
Proceedings of the IUTAM Symposium on the
Vibration Analysis of Structures with Uncertainties
St. Petersburg, Russia, 5–9 July 2009, pp.3–14.

Linear Bounds on an Uncertain Non-Linear Oscillator:
An Info-Gap Approach

Yakov Ben-Haim1 and Scott Cogan2

Abstract

We study a 1-dimensional cubic non-linear oscillator in the frequency
domain, in which the non-linearity is roughly estimated but highly uncertain.
The task is to choose a suite of linear computational models at different
excitation frequencies whose responses are useful approximations to, or upper
bounds of, the real non-linear system. These model predictions must be
robust to uncertainty in the non-linearity. A worst case for the uncertain
non-linearity is not known. The central question in this paper is: how to
choose the linear computational models when the magnitude of error of the
estimated non-linearity is unknown. A resolution is proposed, based on the
robustness function of info-gap decision theory. We also prove that the non-
probabilistic info-gap robustness is a proxy for the probability of success.

1 Introduction

Structural reliability is an important concern for high consequence engineer-
ing systems and many qualitative and quantitative arguments come into play
in certifying a design for an intended application. For example, component-
level qualification tests as well as numerical simulations integrating compo-
nent models into global structural analyses are an integral part of the cer-
tification process for aerospace structures and subassemblies. However, the
dominant sources and degrees of lack-of-knowledge in the studied system and
its environment are often difficult to characterize and it is clearly desirable
that design decisions be as robust as possible to these uncertain quantities.
In particular, non-linearities may be present in material behavior and joint
properties, due to a wide variety of spatial and time-dependent phenomena
(e.g. plastic strain, stick-slip, impact, aging, . . . ) and can modify the struc-
tural behavior in dramatic and often unsuspected ways. The importance
of these effects is often observed during qualification tests at multiple ex-
citation levels. While deterministic nonlinear dynamic analyses on complex
global assemblies are not uncommon today, the computational burden of such
computations is evidently much higher than for linear systems.
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In what follows, we propose a methodology that addresses both of these
challenges—lack-of-knowledge and computational burden—by selecting a suite
of linear computational models that approximates the upper bound of the
real non-linear system given uncertainty in non-linear stiffness properties.
Moreover, we assume that a worst case for this uncertainty is not known. A
method is proposed based on the info-gap robustness function, that allows
the trade-offs between robustness and linear model design to be studied over
a range of behaviors. The proposed methodology is illustrated on a single
degree of freedom oscillator with an uncertain cubic stiffness term. A fre-
quency domain approach is adopted here and the excitation is assumed to
be periodic. The non-linear responses are approximated using a first-order
harmonic balance technique which assumes that the system responds at the
excitation frequency.

Info-gap theory [1, 2] has been used in a wide range of engineering analysis
problems. Matsuda and Kanno [7] study the info-gap robustness of structures
based on plastic limit analysis with uncertain loads. Kanno and Takewaki [5,
6] study the robust design of structures under load uncertainty. Duncan et
al. [4] develop an info-gap approach to robust decision making under severe
uncertainty in life cycle design. Vinot et al. [9] develop a robust model-based
test planning procedure. Pierce et al. [8] employ an info-gap technique to
assess reliability of neural network-based damage detection.

2 Dynamics, Uncertainty and Robustness

In this section we formulate the info-gap robustness function, which is a
combination of 3 elements: system models, a performance requirement, and
an uncertainty model.

We consider two models in the time and frequency domains: the real
non-linear system and an artificial computational model.

Real system. The equation of motion in the time domain is expressed
as:

f = k1x+ jbẋr +mẍr + k3x
3
r (1)

where b and m are assumed known, but k1, k3 and f may be uncertain.
The response of this system will be calculated using the harmonic balance

technique where the external excitation is assumed to be monoharmonic [10],
f = F sin(ωt + ϕ) with phase angle ϕ, and the amplitude of response is
periodic, xr = Xr sinωt. Balancing sine and cosine terms, and using the
trigonometric equality sin3 a = 3

4 sin a− 1
4 sin 3a, yields:

−mω2Xr + k1Xr +
3

4
k3X

3
r = F cosϕ (2)

bωXr = −F sinϕ (3)

where the term in sin(3ωt) has been neglected. Eliminating ϕ leads to the
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following polynomial equation in Xr as a function of ω:((
−mω2 + k1 +

3

4
k3X

2
r

)2

+ (bω)2

)
X2

r − F 2 = 0 (4)

The physically meaningful solutions of this equation correspond to the strictly
real and positive roots. The solutions used in the computations that follow
correspond to the upper portion of the non-linear frequency response function
(between points A and B) as seen in fig. 1.
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Figure 1: Non-linear frequency response function with cubic stiffness.

Computational model. The equation of motion in the time domain is
given by:

F cosωt = kcx+ jbcẋc +mẍc + Fc cosωt (5)

and its transformation in the frequency domain by:

F = (kc + jωbc − ω2m)Xc + Fc (6)

where m is the same as in eq.(4). We are free to choose the stiffness kc,
damping bc, and the auxiliary force Fc. The dimensionless damping factor is
ζc = bc/(2

√
kcm), which will typically be small, around 0.01.

Performance requirement. At specified load, F , and driving fre-
quency, ω, the amplitude of the response of the computational model, Xc,
must be an upper bound of the amplitude of the response of the real sys-
tem Xr. Specifically, eqs.(4) and (6) in general have complex roots. Let
|Xc| denote the magnitude of the greatest real or complex root of eq.(6).
Let |Xr| denote the greatest positive and purely real (not complex) root of
eq.(4), evaluated with the method of harmonic balancing. The performance
requirement is:

|Xc| − |Xr| ≥ δ (7)
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δ is the greatest allowed error in the bound. If δ ≥ 0 then |Xc| must bound
|Xr| from above, with an excess no less than δ. For instance, when δ = 0,
then |Xc| must be no less than |Xr|. If δ < 0 then |Xc| may be less than |Xr|,
but by no more than δ.

This performance requirement may at first appear insufficient to deter-
mine the computational model. One might be inclined to choose kc, bc and
Fc in the computational model so that |Xc| will be very large. But how large?
We don’t know how wrong our estimate of the non-linearity is, so we don’t
know how large |Xr| could be; it might exceed even a very large value of |Xc|.
On the other hand, if |Xc| is vastly greater than |Xr| then the computational
bound is useless. The resolution of this indeterminacy is obtained from the
robustness function, as we will see.

Uncertainty model. We consider uncertainty in the linear and cubic
stiffness coefficients of the real model, k1 and k3. We also consider uncertainty
in the load amplitude, F . Let k̃1, k̃3 and F̃ denote best estimates of these
quantities (F̃ may vary with frequency). Each of these quantities, k̃1, k̃3
and F̃ , is a known but perhaps unreliable estimate of the corresponding
coefficient. We do not know by how much the estimate in fact errs. Let s1, s3
and sF denote estimated errors of k̃1, k̃3 and F̃ . These error estimates do not
constitute knowledge of a worst case. Rather, they reflect some information
about the relative errors among the parameters. For instance, k1 may be
known more reliably than k3, in which case s1 < s3. The absolute errors are
unknown and unbounded. In some situations we may know the value one of
the quantities with confidence, in which case its s-value is zero.

We use a fractional-error info-gap model [2] to represent these uncertain-
ties:

U(h) =

{
k1, k3, F :

∣∣∣∣∣k1 − k̃1
s1

∣∣∣∣∣ ≤ h,

∣∣∣∣∣k3 − k̃3
s3

∣∣∣∣∣ ≤ h,

∣∣∣∣∣F − F̃

sF

∣∣∣∣∣ ≤ h

}
, h ≥ 0

(8)
Each of the 3 inequalities can be understood as a fractional error. For in-
stance, considering the cubic coefficient, the inequality states that the frac-

tional error of the estimate,
∣∣∣k3−k̃3

s3

∣∣∣, is bounded by the horizon of uncertainty,

h. Each of the 3 fractional errors is dimensionless, and thus commensurable
in terms of the horizon of uncertainty h. Since we do not know the magni-
tude of error—no realistic worst case is known—the horizon of uncertainty
is unbounded. Thus h ≥ 0. When h = 0 then each estimate is correct:
there is no uncertainty. The uncertainty set U(h) becomes more inclusive as
h increases. The info-gap model is an unbounded family of nested sets of
possible realizations of k1, k3 and F .

Robustness function. We now define the robustness of the linear com-
putational model, eq.(6), to uncertainty in the load amplitude and in the
linear and non-linear stiffnesses of the real oscillator, eq.(4). The robust-
ness is the greatest horizon of uncertainty, h, up to which the performance
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requirement is satisfied for all realizations of the uncertain quantities:

ĥ = max

{
h :

(
min

k1,k3,F∈U(h)
(|Xc| − |Xr|)

)
≥ δ

}
(9)

This robustness function depends on the driving frequency and the nominal
force, ω and F̃ , applied to the non-linear system. It also depends on the
design parameters of the linear computational model, Fc, kc and bc.

3 Example: Uncertain Cubic Non-Linearity

In this section we illustrate the selection of a suite of linear computational
models for robustly evaluating the upper bound of the response of an oscil-
lator with an uncertain cubic non-linearity. We will consider multiple uncer-
tainties in section 4. We assume that the other terms in the real model are
known reliably. The known parameters are k1 = 0.3, m = 1, and F = 1.
We consider various driving frequencies ω. The estimated cubic coefficient is
k̃3 = 0.02 and its estimated error is s3 = 0.1. The dimensionless damping
coefficient of the computational model is ζc = 0.01.
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ĥ

0.3 0.5 0.7

0.54 0.56 0.58 0.6 0.62
0

0.05

0.1

0.15

0.2

Stiffness, kc

R
o
b
u
st

n
es

s,
ĥ
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Figure 2: Robustness vs stiffness kc
of linear computational model, for 3
values of Fc: 0.3, 0.5 and 0.7. δ = 0,
ω = 0.8.

Figure 3: Robustness vs stiffness kc
of linear computational model, for 3
values of δ: −1, 0 and 1. Fc = 0.5,
ω = 0.8.

Figs. 2 and 3 display the robustness, ĥ, vs. the stiffness, kc, of the linear
computational model.

Consider fig. 2, which shows robustness curves for three different values of
the auxiliary load, Fc, of the linear model. At any level of robustness, ĥ, the
non-linear coefficient k3 can deviate from its estimated value, k̃3, by as much
as ±s3ĥ around k̃3 without violating the performance requirement, eq.(7).
Larger variation entails the possibility of violating the requirement. In this
example s3 = 0.1 and k̃3 = 0.02. Thus a robustness of 0.1 means that k3 can
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vary within ±0.01 around 0.02 without violating the bound requirement. In
other words, a robustness of 0.1 means that the estimated non-linear coef-
ficient, k̃3, can err by as much as 50% and the linear computational model
still provides an upper bound.

The driving frequency in fig. 2 is ω = 0.8, so the linear system is at
resonance if kc = 0.64. This explains the positive slope of the curves. As
kc increases towards resonance, the value of Xc increases which allows the
computational model to satisfy the upper bound requirement for a larger
range of non-linearity. That is, the robustness increases as kc moves towards
resonance from lower values. The curve in fig. 2, if continued to higher kc
values, would display reflection symmetry around kc = 0.64: the robustness
would decline as kc moves past resonance to higher values.

Fig. 3 shows robustness vs. kc for three choices of the margin-of-error
parameter, δ. The robustness increases as δ increases: allowing larger mar-
gin of error induces greater robustness. The absolute value of the maximal
response of the non-linear system is in the range of 5 to 10 for robustness up
to about 0.1. Thus a margin of error of 1 corresponds to about 10% or 20%
of the non-linear response.
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Figure 4: Robustness vs load Fc of
linear computational model, for 3
values of kc: 0.4, 0.5 and 0.6. δ = 0,
ω = 0.8.

Figure 5: Robustness vs load Fc of
linear computational model, for 3
values of kc: 0.4, 0.5 and 0.6. δ = 0,
ω = 0.9.

Figs. 4 and 5 show the robustness vs. the auxiliary load of the linear
model, for several values of the stiffness of the linear model. These figures,
if extended to lower Fc values, would both be reflection-symmetric around
Fc = 1, which is the value of f . This is because the amplitude of Xc, in
eq.(6) is determined by the magnitude, but not the sign, of F − Fc.

Next we note the monotonic increase of robustness with increase in Fc.
Since the magnitude of F − Fc increases as Fc increases over this range of
values, we see that |Xc| increases with increasing Fc. Thus the robustness
increases monotonically over this range of Fc.
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The decreasing positive slope of the robustness curves in figs. 4 and 5
results from the non-linearity. The magnitude of the non-linear response,
|Xr|, increases as the value of the non-linear coefficient, k3, gets smaller at
ω = 0.8. Thus the value of k3 which produces the maximum non-linear
response gets smaller as the horizon of uncertainty increases. Furthermore,
the magnitude of the non-linear response increases more, for the same small
change in k3, when k3 is small. Hence the increment of robustness, for each
increment in Fc, decreases as Fc increases.

Finally, comparing figs. 4 and 5, we note that greater Fc is needed to
achieve a given robustness at the larger driving frequency. This is because
ω = 0.9 is further above the resonance of the linear system than ω = 0.8, so
|Xc| is smaller in the former case at fixed Fc.
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Figure 6: Robustness vs driving fre-
quency ω for 3 values of kc: 0.5, 0.6
and 0.7. Fc = 0.5, δ = 0.

Figure 7: Robustness vs driving fre-
quency ω for 3 values of Fc: 0.4, 0.5
and 0.6. kc = 0.6, δ = 0.

Fig. 6 shows robustness, ĥ, vs. driving frequency, ω, for several values
of stiffness of the linear computational model, kc. The figure shows that
the robustness becomes small and vanishes (“detunes”) rather quickly as
the driving frequency changes. However, we see that kc can be used to
compensate for this by causing a shift in the ω-range with positive robustness.

Fig. 7 shows robustness, ĥ, vs. driving frequency, ω, for several values of
the auxiliary force, Fc. We again see the “detuning” of robustness. However,
in contrast to fig. 6, Fc does not compensate, at least not very efficiently in
this example.

Fig. 8 shows the robustness, ĥ, vs. the margin of error for the upper
bound, δ, for several combinations of kc and Fc. The three solid curves
show progressively greater robustness as Fc decreases, at fixed kc. This is
consistent with fig. 4 if we recall that the extension of that figure to values
of Fc below 1 is the mirror image of the figure which is shown.

Now notice the dashed curve in fig. 8, which very closely coincides with the
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Figure 8: Robustness vs error mar-
gin δ, for several combinations of kc
and Fc. ω = 0.80.

Figure 9: Robustness vs error mar-
gin δ, for several combinations of kc
and Fc. ω = 0.80 and ω = 0.82.

middle solid curve. This is for a slightly lower value of kc and a substantially
lower Fc. This demonstrates that kc and Fc can compensate each other,
resulting in distinct (kc, Fc) pairs with essentially the same robustness to
uncertainty.

Fig. 9 again shows robustness vs. error margin, at two different driving
frequencies. The intermediate coinciding solid and dashed curves from fig. 6
are reproduced here, appearing in the upper part of fig. 9. The pair of curves
in the lower part of fig. 9 are at the same values of kc and Fc, but at a
slightly larger driving frequency ω. We know from fig. 7 that the robustness
can change dramatically with ω, which explains the strong separation of the
curves at ω = 0.82 while the same parameters cause closely coinciding curves
at ω = 0.80.

4 Example: Multiple Uncertainties

In this section we consider uncertainty in all three elements of the non-linear
model, as specified in the info-gap model, eq.(8): k1, k3 and F . In all the

calculations in this section we use k̃1 = 0.3, k̃3 = 0.02 and F̃ = 1. The
estimated error of k̃3 is s3 = 0.1, which is 5 times the value of k̃3. The
estimated errors of k̃1 and F̃ , s1 and sF respectively, are either 0 or also 5
times the respective nominal values. The dimensional damping of the non-
linear system is b = 0.02. The parameters of the linear computational model,
when they are not varying on the horizontal axis, are kc = 0.5 or 0.6, Fc = 0.5
and ζc = 0.01. δ = 0, m = 1 and ω = 0.8 in this section.

The main conclusion we will draw is that uncertainty in the cubic stiffness
coefficient, k3, dominates the uncertainty in the linear stiffness, k1, and the
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ĥ

s1, sF =

(1.5, 5)

(0,5)

(0,0)

2 2.5 3
0

0.05

0.1

0.15

0.2

Auxiliary force, fc
R

o
b
u
st

n
es

s,
ĥ
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Figure 10: Robustness vs stiffness
kc, for several combinations of s1
and sF .

Figure 11: Robustness vs auxiliary
force Fc, for several combinations of
s1 and sF . kc = 0.5.

Fig. 10 shows robustness vs. the stiffness of the computational model, for
different values of s1 and sF . These curves can be compared with the middle
curve in fig. 2, which is actually the same as the upper curve in fig. 10. The
most striking aspect of this figure is that introducing uncertainty in both k1
and F (bottom curve) reduces the robustness by no more than about 15%.
We also note that the drop in robustness from the top to the middle curve
is less than the subsequent drop to the bottom curve. That is, uncertainty
in the linear stiffness influences the robustness more than uncertainty in the
load.

Fig. 11 shows robustness vs. auxiliary force, Fc, and should be compared
with the middle curve in fig. 4 (which is the same as the upper curve in
fig. 11). We again see that uncertainty in the load, F , reduces the robustness
less than uncertainty in the linear stiffness k1, and that together they reduce
the robustness by less than 15%.

Fig. 12 shows robustness vs. driving frequency, ω, where the upper curve
is the same as the middle curve in fig. 6. We see the same effect as in figs. 10
and 11.

Fig. 13 shows robustness vs. the error margin, δ, displaying the same
small impact of uncertainty in k1 and F , as compared to uncertainty in k3.

5 Robustness as a Proxy for Probability

In this section we discuss a theorem which asserts that the non-probabilistic
info-gap robustness is monotonically related to the probability that the non-
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Figure 12: Robustness vs driving
frequency ω, for several combina-
tions of s1 and sF . s3 = 0.1. kc =
0.6.

Figure 13: Robustness vs error mar-
gin, δ, for several combinations of s1
and sF . s3 = 0.1. kc = 0.6.

linear system satisfies the performance requirement. This ‘proxy property’
is important since, when it holds, it implies that a computational model can
be chosen which maximizes the probability of success, without knowing the
probability distribution of the uncertain variables. The value of maximum
probability will remain unknown. We begin with several definitions.

Let q = (kc, bc, Fc) denote the design variables of the computational
model, eq.(5). Note that the real system, eq.(1), does not depend on q.
Likewise, let c = (k1, k3, F ) denote the uncertain parameters of the real sys-
tem whose uncertainty is represented by an info-gap model such as eq.(8).
Note that the computational model does not depend on c.

For any design, q, of the computational model, let K(q) denote the set of
all uncertain parameters c of the real system which satisfy the performance
requirement in eq.(7):

K(q) = {c : |Xr(c)| ≤ |Xc(q)| − δ} (10)

We will suppose that a probability distribution exists for the parameters
c of the real system, though this distribution is unknown. For any set, A, of
coefficients c, let P (A) denote probability of this set.

For any design, q, we define the probability of success as the probability
that c takes a value which satisfies the performance requirement, eq.(7). Thus
the probability of success of computational design q is the P -measure of the
set K(q):

Ps(q) = P [K(q)] (11)

All info-gap models, such as eq.(8), are nested, meaning that:

h < h′ =⇒ U(h) ⊆ U(h′) (12)
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Given an info-gap model, U(h), let ĥ(q) denote the robustness to un-
certainty in the real system as defined in eq.(9), for any design, q, of the
computational model.

We will say that robustness is a proxy for the probability of success
if any change in the design of the computational model which enhances the
robustness, does not reduce the probability of success. The following theorem
asserts the proxy property for the system studied in this paper (see also
lemma 1 in [3]).

Theorem. Given the computational model, eq.(5), and the real system,
eq.(1), whose uncertainty is represented by an info-gap model which is inde-
pendent of q. If:

ĥ(q) > ĥ(q′) (13)

then:
Ps(q) ≥ Ps(q

′) (14)

Proof. The proof derives from the following sequence of implications:

ĥ(q) > ĥ(q′) ⇐⇒ |Xc(q)| > |Xc(q
′)| (15)

=⇒ K(q) ⊇ K(q′) (16)

=⇒ Ps(q) ≥ Ps(q
′) (17)

Implication (14): Let us re-write the robustness in eq.(9) as:

ĥ = max

{
h :

(
min

c∈U(h)
(−|Xr(c)|)

)
≥ δ − |Xc(q)|

}
(18)

The info-gap model is nested, meaning that the sets U(h) become more in-
clusive as h increases. Thus the inner minimum in eq.(18) cannot increase
as h increases. Also, |Xr(c)| and U(h) are independent of q and |Xc(q)| is
independent of c. Thus a change in q which enhances robustness can occur
if and only if |Xc(q)| has increased.

(15) implies (16): Any c in K(q′) satisfies |Xr(c)| ≤ |Xc(q
′)| − δ which is

less than |Xc(q)| − δ. Hence that c also belongs to K(q).
(16) implies (17): from the definition of Ps(·) in eq.(11) and since proba-

bility in non-decreasing on nested sets.

6 Conclusion

We propose a methodology, based on info-gap theory, for designing a linear
computational model to represent a non-linear model with uncertain linear
and non-linear stiffnesses and uncertain load. It is assumed that a worst
case for the uncertainties is not known. An info-gap robustness approach is
used to study the tradeoffs between robustness and design. The proposed
methodology is applied to a 1-dimensional non-linear oscillator which is an-
alyzed in the frequency domain under periodic excitations. In practice, the
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analyst much decide on the level of robustness required in a given application.
A suite of frequency dependent linear models is then generated to provide
useful upper bounds on the uncertain non-linear responses. We show that
the non-probabilistic info-gap robustness function can be used to choose a
computational linear model for which the probability of bounding the non-
linear model is maximized, without knowing the probability distribution of
the parameters of the non-linear model.
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