwarz’s inequality, followed by employing the bound on
in the info-gap of (12), shows that

(14)
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Fig. 4. Robustness versus time based on (19).r0T=�sc = 0:2:

So combining (13) and (14), the greatest stored volume at
time is

(15)

(16)

The robustness of the reservoir at timeis found by equating
to and solving for

(17)

The overall robustness is

(18)

We note that if , the instantaneous robustness
is monotonically decreasing in time. Thus, the minimum in
(18) occurs at . This is illustrated in Fig. 4, where

. In this case, the robustness as a
function of time becomes

(19)

The plot in Fig. 4 starts at to avoid the singularity
at the origin.

Returning to (17), we recognize that the instantaneous
robustness may vary quite substantially throughout the
season for any choice of the design parametersand . This
is illustrated in Fig. 4, where one sees that the robustness at
the end of the season is only about a quarter of
the robustness at . In other words, the end of the
season requires much greater storage and treatment resources
than are required for the early part of the season. Conversely,
the robustness of the facility-to-uncertain drainage-rate fluctu-
ations is much lower at the end of the season than early in
time. This analysis enables the decision maker to contemplate
alternatives, such as allowing temporary violation of the no-
spill requirement, in order to reduce the cost of the required
facilities.

This example is sufficiently rich to illustrate that uncertainty
may be either pernicious or propitious, as we have explained
in Section III. That is, uncertain variations may be either
adverse or favorable. The robustness is the greatest value
of the uncertainty parameter such that the reservoir does

not overflow. Equivalently, is the greatest uncertainty
consistent with no-failure and expresses the pernicious face
of uncertainty. will be large for a good design, implying
large immunity to uncertain fluctuation, while a small value
for is undesirable.

In addition to wishing to prevent overflow of the reservoir,
we may wish to use it for some secondary purpose for which
the stored volume must be substantially less than the
actual reservoir capacity. We will denote our “wildest dream”
of the maximum stored volume by , where is much less
than . The uncertain fluctuations in the flow rate may
be favorable and lead to stored volume no greater than.
The opportunity function expresses the lowest level of
uncertainty that is sufficient to entail the possibility of stored
volume as low as . A small value of is desirable, while
a large value implies that great ambient uncertainty (with the
attendant risks of flooding) is needed in order to achieve a
very low stored volume.

The robustness function was found by evaluating the
maximum stored volume in (16) and equating this to the
storage capacity in (17). The opportunity function
expresses the least uncertainty that must be tolerated in order
to enable the possibility of stored volume as low as the value

. This is found by evaluating the minimum stored volume
and equating this to the wildest-dream storage capacity.
One finds

(20)

Comparing (17) and (20), one sees that the robustness and
opportunity functions are mirror images of one another

(21)

We see that, as the robustness increases, the opportunity
decreases and vice versa. Since “big is better” for, while
“big is bad” for , this means that and act sympathetically.
Any design-change that enhances the robustness also enhances
the opportunity for successful secondary exploitation. This
pleasing symbiosis is (unfortunately) not a universal attribute
of ambient uncertainty.

D. Example 3: Bounded Variation of the Drainage Rate

Now consider a more informative info-gap for the uncer-
tainty in the drainage-rate function . The previous models
have included functions that quickly can vary arbitrarily. We
now consider an ellipsoid-bound info-gap that constrains the
unknown variation of to a known range of frequencies.
The known nominal-drainage rate is , and the actual
function deviates from by a truncated Fourier series with
uncertain coefficients. Represent the drainage rate function as

(22)

Let be the vector of Fourier coefficients and let
represent the vector of cosine functions. Equation (22) can
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be rewritten more succinctly as

(23)

where the superscript implies matrix transposition. The
Fourier ellipsoid-bound uncertainty model for the drainage-
rate function is

(24)

where is a known, real, symmetric, positive, definite matrix.
The expression defines an ellipsoidal region of

-vectors. The shape of the ellipsoid is fixed by the matrix,
while the size of the ellipsoid is determined by the uncertainty
parameter . So the vector of unknown Fourier coefficients
is constrained to an ellipsoid of uncertain size.

Combining (23) with the solution of (6), the stored volume
at time can be written as

(25)

which defines the known vector function .
Using Lagrange optimization, the maximum of , as
varies over the info-gap , is found to be

(26)

which occurs with the drainage function, whose Fourier co-
efficient vector is

(27)

So, the maximum stored volume at timeis

(28)

From this, the robustness at timeis found by equating
to the storage capacity and solving for the uncertainty
parameter , resulting in

(29)

The overall robustness is found, as before, from (18).
As a specific example, let and in (22), and

let be the identity matrix in (24). The denominator in
(29) now takes a simple form, and the instantaneous robustness
becomes

(30)

Fig. 5. Robustness versus time based on (31).r0T=�sc = 0:2 and number
of modes isN = 5.

As a further illustration, consider a simple expression for
the nominal drainage rate . The instan-
taneous robustness becomes

(31)

which is illustrated in Fig. 5. Again note that, as in the sec-
ond example, the instantaneous robustness varies substantially
throughout the season, implying that the no-spill requirement
results in storage and treatment facilities that will operate
below capacity for much of the time. In Fig. 5, the robustness
varies by a factor of two throughout the season, without
considering the singularities at the extremes and .

E. Example 4: Modification of Example
1—Hybrid Uncertainty Model

Let us suppose that, in addition to the uncertainty model
of (7), we also know the probability density function for
the total seasonal rainfall: (recall that the unknown
uncertainty parameter in (7) is precisely the total seasonal
precipitation). This can be folded into the analysis of Example
1 in the following way. In (11), we found that the greatest
tolerable value of the uncertainty parameter is simply
the volumetric capacity of the reservoir. The additional
probabilistic information can be used to choose so that
the probability of failure is small enough (equal to, for
example). That is, is chosen as the upper -quantile
of the distribution of the precipitation

(32)

The very sparse info-gap for the uncertainty in the time-
variation of the rate of drainage given in (7) entails the
possibility that all the seasonal precipitation reaches the reser-
voir at the same time. This information is augmented by the
probabilistic uncertainty in the total precipitation, which is
used to evaluate the likelihood that the reservoir will overflow.

F. Example 5: Modification of Example 2—Hybrid
Uncertainty with Two Randomly Timed Storms

Let us suppose that the rainy season comprises exactly two
storms and that they occur randomly in time. Let the length
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of the dry spell between the two storms be exponentially
distributed, as would be expected if the times of occurrence
of the storms have a Poisson distribution. Furthermore, the
uncertainty in the time-variation of the drainage-rate function
during a storm is described by the info-gap of (12). We are
again considering a hybrid uncertainty model, which could
be generalized to an arbitrary number of storms distributed
randomly throughout the season.

Let be the duration of each of the two storms. Let us
suppose that the nominal drainage-rate function during a storm
is constant and exceedsso that . Then, employing
(16), we find that the greatest stored volume after the first
storm occurs at the end of the storm and equals

(33)

After the storm, the reservoir continues to drain through the
treatment plant at the rate. If the dry spell until the second
storm is of duration (which is a random variable), then
the reservoir starts the second storm with a maximum water
inventory of . This initial inventory continues to drain
in parallel to the water added by the second storm. So, the
inventory at time after the start of the second storm is

(34)

Hence, the maximum inventory at timeinto the second storm,
given maximum residual inventory from the first storm, is

(35)

We have adopted the conservative simplification that the
residual inventory continues to drain (rather than drying up)
at least until the end of the second storm. Ifis sufficiently
small, the maximum inventory occurs at the end of the second
storm and is

(36)

Employing (33), this becomes

(37)

The robustness is evaluated by equating this maximal inven-
tory to the reservoir capacity and solving for the uncertainty
parameter

(38)

We have written the robustness as an explicit function
of the duration of the dry spell, which is an exponential ran-
dom variable, and we note thatalso depends on the reservoir
capacity and on the water-treatment rate, which are the
design variables. Since we know the probability distribution
of we can weight the robustness probabilistically as

(39)

The duration of the dry spell is exponentially distributed, with
density

(40)

(the infinite domain of is an approximation, but we are
assuming that is large enough so that the statistical weight of
dry spells longer than the entire season, and thus precluding
two storms, is negligible). Employing (38), the randomized
robustness in (39) becomes

(41)

This relation serves the decision maker in choosing the reser-
voir volume and the water-treatment rate to achieve
acceptable robustness with respect to both the timing of the
storms and their instantaneous temporal variability.

VI. CONCLUSIONS

Three fundamentally distinct approaches are available for
formally describing uncertainty: probability, fuzzy set theory,
and information-gap modeling. We have concentrated on the
latter and have illustrated decision making in watershed-
management problems. As stressed in the paper, info-gap mod-
eling is especially useful for systematically studying highly
uncertain situations. By acknowledging the presence of un-
certainty and attempting to describe it as realistically as
possible, decision makers should be able to make wiser and
more realistic decisions when confronting real-world decision
problems.

The idealistic goal of achieving sustainable development is
fraught with a range of baffling uncertainties arising within
the natural world and society and their complex interactions.
As a matter of fact, authors such as Falkenmark [13] and
Kundzewicz [24] point out that it may be almost impossible
to attain sustainable development with respect to the avail-
ability of water in adequate quantity and quality. The ongoing
population explosion, coupled with water shortages and the
widespread pollution of surface and groundwater supplies,
may mean that the ability of future generations to meet their
own water needs has been severely compromised already. The
foregoing and other alarming trends can only exacerbate the
depth and breadth of uncertainty inherent in sustainable devel-
opment and emphasize the great importance of having formal
modeling procedures for better comprehending uncertainty.
In addition, with regard to sustainable water management,
planning components should include carrying out integrated
societal/land/water planning at the river basin level, develop-
ing suitable policies to permit comprehensive management,
constructing water resources retrieval and conveyance systems
to make water readily available to society, and controlling
sources of pollution [13].
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