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Abstract

Background. Formulation and evaluation of public health policy commonly employs science-based mathematical

models. For instance, epidemiological dynamics of TB is dominated, in general, by flow between actively and

latently infected populations. Thus modelling is central in planning public health intervention. However, models

are highly uncertain because they are based on observations that are geographically and temporally distinct from

the population to which they are applied.

Aims. We aim to demonstrate the advantages of info-gap theory, a non-probabilistic approach to severe uncer-

tainty when worst cases cannot be reliably identified and probability distributions are unreliable or unavailable.

Info-gap is applied here to mathematical modelling of epidemics and analysis of public health decision-making.

Methods. Applying info-gap robustness analysis to tuberculosis/HIV (TB/HIV) epidemics, we illustrate the

critical role of incorporating uncertainty in formulating recommendations for interventions. Robustness is assessed

as the magnitude of uncertainty that can be tolerated by a given intervention. We illustrate the methodology by

exploring interventions that alter the rates of diagnosis, cure, relapse and HIV infection.

Results. We demonstrate several policy implications. Equivalence among alternative rates of diagnosis and

relapse are identified. The impact of initial TB and HIV prevalence on the robustness to uncertainty is quantified.

In some configurations, increased aggressiveness of intervention improves the predicted outcome but also reduces

the robustness to uncertainty. Similarly, predicted outcomes may be better at larger target times, but may also

be more vulnerable to model error.

Conclusions. The info-gap framework is useful for managing model uncertainty and is attractive when uncertain-

ties on model parameters are extreme. When a public health model underlies guidelines, info-gap decision theory

provides valuable insight into the confidence of achieving agreed-upon goals.
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Background

Public health policies affect millions of people and determine the allocation of health care funds. However,

selecting an intervention for a given population at a given time is highly uncertain. Data supporting public

health decisions are scarce, of poor quality, not fully generalizable and lack appropriate controls [1]. The high

uncertainty in infectious disease epidemiology results also from inter-dependency among individuals. When

prospective studies or randomized controlled trials are available, they usually represent selected groups with
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as little variance as possible and may not apply to other populations [2]. Such lack of generalizability may

be more problematic for the recommendations developed by international organizations. Those guidelines

use the best available information and expert opinion. Nonetheless the yield, effectiveness and cost of the

interventions vary significantly due to heterogeneity of the populations in which they are implemented [1,3].

Science-based mathematical models commonly support public health decisions [4–7]. Many models were

developed to explain or predict the course of an epidemic for specific interventions. However, these models

are limited by the uncertainty of the data and assumptions they employ [5, 7].

Despite severe uncertainty in public health decision-making, actions must be timely and cost-effective.

Analysis of uncertainty is central in responsible decision making using uncertain data and models.

Information-gap (info-gap) theory [8] was developed for decision making when knowledge gaps are sub-

stantial, worst cases cannot be reliably identified, and probability distributions are unreliable or unavailable.

An info-gap is the disparity between what is known and what needs to be known in order to achieve an accept-

able outcome. The focus is on robustly achieving satisfactory outcomes, thus making this technique suitable

for public health policy decision making [9]. Info-gap theory has been applied in engineering, biological

conservation, economics, project management, medicine and homeland security (see http://info-gap.com).

We develop a framework for the practical use of info-gap theory in public health for controlling infectious

diseases. We focus on tuberculosis (TB) in the context of pandemic HIV as an example.

Methods
Epidemiological background

The World Health Organization reported 9.4 million incident TB cases and 1.7 million TB deaths in 2009

and estimated that only 63% of annual incident TB cases were detected and reported; of these, 86% were

successfully treated [10, 11]. Given the disease burden, the United Nations Millennium Development Goals

include targets and indicators related to TB control. The targets include decreasing TB incidence by 2015,

halving TB prevalence and mortality by 2015 (compared with 1990), and diagnosing 70% of new smear-

positive cases and curing 85% of these cases by 2015. However, despite current efforts, many countries will

not achieve these targets [10–14].

The HIV-AIDS pandemic is the major worldwide challenge to TB control [11, 13, 15, 16]. HIV creates

a situation of serious uncertainty for public health interventions based on pre-HIV era models [10, 11, 13].

This is reflected in population distribution, spread, control, and recurrence. Latently and actively infected

individuals contribute differently to spread of disease. It is necessary to consider infectivity, rapidity of
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progression, re-infection, individuals with higher susceptibility for infection and reinfection resulting from

HIV coinfection, etc. in order to produce refined models of diagnosis and treatment.

Many different epidemiological models have been used to evaluate treatment strategies. Deterministic

compartment models are the most common, and we use a slightly modified version of the widely used Murray-

Salomon model [17–19] to describe the evolution of TB/HIV epidemics under various scenarios. The details

of the model appear in Appendix A.

Info-gap theory

The robustness function is the basic decision-support tool in an info-gap analysis. If our dynamic model were

accurate we could evaluate any proposed intervention in terms of the outcome of that intervention that is

predicted by the model. An intervention with low predicted TB prevalence is preferred over an intervention

with higher predicted prevalence.

The problem is great model uncertainty. This means that predicted outcomes are unreliable and it is

unrealistic to prioritize interventions in terms of their predicted outcomes. Using the model to find the

intervention whose predicted outcome is best, is not suited to planning with highly uncertain models.

Model-based predictions are useful, but when deciding which public health intervention to implement,

we should also ask: how wrong could the model be, and an acceptable outcome is still guaranteed? For

any specified intervention we ask: what is the largest error in the model, up to which all realizations of the

model would yield acceptable outcomes? Equivalently, what outcomes can reliably be anticipated from this

intervention, given the unknown disparity between the model and reality? Answers to these questions lie in

the robustness function, specified in Appendix C.3. The robustness is dimensionless, and equals the greatest

fractional error in the model parameters that is consistent with a specified outcome requirement. We use

the robustness function to prioritize the interventions in terms of their robustness against uncertainty for

achieving the required outcome.

Knight [20] recognized that probability distributions are sometimes unknown and that severe uncertainty

may be non-probabilistic. Wald [21], Ben-Tal and Nemirovski [22] and others developed tools for robustly

managing non-probabilistic uncertainty by minimizing the worst outcome on a set of possibilities. Info-gap

theory is non-probabilistic and handles situations where worst cases are unknown.

We summarize here the main attributes of the info-gap robustness function: a plot of robustness-to-

uncertainty versus required performance. This is the basic info-gap tool for prioritizing available options.

Robustness trades off against performance [23, 24]. More demanding performance requirements are less
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robust against uncertainty than less demanding requirements. This trade off is quantified and expressed

graphically by the monotonic robustness curve.

Model predictions have zero robustness against uncertainty [25]. When models are highly uncertain, it is

unrealistic to prioritize one’s options based on predicted outcomes of those options, because those predictions

have no robustness to errors in the underlying models. Options must be evaluated in terms of the level of

performance that can be reliably achieved; this is expressed by robustness.

Combining the trade off and zeroing properties yields realistic prioritization of options.

Prioritization of options depends on performance requirements. Prioritization of options may change

as requirements change. This is called “preference reversal” and is expressed by the intersection of the

robustness curves of different options. Preference reversal provides insight to anomalous behavior such as the

Ellsberg and Allais paradoxes in human decision making [8], the equity premium puzzle in economics [8], and

animal foraging [26]. We will show that preference reversal occurs when selecting public health interventions

because priorities are time- and context-dependent.

Info-gap models of uncertainty are non-probabilistic. Info-gap robustness analysis is implementable even

when probability distributions are unknown, and thus is suited to severe uncertainty. In contrast, Monte

Carlo simulation, Bayesian analysis, or probabilistic risk assessment require knowledge of probabilities.

Other non-probabilistic tools include interval analysis, fuzzy set theory [27], possibility theory [28] and

Robust Decision Making (RDM). A comparison of info-gap and RDM has recently been published [29].

Info-gap is operationally distinct from the min-max or worst-case decision strategy [9]. Info-gap robust-

ness does not require knowledge of a worst case. When even typical scenarios are poorly characterized, it is

usually impractical to characterize worst cases, which is required by the min-max strategy. Info-gap theory

does require specifying acceptable outcomes. Thus it is well suited to policy making, because preferences on

outcomes are the driving force.

Info-gap robustness may proxy for the probability of satisfying the performance requirement [8,30,31]. A

more robust option is often more likely to achieve the required outcome. By prioritizing the options using

info-gap robustness, one maximizes the probability of satisfying the requirement, without knowing probability

distributions. The proxy property is central to understanding survival in economic [8], biological [26] and

other competitive environments [31].
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Info-gap implementation

Info-gap methodology requires three main elements: a system model, a performance measure, and a model of

uncertainty. The system model is a mathematical representation of a system and its influence on the variables

of interest, for which management aspirations (performance criteria) are set. A performance measure assesses

value or utility of outcomes. The model of uncertainty is a non-probabilistic representation of the degree to

which the value of parameters, the form of a function, or the structure of a model may deviate from nominal

estimates.

The system model in our example is summarized in two functions. C(t) is the variation over time of the

total number of TB cases, untreated and treated, HIV-positive and HIV-negative, as a fraction of the initial

population. R(t) is the total number of relapses, fast and slow, HIV-positive and HIV-negative, as a fraction

of the initial population. (See eqs.(23) and (24) in Appendix A.)

The public health practitioner wishes to control the total number of TB cases: the fewer the better.

However, trying to minimize this prevalence depends on model predictions that are highly uncertain. The

performance requirement is to keep the total fraction of TB cases at a specified time, tm, below a critical

value, Cm, eq.(25) in Appendix C.1.

Grassly et al [32] note, in discussing epidemiology of HIV/AIDS, that “not all sources of error are

amenable to statistical analysis” (p.i37), due to biased, inaccurate or unavailable data. The basic idea of

info-gap uncertainty is that we do not know how wrong our estimates are, we have no reliable knowledge of

worst cases, and we do not know probability distributions for the estimates. The info-gap uncertainty model

is a non-probabilistic quantification of uncertainties.

A dominant uncertainty in TB dynamics with HIV prevalence is in model parameter values, though

HIV causes significant uncertainties in model structure. Structural uncertainty refers to missing terms in

the equations, missing equations, or unknown nonlinearities. Structural uncertainty is dealt with much less

frequently than parameter uncertainty because of technical challenges. We focus on parameter uncertainty

in this paper because of its importance and to facilitate the presentation of this first application of info-gap

theory to public health.

We use info-gap theory [8] to model and manage uncertainties in the following parameters: slow and fast

relapse rates for HIV positives and negatives, TB infection rates for HIV positives and negatives, and the HIV

infection rate. Much literature suggests these parameters for their impact on the course of epidemics and

the difficulty in measuring them [10,11,16,33–36]. Other uncertainties could also be investigated, depending

on the purpose of the analysis. We use estimated values for each uncertain parameter, and estimated errors
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typically chosen as half of an interval estimate of the parameter. The info-gap model of uncertainty is

specified in Appendix B.

We aim to achieve the performance requirement by judicious choice of control variables, defined in

Appendix C.2. Eligible control variables are any coefficients of the dynamic model that can be influenced

by public health or related medical intervention. We use the diagnosis rate, cure rate, relapse rate, and HIV

infection rate. We define an intervention in terms of the values of these variables [15, 34,37–40].

Results: Robustness and Policy Evaluation

We use the info-gap robustness function to evaluate alternative interventions aimed at controlling the relative

TB prevalence, C(t), at a specified target time, tm, in the future. An intervention is specified by the values

of the control variables. The evaluation leads to realistic assessment of outcomes and preferences among the

interventions.

Interpreting Robustness Curves: Trade Off and Zeroing

All info-gap robustness curves have two properties, mentioned earlier: trade off between performance and

robustness, and zeroing of the robustness curve. These properties are central in using robustness curves to

evaluate public health policy.

The coefficients of the epidemiological models are specified in Tables 2 and 3. Thoughout our examples,

the initial conditions correspond to low TB and low HIV prevalence (the first data-column of Table 4) unless

specified otherwise. The control variables specified in Appendix C.2 are themselves model parameters. The

robustness curve in fig. 1 is evaluated for the nominal values of the control variables specified in Tables 2

and 3. This set of control variables is the “baseline intervention”. The uncertain variables specified in

Appendix B are also model parameters. Their nominal values and uncertainty estimates are specified in

Table 5. These nominal values are the same as appear in Tables 2 and 3 for these variables. The total case

load is evaluated at time tm = 10 years after initiation unless indicated otherwise.

Figs. 2 and 3 show the temporal evolution of the relative prevalence of TB cases, C(t), and relative

relapses, R(t), based on the nominal estimates of the model parameters, with moderately low initial TB

and HIV prevalence. C(t) and R(t) are fractions of the initial total population size. Fig. 2 shows that the

total number of TB cases starts at about 4.2% of the initial population and decays to about 3% in the first

1.5 years, thereafter decaying more slowly, reaching 2.1% of the initial population size after 10 years. The

relapse population starts very small, rises rapidly in the first year and thereafter decays gradually. The
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reduction in the rate of decrease of the TB cases after 1.5 years, fig. 2, results from the influx of relapses

which have built up since initiation of the intervention.

Trade off

Key to understanding the trade off expressed by the robustness curve is the concept of satisficing. In contrast

to optimizing, satisficing asks for an outcome that meets minimal needs but may not be the best imaginable.

The satisficing strategy is not merely “accepting second best.” Satisficing is aspirational, setting a goal just

like optimization, but also requiring robustness to uncertainty. The satisficing strategy induces a trade off

between the aspiration for good outcome and the robustness against uncertainty in attaining that outcome.

The robustness curve in fig. 1 is based on satisficing the relative TB prevalence: requiring that the

prevalence not exceed the critical value, Cm. Fig. 1 shows the robustness vs. the critical prevalence. The

positive slope of the robustness curve in fig. 1 expresses the trade off between robustness and performance:

large robustness entails large prevalence at the specified target time (10 years). Equivalently, requiring low

relative prevalence entails low robustness to uncertainty in the epidemiological model. The robustness curve

quantifies the intuition that more demanding outcomes (small prevalence) are more vulnerable to model

uncertainty (small robustness).

We can interpret the numerical values along the robustness curve as follows. The prevalence, C(t), and

its critical value, Cm, are normalized to the initial population size. For instance, Cm = 0.025 means that the

prevalence at time tm must not exceed 2.5% of the initial population size. The robustness corresponding to

this value of Cm, is 0.1 as seen in fig. 1. This means that the performance requirement is guaranteed if the

uncertain model parameters vary from their nominal values by no more than 10% of their error estimates.

(The model parameters are constrained to be positive since they are first-order rate constants.)

The public health practitioner may feel that robustness to 10% uncertainty in the model parameters is

rather small, given the substantial uncertainty in the epidemiological dynamics of TB with HIV prevalence.

If we want robustness to, say, 25% uncertainty in the model parameters we must accept a larger final case

load, namely, Cm = 0.033 as seen in fig. 1. Greater robustness is obtained only by accepting poorer outcome;

this is an irrevocable trade off that is quantified by the robustness curve.

Zeroing

We note that the robustness curve in fig. 1 reaches the horizontal axis at the value Cm = 0.021. This means

that requiring the prevalence not to exceed 2.1% of the initial population has no robustness against model
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uncertainty. The value of Cm at which the robustness becomes zero is precisely the nominal prediction of

the prevalence at time tm as seen by the right end-point in fig. 2. That is, the value of C(tm), evaluated with

the best estimates of the model parameters, equals 0.021. The horizontal intercept in fig. 1 is an example of

the property of zeroing that holds for all info-gap robustness curves: The outcome predicted by the model,

when adopted as the performance requirement, has no robustness against uncertainty in the model.

It is not surprising that the predicted outcome is extremely vulnerable to error in the model upon which

the prediction is based. However, the zero-robustness of predicted outcomes has an important implication

for policy selection.

The robustness curve in fig. 1 is for a particular choice of values of the control variables: the baseline

intervention. The zeroing property—no robustness of the predicted outcome of these control values—implies

that we should not assess these control values in terms of their predicted outcome. The predicted prevalence

of 0.021 at time tm = 10 years does not reliably reflect the performance of these control variables. Due to the

trade off property, only larger prevalence can reliably be expected to result from this choice of the control

variables. Predicted outcomes are not reliable for prioritizing the interventions.

Equivalent Interventions

Different combinations of interventions can yield essentially equivalent results, as in fig. 4. The baseline

intervention (solid), is characterized by low diagnosis rate and high relapse rate. The other intervention

(dash) has higher diagnosis rate and lower relapse rate as specified in Table 6. (Interventions are specified by

the values of control variables presented in Table 6.) The robustness curves for these two control strategies,

at 10 years, are nearly the same, suggesting that the public health practitioner may choose freely between

them, perhaps employing additional criteria such as cost or ease of implementation. Equivalence may be

lost if parameters are changed. For instance, we will see later (fig. 8) that these interventions evaluated at

10, 20 or 30 years have very different robustness curves.

Fig. 5 shows a different aspect of the equivalence of interventions. The figure shows robustness curves

for two strategies specified in Table 6. Both strategies aim to control the relative prevalence of TB, but one

(solid) is geared for a 10-year target time, while the other (dash) considers a 30-year target. The estimated

outcomes—prevalence—are very nearly the same for these two strategies, each at its respective target time,

as shown by their shared horizontal intercept at Cm = 0.018. These predictions result from estimated model

parameters, so one might be inclined to conclude that TB prevalence of 0.018 can be achieved at either 10

or 30 years by using the corresponding intervention.
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However, the epidemiological model is highly uncertain, and the robustness curves in fig. 5 of these two

strategies are quite different. Not surprisingly, the 30-year target is much less robust to uncertainty. It

would be erroneous to treat these two strategies as outcome-equivalent since their performances at positive

robustness are quite different. Nominal equivalence (equivalence of the predicted outcome) does not imply

robustness equivalence.

Impact of Initial TB and HIV Prevalence

We now consider higher initial prevalences. The overall shape of the dynamic response is very similar in

each case, except that the prevalence increases significantly as the initial prevalence increases. As in figs. 2

and 3, in each scenario the initial TB prevalence decreases rapidly during the first 2 years, and thereafter

decreases more slowly as the new relapse population—which peaks around the end of the first year—flows

back into active cases.

Fig. 6 shows robustness curves for a target time 10 years after initiation, for low (solid), medium (dash)

and high (dot-dash) initial prevalence of TB and HIV. The low-prevalence curve (solid) is the same as fig. 1.

The robustness curves shift dramatically to the right as the baseline prevalence of TB and HIV increases,

indicating poorer estimated outcome and lower robustness to uncertainty.

Intervention Aggressiveness

Fig. 7 shows robustness curves for low initial TB and HIV prevalence with interventions specified in Table 6.

The solid curve is the baseline intervention, against which the other curves entail more aggressive intervention

in either or both the active cases and the relapse population.

The progression from solid to dash to dot-dash in fig. 7 represents increasingly aggressive intervention in

the active TB case population. We see that increasing aggressiveness, in this specific parameter configuration,

results in increasing prevalence and decreasing robustness to model error at the target time. The explanation

is that aggressive treatment of active cases enlarges the relapse population which flows back into the active

case population.

The top curve in fig. 7 modifies the most aggressive case (dot-dash) by also including more aggressive

intervention in the TB relapse population. This reduction in relapse reduces the predicted prevalence after

10 years, and increases the robustness to uncertainty.
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Different Target Times

Most of the results discussed so far evaluated the robustness for a target time 10 years after initiation. We

now consider the implications of different target times.

Fig. 8 shows robustness curves at target times, tm, of 10, 20 and 30 years (solid, dash, dot-dash respec-

tively). The initial prevalences of TB and HIV are low. The interventions are all at the baseline.

The predicted prevalence decreases as the target time increases, as shown by the horizontal intercepts in

fig. 8. The baseline intervention is predicted to reduce the prevalence, (in units of initial population size), as

the time horizon increases. However, the zeroing property means that these predictions have no robustness

to uncertainty in the model used for prediction. Only higher prevalence has positive robustness.

From fig. 8 we see that, for critical TB prevalence Cm less than 3%, the 30-year TB prevalence is more

robust than the 20-year prevalence which is more robust than the 10 year prevalence. For instance, at

critical TB prevalence of Cm = 0.02, the robustnesses for 10, 20 and 30 year horizons are 0, 0.08 and 0.12,

respectively. This intervention has no robustness to uncertainty when requiring a 2% prevalence after 10

years; in fact, the estimated prevalence at 10 years is greater than 2%. The prevalence at 20 years will be no

worse than 2% provided that the model coefficients err by no more than 8%, and at 30 years the robustness

to error is 12%.

The practitioner may feel that even 12% robustness against model-coefficient error is rather small, given

the severe uncertainty of TB epidemiology in the context of epidemic HIV. This means that, even at a

30-year horizon, this intervention cannot reliably achieve a relative prevalence as low as 2%.

Suppose we are willing to aim at a final TB prevalence of 3.7%. We see from fig. 8 that now the

10-year horizon is more robust than 20 years which is more robust than 30 years. The robustnesses are

now 30%, 24% and 22% for 10, 20 and 30 years. The robustness curves have intersected one another and

the robustness rankings are reversed. As the target time decreases, the predicted outcome becomes worse

(horizontal intercept moves right) but the cost of robustness improves. This causes the robustness curves to

cross one another. More intuitively, we can say that prediction of TB prevalence is more reliable for short

time horizon than for long times. But since a long time is required to overcome the relapse effect, we observe

the intersection of the robustness curves and the consequent reversal of their robust dominance.

Results like fig. 8 have important policy implications for TB control over long time periods. The

policy maker may be tempted to choose one option that is predicted to yield better short term results.
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However, that choice might be wrong when one opts to satisfice the outcome with robustness to un-

certainty. Predictions of mathematical models (horizontal intercepts) are not sufficiently reliable for

comparing and prioritizing interventions; the cost of robustness (slope) must also be considered. In the

example in fig. 8 one might conclude that prevalence less than 3% is not achievable at any target time, that

3.7% is feasible at 10-years but not beyond, and that other interventions are needed for longer-term outcomes.

Impact of HIV Mortality

Fig. 9 shows 10-year robustness curves for various HIV infection rates, with low initial TB and HIV

prevalence, as specified in Table 6. The HIV infection rate decreases in the progression from solid, dash,

dot-dash to dot-dot. As the HIV infection rate decreases, the estimated 10-year TB prevalence increases

and the robustness decreases. The explanation lies in the high mortality rate of the HIV population. As

the HIV infection rate decreases, the size of the relapse population decays more slowly, allowing greater

flow back into the active TB case population. Interventions that decrease HIV infection rates or restore

immunity to HIV patients, will counter-intuitively tend to increase TB prevalence unless compensating

measures are taken. Significantly, the cost of robustness (slope of the robustness curve) does not change

as a result of decreased HIV infection rate. Reducing HIV infection rate shifts the robustness curve to the

right, with almost no change in slope.

Conclusion

We demonstrated a generic info-gap framework for managing model uncertainty in public health decision

making. By applying it to a mathematical model of TB/HIV epidemics, we illustrated specific recommen-

dations for interventions in the control of TB with HIV in various settings.

The complicated multi-dimensional epidemiological dynamics are dominated by the flow back and forth

between the actively and latently infected TB populations and the different rates of progression of different

subpopulations between these compartments. Counter-intuitively, the total TB case load even decades after

initiation can increase as a result of increased diagnosis and cure rates, and it can increase as the control of

HIV becomes more aggressive. These findings highlight the critical importance of modeling in the assessment

and planning of public health intervention. Model predictions are often used to choose interventions. How-

ever, model predictions must be interpreted in light of model uncertainties. Predicted outcomes have zero
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robustness to model error. Only worse-than-predicted outcomes (higher relative prevalence) have positive

robustness against model error. This means that predicted outcomes are not reliable for prioritizing the

interventions. The trade off between robustness and outcome is quantified by the info-gap analysis and is a

critical component of the decision-making process.

We explore the performance of interventions that alter the rate constants of diagnosis, cure, relapse and

HIV infection. Some interventions have quite similar predicted outcomes and robustness curves. This enables

the policy maker to choose between these interventions based on additional criteria, such as ease or cost of

implementation. It is not true, however, that interventions with the same estimated outcomes necessarily

have the same robustness against model error.

We demonstrate the policy implications of initial TB and HIV prevalence, of HIV mortality, of degree

of treatment aggressiveness, and of the target time at which outcomes are evaluated. Public health policies

are evaluated in terms of confidence—expressed as robustness to modeling error—in achieving specified

TB prevalence at the target time. Predicted outcomes have zero robustness and thus are not reliable for

evaluating and comparing interventions. Instead, interventions must be prioritized in terms of their capacity

for achieving specified outcomes, with robustness to uncertainty. Failure to quantify the uncertainty

inherent in public health interventions leads to disappointment from unrealized expectations, and failed

policy. Where a public health model underlies guidelines, info-gap decision theory provides valuable insight

into the confidence of achieving agreed-upon goals.

List of Abbreviations

AIDS: acquired immunodeficiency syndrome

HIV: Human immunodeficiency virus

RDM: Robust Decision Making

TB: Tuberculosis

Competing Interests

The authors have no competing interests.

13



Author’s contributions

Yakov Ben-Haim formulated the decision analysis and implemented the calculations. Cliff Dacso and Nicola

Zetola formulated the medical model. All authors had access to all data, participated in interpreting the

results of the analysis, contributed to writing the manuscript and approved the last version of the manuscript.

Acknowledgements

Financial Support: This work was supported in part by NIH grant R01AI097045. The funders had no role

in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

One author (NMZ) is in debt to the University of Pennsylvania CFAR Developmental and International

Cores (NIH grant P30AI45008, Penn Center for AIDS Research) for their continuous support in this and

other related studies.

14



References
1. Bhunu CP, Garira W, Mukandavire Z: Modeling HIV/AIDS and tuberculosis coinfection. Bull Math Biol

2009, 71(7):1745–1780.

2. Bhunu CP, Garira W, Mukandavire Z, Magombedze G: Modelling the effects of pre-exposure and post-
exposure vaccines in tuberculosis control. J Theor Biol 2008, 254(3):633–649.

3. Bhunu CP, Garira W, Mukandavire Z, Zimba M:Tuberculosis transmission model with chemoprophylaxis
and treatment. Bull Math Biol 2008, 70(4):1163–1191.

4. Wastney ME, Subramanian KN, Broering N, Boston R: Using models to explore whole-body metabolism
and accessing models through a model library. Metabolism 1997, 46(3):330–332.

5. Boston R, Stefanovski D, Moate P, Linares O, Greif P: Cornerstones to shape modeling for the 21st
century: introducing the AKA-Glucose project. Adv Exp Med Biol 2003, 537:21–42.

6. Aparicio JP, Capurro AF, Castillo-Chavez C: Markers of disease evolution: the case of tuberculosis. J
Theor Biol 2002, 215(2):227–237.

7. Young D, Stark J, Kirschner D: Systems biology of persistent infection: tuberculosis as a case study.
Nat Rev Microbiol 2008, 6(7):520–528.

8. Ben-Haim Y: Info-Gap Decision Theory: Decisions Under Severe Uncertainty. London: Academic Press 2006.

9. Ben-Haim Y, Dacso CC, Carrasco J, Rajan N: Heterogeneous Uncertainties in cholesterol management.
Intl J Approximate Reasoning 2009, 50:1046–1065.

10. Dye C: Global epidemiology of tuberculosis. Lancet 2006, 367(9514):938–940.

11. Corbett E, Watt C, Walker N, Maher D, Williams B, Raviglione M, Dye C: The growing burden of tubercu-
losis: global trends and interactions with the HIV epidemic. Arch Intern Med 2003, 163(9):1009–1021.

12. Zignol M, Hosseini M, Wright A: Global incidence of multidrug-resistant tuberculosis. J Infect Dis 2006,
194(4):479–485.

13. Nunn P, Williams B, Floyd K, Dye C, Elzinga G, Raviglione M: Tuberculosis control in the era of HIV.
Nat Rev Immunol 2005, 5(10):819–826.

14. Dye C, Maher D, Weil D, Espinal M, Raviglione M: Targets for global tuberculosis control. Int J Tuberc
Lung Dis 2006, 10(4):460–462.

15. Williams BG, Korenromp EL, Gouws E, Schmid GP, Auvert B, Dye C: HIV infection, antiretroviral therapy,
and CD4+ cell count distributions in African populations. J Infect Dis 2006, 194(10):1450–1458.

16. Williams BG, Granich R, Chauhan LS, Dharmshaktu NS, Dye C: The impact of HIV/AIDS on the control
of tuberculosis in India. Proc Natl Acad Sci US 2005, 102(27):9619–9624.

17. Murray CJL, Salomon JA: Modeling the impact of global tuberculosis control strategies. Proc Natl Acad
Sci USA 1998, 95:13881–13886.

18. Murray, C J L and Salomon, J A (1998) Using Mathematical Models to Evaluate Global Tu-
berculosis Control Strategies [http://www.hsph.harvard.edu/faculty/joshua-salomon/files/MurraySalomon\
\\ModelingTBControlStrategies\ HCPDS1998.pdf].

19. Murray CJL, Salomon JA: Expanding the WHO tuberculosis control strategy: rethinking the role of
active case-finding. Int J Tuberc Lung Dis 1998, Suppl 1:S9–S15.

20. Knight FH: Risk, Uncertainty, and Profit. New York: Hart, Schaffner, and Marx 1921.

21. Wald A: Statistical decision functions which minimize the maximum risk. Annals of Mathematics 1945,
46(2):265–280.

22. Ben-Tal A, Nemirovski A: Robust solutions of uncertain linear programs. Oper Res Lett 1999, 25:1–13.

23. Ben-Haim Y: Robust rationality and decisions under severe uncertainty. J Franklin Inst 2000, 337:171–
199.

24. Ben-Haim Y, Hemez F: Robustness, fidelity and prediction-looseness of models. Proc Royal Society A
1999, 468:227–244.

25. Ben-Haim Y: Info-gap decision theory for engineering design. In Engineering Design Reliability Handbook,
1st edition. Edited by Nikolaidis E, Ghiocel D, Singhal S, Boca Raton, FL: CRC Press 2005:11.1–11.30.

15



26. Carmel Y, Ben-Haim Y: Info-gap robust-satisficing model of foraging behavior: Do foragers optimize
or satisfice? American Naturalist 2005, 166:633–641.

27. Klir G, Folger T: Fuzzy Sets, Uncertainty, and Information. New York: Prentice-Hall 1988.

28. Dubois D, Prade H: Possibility Theory: An Approach to Computerized Processing of Uncertainty. New York:
Plenum Press 1986.

29. Hall J, Lempert R, Keller K, Hackbarth A, Mijere C, McInerney D: Robust climate policies under uncer-
tainty: a comparison of robust decision making and info-gap methods. Risk Analysis to appear.

30. Ben-Haim Y: Info-gap forecasting and the advantage of sub-optimal models. European J Operational
Res 2009, 197:203–213.

31. Ben-Haim Y: Robust satisficing and the probability of survival. Intl J of System Science, in press.

32. Grassly NC, Morgan M, Walker N, Garnett G, Stanecki K, Stover J, Brown T, Ghys PD: Uncertainty in
estimates of HIV/AIDS: the estimation and application of plausibility bounds. Sex Transm Infect
2004, Suppl I:i31–i38.

33. Cohen T, Colijn C, Finklea B, Murray M: Exogenous re-infection and the dynamics of tuberculosis
epidemics: local effects in a network model of transmission. J R Soc Interface 2007, 4(14):523–531.

34. Dye C, Garnett GP, Sleeman K, Williams B: Prospects for worldwide tuberculosis control under the
WHO DOTS strategy. Directly observed short-course therapy. Lancet 1998, 352(9144):1886–1891.

35. Cohen T, Lipsitch M, Walensky RP, Murray M: Beneficial and perverse effects of isoniazid preventive
therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations. Proc Natl Acad
Sci USA 2006, 103(18):7042–7047.

36. Wools-Kaloustian K, Kimaiyo S, Diero L, Siika A, Sidle J, Yiannoutsos C, Musick B, Einterz R, Fife K, Tierney
WM: Viability and effectiveness of large-scale HIV treatment initiatives in sub-Saharan Africa:
experience from western Kenya. AIDS 2006, 20:41–48.

37. Vynnycky E, Nagelkerke N, Borgdorff MW, van Soolingen D, van Embden JD, Fine PE: The effect of age
and study duration on the relationship between ‘clustering’ of DNA fingerprint patterns and the
proportion of tuberculosis disease attributable to recent transmission. Epidemiol Infect 2001, 126:43–
62.

38. Vynnycky E, Fine PE: The natural history of tuberculosis: the implications of age-dependent risks
of disease and the role of reinfection. Epidemiol Infect 1997, 119(2):183–201.

39. Vynnycky E, Borgdorff MW, Leung CC, Tam CM, Fine PE: Limited impact of tuberculosis control in
Hong Kong: attributable to high risks of reactivation disease. Epidemiol Infect 2008, 136(7):943–952.

40. Verver S, Warren RM, Beyers N, Richardson M, van der Spuy GD, Borgdorff MW, Enarson DA, Behr MA, van
Helden PD: Rate of reinfection tuberculosis after successful treatment is higher than rate of new
tuberculosis. Am J Respir Crit Care Med 2005, 171(12):1430–1435.

16



Figures
1 Figure 1 – Robustness of relative TB prevalence. Run 8.

File name: fig01run8c.pdf

2 Figure 2 – Relative TB prevalence vs. time. Run 8.

File name: fig06ctotc.pdf

3 Figure 3 – Relative relapses vs. time. Run 8.

File name: fig07rtotc.pdf

4 Figure 4 – Equivalent robustness for two interventions. Run 8: —, run 15: – –

File name: fig04run8n15b.pdf

5 Figure 5 – Nominal equivalence of two interventions. Run12: —, run 38: – –

File name: fig21run12n38b.pdf

6 Figure 6 - Robustness curves for low, medium and high initial TB and HIV preva-
lence. Run 8: —, run 19: – – run 20: ·–

File name: fig13rbsb.pdf

7 Figure 7 – Robustness with varying aggressiveness. Run 8: —, run 9: – –, run
10:·–, run 12: · · ·

File name: fig14run8-10n12c.pdf

8 Figure 8 – Robustness curves at 10, 20 and 30 years. Run 8: —, run 27: – –, run
28: ·–

File name: fig17run8n27-28b.pdf

9 Figure 9 – Robustness for various HIV infection rates. Run 8: —, run 31: – –, run
30: ·–, run 29: · · ·

File name: fig18run8n29-31c.pdf
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Index Symbol Definition Initial valuea

HIV Neg HIV pos Ref.

1 U Uninfected 0.9b 0.2c [10]
2 IF Infected subject to fast breakdown 0.05–0.1 0.1 [33,34]
3 IS Infected subject to slow breakdown 0.1 0.1 [33,34]]
4 SF Superinfected subject to fast breakdown 0
5 HS INH recipient subject to slow breakdown 0.01 0.01–0.03

6–11 Ci,j
U Untreated cases, of 6 types: 0

i = 1: smear-positive pulmonary
i = 2: smear-negative pulmonary
i = 3: extra-pulmonary
j = 1: fast diagnosis category
j = 2: slow diagnosis category
i⋆ = 2 if i = 1 (eqs.(6) and (7))
i⋆ = 1 if i = 2 (eqs.(6) and (7))
i⋆ = 0 if i = 3 (eqs.(6) and (7))

12–17 Ci,k
T Treated cases, of 6 types: 0

i as above
k = 1: good treatment category
k = 2: bad treatment category

18 RF Recovered cases subject to fast relapse 0.4 (0.28–0.52) [33,34]
19 RS Recovered cases subject to slow relapse 0.050 (0.035–0.065) [33,34]

Table 1: State variables—sizes of sub-populations—in the Murray-Salomon basic model, table 1, p.41, in ref. [18].
The definition of superscript i⋆ is in [18] on p.20. aAs fraction of total population at start of simulation. b Low
prevalence. c High prevalence.

Tables
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Symbol Definition HIV neg HIV pos
Birth rate g births/year/person 0.03c 0c,h

N population size 0.821i 0.179i

T births per year = birth rate×N c

λ g infection rate 1.81× 10−3 m 2.96× 10−3 m

Kk # respiratory contacts with infected/person/year
Lk probability that respir. contact with infectious

source leads to infection
KL 5–15a

Y k # infectious cases in population
µ g non-TB death rate 0.009c 0.05c

p proportion of new infections entering slow break-
down

0.9 (0.85–0.95)a 0.4 (0.3–0.5a)

βF
g fast breakdown rate 2c 3

βS
g slow breakdown rate 0.001 (5–15× 10−4 a) 0.075 (0.05–0.10a)

χ g rate of application of INH to infected individuals 0.75 (ℓ)
ν protection from superinfection conferred by primary

infection
0.75 (0.5–1a)

w short-term INH effectiveness 0.7
h long-term INH effectiveness 0.7
di,j proportion of pre-diagnosed cases in clinical category

i entering diagnosis category j
d1,1 0.45 (0.4–0.5)j 0.35 (0.3–0.4)j , e

d2,1 0.55 (0.5–0.6) 0.65 (0.6–0.7) e

d3,1 e

di,2 di,2 = 1− di,1 f

si proportion of new cases in clinical category i
s1, s2 proportion of new cases in clinical category i 0.45 (0.4–0.5a)
s3 proportion of new cases in clinical category i s3 = 1− s1 − s2 d

δj g diagnosis rate for category j 0.6 ℓ 0.6 ℓ

σ g smear conversion rate 0.03c

Table 2: Model parameters in the Murray-Salomon basic model, table 2, p.42, in ref. [18], except for K, L, Y and
N which are defined in footnote 2 on p.21 of [18]. Where a value is specified only for HIV-negative, the same value is
used for HIV-positive. aFootnote 8, p.24, [18]. bFootnote e, table A5, p.63, [18]. cTable A5, p.63, [18]. dFootnote c,
table A5, p.63, [18]. eFootnote ‡, table A5, p.63, and fig.A5, p.57 [18]. fFootnote b, table A5, p.63, [18]. gRate: per
person per year. In Botswana the average is 477 cases per year per 100,000 people. 62% of them are HIV infected.
hDepends on HIV prevalence. In areas with HIV and without preventive treatment, 25% of babies born from HIV
mothers are infected. iIn Botswana. j [Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement.
Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance
and Monitoring Project. JAMA. 1999 Aug 18;282(7):677–86.]. kNot needed since λ is a primary datum. ℓDecision
variable. mCan also be treated as a decision variable.
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Symbol Definition HIV neg HIV pos
εU

f spontaneous cure rate for untreated cases 0.2 (0.14–0.25)g

µi
U

f TB death rate for untreated cases in clinical category
i

µ1
U 0.12 (0.075–0.20a) 0.45 (0.3–0.6a)

µ2
U , µ

3
U 0.7µ1

U
b 0.7µ1

U
b

gi,k proportion of treated cases in clinical category i and
treatment category k

g1,1 0.5 d

g2,1 0.28 d

g3,1 d

gi,2 gi,2 = 1− gi,1 e

εkT
f cure rate for treated case in treatment category k

ε1T 0.8
ε2T 0.5c

µi,k
T

f TB death rate for treated cases in clinical category i
and treatment category k

µ1,1
T 0.075c 0.16c

µ1,2
T 0.12c 0.24c

µ2,k
T , µ3,k

T 0.7µ1,k
T

b 0.7µ1,k
T

b

rU proportion of spontaneously recovered cases entering
the slow relapse category

0.009c

rkT proportion of recovered cases from treatment cate-
gory k entering the slow relapse category

r1T 0.0096c

r2T 0.0094c

ρF
f fast relapse rate 2c 3

ρS
f slow relapse rate 0.001 (5–15× 10−4 a)

γ f rate of HIV infection 0.075 (0.011–0.95)h

Table 3: Model parameters in the Murray-Salomon basic model, table 2, p.42, in ref. [18], except for K, L, Y and
N which are defined in footnote 2 on p.21 of [18]. Where a value is specified only for HIV-negative, the same value is
used for HIV-positive. aFootnote 8, p.24, [18]. bFootnote e, table A5, p.63, [18]. cTable A5, p.63, [18]. dFootnote ‡,
table A5, p.63, and fig.A4, p.56 [18]. eFootnote d, table A5, p.63, [18]. fRate: per person per year. g [33,34]. Other
estimate: 0.05–0.15a. h [1].
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Symbol Low TB Prevalence Medium TB Prev. High TB Prev.
Low Med High Low Med High Low Med High
HIV HIV HIV HIV HIV HIV HIV HIV HIV

1 U 0.9 0.8 0.6 0.8 0.650 0.500 0.6 0.5 0.4
2 IF 0.0075 0.015 0.03 0.011 0.018 0.028 0.03 0.0375 0.045
3 IS 0.03 0.06 0.12 0.05 0.088 0.125 0.12 0.15 0.18
4 SF 0.003 0.006 0.012 0.01 0.018 0.025 0.012 0.015 0.018
5 HS 0.009 0.018 0.036 0.02 0.035 0.050 0.036 0.045 0.054

Ci,j
U

6 (i, j) = (1, 1) 0.005 0.01 0.02 0.008 0.014 0.020 0.02 0.025 0.03
7 (i, j) = (2, 1) 0.002 0.004 0.008 0.003 0.005 0.008 0.008 0.01 0.012
8 (i, j) = (3, 1) 0.002 0.004 0.008 0.003 0.005 0.008 0.008 0.01 0.012
9 (i, j) = (1, 2) 0.002 0.004 0.008 0.003 0.005 0.008 0.008 0.01 0.012
10 (i, j) = (2, 2) 0.001 0.002 0.004 0.002 0.004 0.005 0.004 0.005 0.006
11 (i, j) = (3, 2) 0.001 0.002 0.004 0.002 0.004 0.005 0.004 0.005 0.006

Ci,k
T

12 (i, k) = (1, 1) 0.01 0.02 0.04 0.02 0.035 0.050 0.04 0.05 0.06
13 (i, k) = (2, 1) 0.005 0.01 0.02 0.01 0.018 0.025 0.02 0.025 0.03
14 (i, k) = (3, 1) 0.005 0.01 0.02 0.01 0.018 0.025 0.02 0.025 0.03
15 (i, k) = (1, 2) 0.005 0.01 0.02 0.02 0.035 0.050 0.02 0.025 0.03
16 (i, k) = (2, 2) 0.002 0.004 0.008 0.005 0.009 0.013 0.008 0.01 0.012
17 (i, k) = (3, 2) 0.0025 0.005 0.01 0.003 0.005 0.008 0.01 0.0125 0.015
18 RF 0.002 0.004 0.008 0.005 0.009 0.013 0.008 0.01 0.012
19 RS 0.006 0.012 0.024 0.015 0.025 0.038 0.024 0.03 0.036

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Initial conditions.

Symbol Nominal value, ũi Error weight, si

λ 1.81× 10−3 0.0009

λ 2.96× 10−3 0.0018
γ 0.075 0.2
ρS 0.001 0.0005
ρS 0.001 0.001
ρF 2 1
ρF 3 1.5

Table 5: Nominal values and error weights of uncertain variables.
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Run Init tm δj = δ
j

εkT = εkT ρF ρF λ λ γ βF βF

Preva (yr)

8 1 10 (0.6, 0.6) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 2 3

9 1 10 (0.65, 0.65) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 2 3

10 1 10 (0.65, 0.65) (0.88, 0.55) 2 3 0.00181 0.00296 0.075 2 3

11 1 10 (0.65, 0.65) (0.88, 0.55) 1.5 2.25 0.00181 0.00296 0.075 2 3

12 1 10 (0.65, 0.65) (0.88, 0.55) 1 1.5 0.00181 0.00296 0.075 2 3

15 1 10 (0.85, 0.85) (0.8, 0.5) 1.2 2 0.00181 0.00296 0.075 2 3

19 5 10 (0.6, 0.6) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 2 3

21 5 10 (0.65, 0.65) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 2 3

22 5 10 (0.65, 0.65) (0.88, 0.55) 2 3 0.00181 0.00296 0.075 2 3

23 5 10 (0.65, 0.65) (0.88, 0.55) 1 1.5 0.00181 0.00296 0.075 2 3

20 9 10 (0.6, 0.6) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 2 3

24 9 10 (0.65, 0.65) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 2 3

25 9 10 (0.65, 0.65) (0.88, 0.55) 2 3 0.00181 0.00296 0.075 2 3

26 9 10 (0.65, 0.65) (0.88, 0.55) 1 1.5 0.00181 0.00296 0.075 2 3

27 1 20 (0.6, 0.6) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 2 3

28 1 30 (0.6, 0.6) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 2 3

29 1 10 (0.6, 0.6) (0.8, 0.5) 2 3 0.00181 0.00296 0.0375 2 3

30 1 10 (0.6, 0.6) (0.8, 0.5) 2 3 0.00181 0.00296 0.05 2 3

31 1 10 (0.6, 0.6) (0.8, 0.5) 2 3 0.00181 0.00296 0.06 2 3

32 1 10 (0.6, 0.6) (0.8, 0.5) 2 3 0.0009 0.00148 0.075 2 3

33 1 10 (0.6, 0.6) (0.8, 0.5) 2 3 0.0003 0.0005 0.075 2 3

38 1 30 (0.85, 0.85) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 2 3

39 1 10 (0.6, 0.6) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 1 1.5

41 1 10 (0.65, 0.65) (0.8, 0.5) 2 3 0.00181 0.00296 0.075 1 1.5

Table 6: Control variables for robustness curves. aData-column in table 4.
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Appendices

A The Murray-Salomon Model

The Murray-Salomon (M-S) model [17, 18] is a set of coupled differential equations that describe the time

evolution of TB. A modification deals with TB infecteds in a population containing HIV smear-positive

individuals. In section A.1 we define the basic non-HIV model. In section A.2 we present the M-S extension

to include an HIV sub-population. The state variables are defined in table 1 on p.18, and the parameters

are defined in table 2 on p.19.

A.1 The Basic Murray-Salomon Model: No HIV

The basic M-S model is the following 19 differential equations (eqs.(6) and (7) occur in 6 different forms

each) appearing on pp.19–20 of Murray and Salomon [18]:

dU

dt
= T − λU − µU (1)

dIF
dt

= (1− p)λU − βF IF − wχIF − µIF (2)

dIS
dt

= pλU − βSIS − χIS − (1− p)λ(1− ν)IS − µIS (3)

dSF

dt
= (1− p)λ(1− ν)(IS +HS +RS)− βFSF − wχSF − µSF (4)

dHS

dt
= χ(wIF + wSF + IS)− (1− p)λ(1− ν)HS − (1− h)βSHS − µHS (5)

dCi,j
U

dt
= {βF (IF + SF ) + βS [IS + (1− h)HS ] + ρSRS + ρFRF } di,jsi

−δjCi,j
U ± σCi⋆,j

U − εUC
i,j
U − (µ+ µi

U )C
i,j
U , for i = 1, 2, 3 and j = 1, 2 (6)

dCi,k
T

dt
= gi,k

∑
j=1,2

δjCi,j
U ± σCi⋆,k

T − εkTC
i,k
T − (µ+ µi,k

T )Ci,k
T , (7)

for i = 1, 2, 3 and k = 1, 2

dRF

dt
= (1− rU )εU

∑
i=1,2,3
j=1,2

Ci,j
U +

∑
k=1,2

(1− rkT )ε
k
T

∑
i=1,2,3

Ci,k
T

− ρFRF − µRF (8)

dRS

dt
= rUεU

∑
i=1,2,3
j=1,2

Ci,j
U +

∑
k=1,2

rkT εkT ∑
i=1,2,3

Ci,k
T


−ρSRS − (1− p)λ(1− ν)RS − µRS (9)

The term ‘±σ’ appears in eqs.(6) and (7). M-S write:1

1Footnote 1 in the full online version, pp.20–21.
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It should be noted in the equations for Ci,j
U and Ci,j

T that the smear rate σ is multiplied by the

number of individuals in the respective category i⋆, where i⋆ = 2 (smear-negative) for i = 1

(smear-positive) and vice versa, and i⋆ = ∅ for i = 3 (extra-pulmonary). The term including σ

is added for i = 1, subtracted for i = 2, and equal to 0 for i = 3. The result of this formulation

is that smear-negative patients convert to smear-positive at a rate of σ.

However, the ‘vice versa’ is a mistake. The correct equations for Ci,j
U (with analogs for Ci,j

T ) are:

dC1,j
U

dt
= · · ·+ σC2,j

U + · · · (10)

dC2,j
U

dt
= · · · − σC2,j

U + · · · (11)

dC3,j
U

dt
= · · ·+ 0Ci⋆,j

U + · · · (12)

Eq.(10) states that smear-negative individuals join the smear-positive population at rate σ. Eq.(11) states

that smear-negative individuals leave the smear negative population at rate σ. That way all individuals are

accounted for.

The instantaneous rate of infection, λ in eq.(1), is defined by Murray and Salomon [18], p.21, as:

λ = KL
Y

N
(13)

A.2 The HIV-Extended Model
A.2.1 Introduction

We will now formulate the extended dynamic model to include a differentiation between HIV-positive and

HIV-negative populations. M-S do this also, and state [18], p.4 that they use “two sub-models—one for the

HIV sero-negative population, and one for the HIV sero-positive population. Each sub-model follows the

structure” which is presented here as eqs.(1)–(9). They write that

Individuals move from each category in the HIV-negative sub-model to the corresponding cate-

gory in the HIV-positive sub-model at the HIV infection rate, which varies over time. Because

the effects of HIV on immune function are not marked with respect to tuberculosis until the

CD4 count has dropped below 500, we actually move individuals from the HIV-negative to the

HIV-positive sub-model after they have been infected with HIV for 3 years. The two sub-models

are also linked through the annual risk of infection, as HIV-negative tuberculosis cases can infect

HIV-positive individuals, and vice versa [18], pp.4–5

Our model does not delay transfer from the HIV-negative sub-model.
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A.2.2 Sub-Models

Each of the two sub-populations—HIV-negative and HIV-positive—is divided into the 19 groups represented

by the state variables in table 1. Each state variable has a differential equation in eqs.(1)–(9).

Let us denote the HIV-negative state variables as before, and the HIV-positive state variables with the

same letters but with an over-bar. For compactness we represent these two sets of variables with two vectors:

x =(U, IF , IS , SF ,HS , C
1,1
U , C2,1

U , C3,1
U , C1,2

U , C2,2
U , C3,2

U , C1,1
T , C2,1

T , C3,1
T , C1,2

T , C2,2
T , C3,2

T , RF , RS)

(14)

x =(U, IF , IS , SF ,HS , C
1,1

U , C
2,1

U , C
3,1

U , C
1,2

U , C
2,2

U , C
3,2

U , C
1,1

T , C
2,1

T , C
3,1

T , C
1,2

T , C
2,2

T , C
3,2

T , RF , RS)

(15)

The model parameters listed in tables 2 and 3 take different values for HIV-negative and HIV-positive

populations (as specified in the tables). Let us denote the model parameters as before for the HIV-negative

population, and use the same symbols with an over-bar for the HIV-positive population.

Eqs.(1)–(9) are 1st-order linear inhomogeneous differential equations. Only eq.(1) has an inhomogeneous

term: T births per year. Let F (t) and F (t) denote the matrices of coefficients (model parameters) in

the differential equations for HIV-negative and HIV-positive populations, respectively. Let e1 denote the

19-vector with a 1 in the first element and zeros elsewhere. We can now compactly denote eqs.(1) as:

dx

dt
= F (t)x+ e1T (16)

Let γ denote the HIV infection rate, per person per year. Following M-S, we will move individuals from

each HIV-negative category to the corresponding HIV-positive category at rate γ. Thus, instead of eq.(16),

we have the following coupled sets of equations:

dx

dt
= F (t)x+ e1T − γx (17)

dx

dt
= F (t)x+ e1T + γx (18)

The term ‘−γx’ in eq.(17) removes individuals from the HIV-negative population at the HIV infection rate,

and the term ‘+γx’ in eq.(18) introduces them into the HIV-positive population at the same rate.

M-S introduce further highly structured coupling between eqs.(17) and (18) through the TB infection

rate, [18], p.23, λ. We do not employ the M-S differentiation between the infection rates for HIV-negative

and HIV-positive populations. Instead we simply use λ and λ for the TB infection rates in the HIV-negative

and HIV-positive populations.
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B Uncertainty

Many uncertainties accompany the dynamic model of section A. We concentrate on uncertainty in the values

of some of the model parameters, as this is the dominant impact of HIV prevalence. We use info-gap theory

to model and manage these uncertainties [8]. Many different types of info-gap models of uncertainty are

available. We employ a model particularly suited to severe lack of information.

The dominant uncertain parameters are:

ρS , ρS , slow relapse rates.

ρF , ρF , fast relapse rates.

λ, λ, TB infection rates.

γ, HIV infection rate.

Let us denote uncertain variables generically as ui, compiled in a vector u. This vector is:

u = (ρS , ρF , λ, ρS , ρF , λ, γ) (19)

For each uncertain parameter, ui, we have an estimated value, denoted ũi, and an error term si typically

chosen as half of an interval estimate of the parameter. The error estimate may be derived from a statistical

confidence interval, or from a plausible extension of a confidence interval as discussed by Grassly et al [32],

or from other professional judgment. The basic idea of an info-gap uncertainty is that we don’t know how

wrong our estimate is; we have no reliable estimate of a worst case. In fact, since the typical values are

poorly known, worst-case estimates are even less reliable.

More precisely, the fractional error of the estimate, ũi, in units of the error, si, is unknown. That is, this

fractional error is bounded by a number, α, whose value is unknown:∣∣∣∣ui − ũi

si

∣∣∣∣ ≤ α, α ≥ 0 (20)

But this must be further refined to reflect the fact that the uncertain parameters are 1st-order removal-rate

constants,2∗ which means that they cannot be negative. Thus we adjoin these constraints to the inequality

as:

ui > 0,

∣∣∣∣ui − ũi

si

∣∣∣∣ ≤ α, α ≥ 0 (21)

Finally, we write our info-gap model of uncertainty as a family of nested sets of uncertain vectors:

U(α) =
{
u : ui > 0,

∣∣∣∣ui − ũi

si

∣∣∣∣ ≤ α, for all i

}
, α ≥ 0 (22)

2*This means that these parameters are the coefficients in equations such as ẋ(t) = −ux(t) whose solution is x(t) = x(0)e−ut.
In order for this to be a removal process, the coefficient u must be positive. It can exceed unity.
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α is called the ‘horizon of uncertainty’. When α = 0 there is no uncertainty and the set U(0) contains only

the estimated values, ũ. As α increases, the sets U(α) become more inclusive. These sets are unbounded

in the space on which the parameters are defined. The info-gap model embodies the information we have—

estimates and errors—without committing to any meaningful worst case (other than the limits which are

imposed by the definition of the variables).

In some situations one may not be able to estimate error weights, si. In such situations the fractional

error in eq.(20) can be replaced by a fractional error relative to the estimate, |(ui − ũi)/ũi|. The info-gap

model is then formulated as in eq.(22) with this new fractional error.

C Robustness: Formulation
C.1 Performance Requirements

We will consider an aggregated variable for monitoring the TB status of the population. Our goal is to keep

the value of this variable acceptably small. The variable we consider is the total number of cases, untreated

and treated, HIV-positive and HIV-negative, as a fraction of the initial population:

C(t) =
∑
i,j

[
Ci,j

U (t) + Ci,j
T (t) + C

i,j

U (t) + C
i,j

T (t)
]

(23)

There are other variables that one could consider. For instance, one could consider the total number of

relapses, fast and slow, HIV-positive and HIV-negative, as a fraction of the initial population:

R(t) = RF (t) +RS(t) +RF (t) +RS(t) (24)

One could also consider the instantaneous or the average rates of change of C(t) and R(t).

Returning to the aggregate prevalence, C(t), our goal is to keep it below a specified maximum acceptable

value at a specified target time tm. Thus the performance requirement is:

C(tm) ≤ Cm (25)

A relation such as eq.(25) is called a “satisficing” requirement, as opposed to an optimization requirement.

We do not aim to minimize the aggregate prevalence, C(tm). Our goal is to make the TB prevalence

adequately small: no greater than the critical value Cm, as stated in eq.(25). Note that the satisficing

requirement includes optimization as a special case. Satisficing and optimizing are the same when Cm is

chosen as the predicted minimal value.
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C.2 Control Variables

We aim to achieve this goal by judicious choice of control variables that we denote generically as qi, combined

in a vector q. Eligible control variables are any coefficients of the dynamic model that can be influenced by

public health or related medical intervention. When a control variable is also an info-gap uncertain variable

we will refer to the estimated value as the control variable. The uncertainty is then in whether the specified

value—the estimate—will be realized in practice. We will consider the following control variables:

δj , δ
j
, diagnosis rates (same for HIV negative and positive populations).

εkT , ε
k
T , cure rates for treateds (same for HIV negative and positive populations).

ρ̃F , ρ̃F , estimated fast relapse rates.

λ̃, λ̃, estimated TB infection rates.

γ̃, estimated HIV infection rate.

βF , βF , fast breakdown rates.

We define an intervention in terms of the values of these variables. None of these control variables

corresponds directly to any of the standard performance measures such as the incidence, prevalence, and

death rates associated with TB. For instance, the coefficients δj and δ
j
, while called “diagnosis rates”, are

in fact 1st-order kinetic rate coefficients and can meaningfully take any positive value. These coefficients

combine with several other coefficients to determine the fraction of new untreated cases that move into the

treated category, as seen from eqs.(6) and (7). In other words, the control variables combine to produce

aggregate effects such as the proportion of new cases that are diagnosed. One can “calibrate” a set of control

variables in terms of aggregate properties, for instance by keeping track of how many cases are created

(new members of CU (t)) and how many are treated (new members of CT (t)). Unless the population is at

steady state (and the intervention tries to prevent this), the calibration in terms of the proportion diagnosed

depends on the time after initiation of intervention and on the duration during which the accounting is done.

We do not calibrate our model since we focus on a different challenging problem: prioritizing alternative

interventions.

C.3 Definition of Robustness

An intervention is specified by specifying the values of the control variables, q. If our dynamic model were

accurate we could evaluate any proposed intervention in terms of the outcome of that intervention that is

predicted by the model. An intervention whose predicted outcome entails low TB prevalence is preferred

over an intervention with larger predicted prevalence.

28



The problem is that the dynamic model is highly uncertain. This means that it is unrealistic to prioritize

interventions in terms of their predicted outcomes. Since those predictions are highly uncertain, it is unwise

to evaluate interventions only in terms of their model-based predictions.

The model-based predictions are useful, but we also ask: how wrong could the model be, and the predicted

outcome is still acceptable? That is, for any specified intervention, q, we ask: what is the largest fractional

error in the uncertain parameters, up to which all realizations of the model would yield acceptable outcomes?

The answer to that question is the robustness function, which we will soon specify. We use the robustness

function to prioritize the interventions in terms of their robustness against uncertainty for achieving the

required outcomes.

The robustness function for the performance requirement in eq.(25) is:

α̂(q, Cm) = max

{
α :

(
max

u∈U(α)
C(tm, u)

)
≤ Cm

}
(26)

We can “read” this relation from left to right as follows. The robustness, α̂, of intervention q, with per-

formance requirement Cm, is the maximum horizon of uncertainty, α, up to which the maximum aggregate

prevalence, C(t), for all realizations of the uncertain coefficients u in the info-gap model U(α), does not

exceed the critical value, Cm. We are not ameliorating a worst case; the worst case is unknown because the

horizon of uncertainty, α, is unbounded. Instead, we are asking how large an uncertainty can be tolerated by

the intervention, q. In choosing the intervention to enhance the robustness, we attempt to protect against

the unbounded uncertainty of the impact of HIV/AIDS on the TB dynamics.
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