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C O N V E X  M O D E L S  O F  U N C E R T A I N T Y :  

A P P L I C A T I O N S  A N D  I M P L I C A T I O N S  

ABSTRACT. Modern engineering has included the basic sciences and their ac- 
companying mathematical theories among its primary tools. The theory of probability is 
one of the more recent entries into standard engineering practice in various technological 
disciplines. Probability and statistics serve useful functions in the solution of many engin- 
eering problems. However, not all technological manifestations of uncertainty are amen- 
able to probabilistic representation. In this paper we identify the conceptual limitations 
of probabilistic and related theories as they occur in a wide range of engineering tasks. 
We discuss the structure and properties of an alternative, non-probabilistic, method - 
convex modelling - for quantitatively representing uncertain phenomena. 

I .  INTRODUCTION 

Engineering sciences derive much of their inspiration and fundamental 
knowledge from the natural sciences. In particular, the engineers ac- 
quired the theory of probability fairly recently from the scientists (who 
got it from aristocratic 17th century gamblers!) We will illustrate the 
unsuitability of the theory of probability for some engineering appli- 
cations, and will discuss the structure and properties of convex models 
of uncertainty. 

Recent decades have witnessed a diversification of theories of uncer- 
tainty. These theories concentrate on quantification of uncertain infor- 
mation through the use of real-valued non-negative normalized mathe- 
matical functions. In place of the classical probability density one can 
today choose between functions of belief, possibility, necessity, pro- 
vability and so on. In contrast, convex modelling emphasizes the struc- 
ture of event sets, rather than the structure of measure functions defined 
on the space of events. 

We begin by discussing the practical limitations of probability for a 
range of engineering tasks involving uncertainty (Section 2). We then 
briefly examine several engineering problems whose formulation and 
solution involve non-probabilistic models of uncertainty (Section 3). In 
Section 4 we describe the details of several convex models and their 
selection on the basis of engineering information. Then, in Section 5, 
we discuss a limit theorem which motivates the use of convex models, 
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and compare this with the central limit theorem. Finally, in Section 6, 
we discuss a specific application of a convex model in some detail. 

2. P R A C T I C A L  L I M I T A T I O N S  OF P R O B A B I L I T Y  

Workers in various technological fields have noted that the practical 
limitation of probabilistic models for some purposes arises from the 
inability to verify the details of these models. 

Consider the comment by Sobczyk and Spencer in discussing stochas- 
tic models of fatigue failure in structures. Referring to turbulent wind 
fluctuations acting on transport aircraft or tall buildings, Sobczyk and 
Spencer enumerate numerous complicating factors and conclude that 
"the engineering analysis of fatigue reliability assumes some s t a n d a r d  1 

representations of the spectrum of a turbulent wind". Considering steel 
offshore platforms they assert that "the establishment of standard load 
spec t ra . . .  [is] much more difficult than for aircraft structures" ([38], 
p. 89). While the probabilistic models developed by Sobczyk and 
Spencer are empirically very useful, they are founded on more or less 
arbitrary stochastic assumptions. 

In a similar vein, Murota and Ikeda develop a theory for buckling 
of trusses with geometrical imperfections, and comment that they 

have employed random imperfect ions. . ,  although it is somewhat hypothetical at this 
stage, since the probability distribution cannot be known precisely in practice. The present 
analysis is not independent of the hypothetical distribution, and the quantitative aspects 
of the results will have limitations in applicability. However, the qualitative aspects of 
the conclusions will remain valid for a wide range of probability distributions [30]. 

Reliable engineering design would seem to depend on quantitative 
results, not only qualitative ones. 

Concerning chaotic dynamical systems, Ekeland writes: "Ran- 
domness appears because the available information, though accurate, 
is incomplete. Part of the information is withheld from us" ([23] pp. 
62-63). He comments that " . . .  most deterministic systems are impos- 
sible to predict because their dynamics are too complicated for any 
meaningful computation to be possible" ([23], p. 107). The verification 
of the stochastic representation of complex dynamical systems is no less 
difficult. 
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3. C O N V E X  M O D E L L I N G ~  T E C H N O L O G I C A L  E X A M P L E S  

Experiences such as these have led a number of engineering scientists 
to pursue non-probabilistic methods for representing uncertainty. In 
this section we discuss several technological situations which have given 
rise to the need for non-probabilistic representation of uncertainty. Our 
purpose is to delineate the context of problems within which the rest of 
the discussion emerges. We will discuss one particular non-probabilistic 
methodology: convex modelling. 

Let us briefly outline the range of applications of non-probabilistic 
treatments of uncertainty, before proceeding to several more detailed 
cases. Drenick [16], [17] and Shinozuka [37] describe uncertain seismic 
loads on civil structures by defining sets of possible input functions. 
Schweppe [34] and Witsenhausen [45], [46] describe estimation and 
control algorithms for linear dynamic systems based on sets of unknown 
inputs. Schweppe [35] develops inference and decision rules based on 
assuming the uncertain phenomenon can be quantified in such a way 
as to be bounded by an ellipsoid. Ben-Haim and Elias [11] use convex 
models to represent uncertain heat flux variations. Ben-Haim [5] de- 
velops a method for optimal design of material assay systems based on 
convex sets of uncertain spatial distributions of the analyte material. 
Ben-Haim and Elishakoff [13] describe a range of analysis and design 
problems in applied mechanics based on defining convex sets of uncer- 
tain input functions or uncertain geometrical imperfections. Natke and 
Soong [31] study the topological optimization of mechanical structures 
with convex-model representation of uncertain dynamic loads on the 
structure. Lindberg [28], [29] and Ben-Haim [8] use the convex model- 
ling method to study radial pulse buckling of thin-walled shells. Elishak- 
off and Cai [22] study the buckling of a column on a nonlinear elastic 
foundation, subject to uncertain initial imperfections which are repre- 
sented by a convex model. Elishakoff and Colombi [21] use convex 
models to analyze the vibration of an acoustically excited structure with 
uncertain physical parameters. Givoli and Elishakoff [25] employ a 
convex model to examine stress concentrations in nearly circular holes 
with uncertain irregularities. 

We now consider five examples of engineering analysis and design 
with uncertainty, based on convex models. A convex model is a convex 
set of functions. 2 Each function represents a possible realization of an 
uncertain event. In the examples that follow, these events are spatial 
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distributions of imperfections in a building, or temporal variation of 
the ground motion during an earthquake, and so on. 

Buckling of Thin-Walled Shells. Thin-walled shells such as cylinders 
and domes have very high load-bearing capacities compared to their 
weight. For example, a sheet of paper stood on end buckles under 
slight pressure, while if rolled into a cylinder and taped it can withstand 
an axial loading of considerable weight. (You can try it with several 
hefty books). However, small geometrical imperfections in the shape 
of the shell can drastically reduce the maximum load which the shell 
can carry. 

A typical engineering question which arises is: what radial tolerance 
in the shell-shape assures that the weakest shell will suffer a reduction 
in buckling-load 3 by no more than a specified amount? In a more 
sophisticated analysis one recognizes that the boundary conditions of 
the shell, together with the shell dynamics, can allow greater tolerance 
in some regions of the shell than others. Consequently, one can ask: 
what variation of the shell-shape tolerance over the surface of the shell 
is allowed? 

The first problem one confronts in addressing these questions is: how 
to model the range of possible shell shapes coming off a production 
line? Some information is available from actual measurements of shell 
shapes, though it is scanty and very expensive (see, for example, [1], 
[27]). However, one can readily formulate an infinite set of functions 
which represents the uncertainty of the shapes: each function represents 
a particular shell shape, while the set expresses the uncertainty in which 
shape will actually occur. This is precisely a convex model for shell- 
shape uncertainty. Furthermore, one can do so in such a way that the 
set depends parametrically on the radial tolerance of the shell. Then it 
is possible to evaluate the buckling load of the weakest shell as a 
function of the radial tolerance [12], [13], [20]i-In this way, the convex 
model incorporates uncertainty in the shell shape into the design and 
manufacturing procedure, without relying on probabilistic information. 

Vehicle Vibrations on Rough Terrain. A vehicle traversing rough 
terrain can induce discomfort or even functional incapacity in the pas- 
sengers as well as damage to on-board equipment. The design of the 
suspension system must be optimized to reduce these effects. The opti- 
mization must be performed with respect to a model of the uncertain 
terrain. Statistical models have been employed for representing the 
variation of uncertain terrain [32]. However, verification of these mod- 
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els is time consuming and expensive. Alternatively, global features of 
the surface which are comparatively easily measured, such as maximum 
roughness or slope variation or other features, can be used to define 
sets of possible substrates. These sets are convex models of the substrate 
uncertainty. The design decisions are then made so as to assure that 
the worst ride (e.g. maximum instantaneous acceleration) induced by 
any allowed substrate is acceptable [13], [14]. 

Seismic Safety. A major challenge in civil engineering design for 
seismically active regions is the prevention of life-threatening structural 
damage resulting from earthquakes. Also important is the amelioration 
of seismically-induced damage to equipment and secondary systems 
(power systems, communications equipment, etc.). The design of seis- 
mically safe structures is complicated by the wide temporal and spatial 
variability of ground motion during an earthquake and its complex 
interaction with structures. 

Probabilistic models have been used in recent decades to represent 
the uncertainty of vibrating structures [19], [39] and seismic ground 
motion [40], [47]. The concern about these models arises from the fact 
that a stochastic model represents typical events much more reliably 
than rare events, especially when the model is based on limited infor- 
mation. In discussing fatigue failure of offshore structures, Hartt and 
Lin comment that it is the "extreme, infrequent stress excursions which 
may be important either with regard to direct damage or to subsequent 
interaction effects" ([26], p. 91). Rare events in probabilistic models 
are described by the tails of the distribution, while probability distribu- 
tions are usually specified in terms of mean and mean-variation par- 
ameters. This makes probabilistic models risky design tools, since it is 
rare events, the catastrophic ones, which must underlie the reliable 
design. 

Global features of seismic events, such as total or instantaneous 
energy, can be used to define sets of seismic events which include 
extreme cases more explicitly than probabilistic models. It is fairly 
straightforward to formulate a convex model as the set of all seismic 
events consistent with available fragmentary data constraining the seis- 
mic occurrence. One can then optimize the design with respect to this 
set of conceivable events. In this way information about earthquake- 
uncertainty is incorporated in the structural design-decisions without 
postulating stochastic properties of seismic phenomena [16], [17], [37]. 

Assay of Pulmonary Aerosols. A challenging and important health- 
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monitoring measurement in the nuclear industry is the in vivo assay of 
plutonium aerosols in human lungs. The assay is performed by passively 
detecting the L X-rays of plutonium; the quantity of plutonium is 
proportional to the intensity of the detected radiation. A major source 
of uncertainty is the spatial distribution of the plutonium in the pulmon- 
ary tissue. The measurement is very sensitive to this spatial distribution 
because the distance over which the radiation-intensity is reduced by 
half is on the order of 1 cm: much less than the dimensions of the lung 
and thoracic cavity. In other words, different spatial distributions of 
the same quantity of analyte can result is measured radiation-intensities 
which differ by orders of magnitude. 

Numerous factors, ontogenetic, physiological and environmental, de- 
termine the spatial distribution of the analyte. The task of verifying a 
meaningful probabilistic model of the spatial distribution is enormous. 
Nevertheless, the assay system must be constructed to assure detection 
and quantitative measurement of minute quantities of this pernicious 
poison. This can be achieved by quantifying the spatial uncertainty with 
a convex model: a set of allowed spatial distributions of the analyte 
[5]. Furthermore, adaptive assay algorithms can also be implemented 
which augment the reliability of the measurement [43]. 

Design of a Reliable Pressure Vessel. A standard task in structural 
engineering design is to choose the wall thickness of a pressure vessel 
subject to uncertain internal fluid pressure. If the probability density 
function (pdf) of the pressure fluctuations is known, then it is a matter 
of fairly straightforward analysis to determine the least wall thickness 
needed to assure that the probability of failure by yielding is less 
than a specified amount. 4 However, if high reliability is required (low 
probability for failure), then even very small errors in the tails of the 
probability density can result in large errors in the chosen wall thickness 
([10]; [13], pp. 11-13). A hybrid probabilistic-non-probabilistic ap- 
proach is possible here. One defines the set of all pdfs which are 
consistent with available information. This set is a convex model for 
the uncertainty in the pdf. The wall thickness is then chosen with 
respect to this non-probabilistic specification of the uncertainty in the 
pdf of the pressure. 
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4. S O M E  C O N V E X  M O D E L S  

In this section we define a range of convex models of uncertainty, and 
discuss typical engineering considerations underlying the selection of a 
model. 

Energy-Bound Models. Consider a warped beam which deviates by 
y(x) from its nominal shape at position x along the length of the beam. 
Energy is required to straighten out such a beam. Specifying the amount 
of energy required still leaves some uncertainty as to the original shape 
of the beam. One type of energy-bound convex model of the shape- 
uncertainty is defined as the set of all beam-profiles requiring no more 
than ~ of elastic energy to straighten them out [9]. This set of profiles 
is: 

2 d0 (Y(X))2 dx ~< 

where L and E1 are the length and flexural rigidity of the beam, 
respectively, and dots imply differentiation with respect to position. (It 
is implicitly assumed that the elements of Y(~) satisfy the boundary 
conditions inherent in the mechanical system.) 

Energy-bounds can be related to uncertainty in many situations. In 
Section 3 we mentioned energy-bound models representing uncertainty 
of seismic input waveforms, in terms of bounds on the total or instan- 
taneous ground-motion energy. Not infrequently the 'energy' is loosely 
defined and, in analogy to the energy of an electric current, the convex 
model is defined as a bound on a quadratic function. For example, if 
u(t) is a scalar function representing the uncertain ground motion as a 
function of time, a common energy-bound uncertainty model is: 

(2) U(~)=fu(t):f~u2(t)dt<~ }. 
An enormously popular 'energy-bound' uncertainty model is the el- 

lipsoidal bound model, studied extensively by Schweppe [35]. If v is 
the uncertain vector, then an ellipsoidal model for the uncertainty in v 
is the set of vectors contained within an ellipsoid: 

(3) V(~) = {v: vrWv <~ ~} 

where W is a real symmetric positive definite matrix. For example, an 
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ellipsoidal model of uncertainty can be used to represent uncertain 
geometrical imperfections in the shape of a shell [20]. 

Envelope-Bound Models. The need to represent geometric uncer- 
tainties, as well as other applications, gives rise to envelope-bound 
convex models. Forces acting on an unknown domain of a structure 
[6], or obstacles of unknown size and position in air ducts [7], or 
local imperfections in shells [8] are all amenable to representation by 
envelope-bound models. Let g(x) be the uncertain function of a spatial 
variable x. An envelope-bound model is: 

(4) E(gl, g2) = {g(x): gl(x) ~ g(x) <~ gz(x)} 

where gl(x) and gz(x) define the bounding envelope. To take a specific 
example, consider a beam of length L, so 0 ~< x ~< L. Suppose the beam 
is warped in the interval [a, b] but otherwise straight, and let g(x) 
represent the imperfection profile of the beam. By choosing the envel- 
ope functions gl and g2 as follows, E(gl, g2) can represent uncertain 
local damage of magnitude not exceeding 6: 

0 x ~ [a, b] 
(S) gn(x)= ( -1)  n3 x ~ [ a , b ]  n = 1 , 2 .  

Slope-Bound Models. The envelope-bound concept can be applied 
to the slope rather than to the magnitude of a spatially uncertain 
quantity. Such convex models have been used in analysis of vehicle 
dynamics on barriers and uncertain rolling terrain [14]. Similarly, in 
modelling uncertain heating processes [11] the uncertain function may 
be constrained to increase monotonically between given limits, but to 
be otherwise of unknown variation. 

For example, let r(t) be the heat flux out of a nuclear reactor fuel 
element which, during a transient, increases monotonically between rl 
and r2 over the time interval [0, T]. A slope-bound convex model for 
the uncertainty in r(t) during the transient is: 

( d r }  
(6) R(s) = r(t): r(O) = rl, r ( r )  = r 2 , ~  ~ 0 . 

Fourier-Bound Models. In many situations the engineer has partial 
spectral information for characterizing an uncertain phenomenon. For 
example, geometric shape-imperfections of thin walled shells, men- 
tioned in Section 3, have been measured spectrally [1], [27]. Data such 
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as these lead to ellipsoidal-bound models for the uncertainty in the 
spectral coefficients. Let c represent a vector of Fourier coefficients of 
the shape of the geometric imperfection. A Fourier ellipsoidal-bound 
convex model of uncertainty is [8], [28], [29]: 

(7) C(p) = (c: (c - ()TW(c -- g) ~ p2} 

where ~ is a nominal Fourier-coefficient vector and W is a matrix 
determining the shape of the ellipsoid. 

Spectral envelope-bound models are also used. If u(w) is an uncertain 
Fourier transform, then a Fourier envelope-bound model is [10]: 

(8) U(/,~I,/,/2) : {u((.o): Ul((.o ) ~ lu(o.))l </x2(o))} 

where lu(w)[ is the absolute value of the complex function u(w), and 
uf(w) and Uz(W) are real envelope functions. 

Mass Distribution Models. In the assay of material it sometimes 
occurs that very little is known about the possible spatial distributions 
which the material can assume. Such problems arise in nuclear radiolog- 
ical measurements [43] as mentioned in Section 3, in nuclear waste 
assay [5], [15], [36], in subterranean geological prospecting [44] and 
elsewhere. The simplest convex model  for representing unknown spatial 
distributions of material is the distribution-function model. Let m(x) 
be the density of analyte material at position x, distributed over domain 
X. The set of allowed distributions of total mass p.0 is: 

(9) Mo(t~o)= {m(x):m(x)>~O, fxm(X)d = 
In some situations, the information which constrains the allowed 

spatial distributions of analyte material is the nth (usually 1st or 2nd) 
moments of the spatial distribution. In this case, a convex model for 
uncertainty in m(x) is: 

(10) Mn(txn)={m(x):m(x)>~O, fxx°m(x) = 
5. CONVEX MODELS: A MOTIVATION 

The convex models of uncertainty surveyed in the previous section are 
all convex sets of functions. From the engineering point of view, each 
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of these sets is defined as the collection of all elements consistent with 
a given quantity of information (an energy bound, a spectral envelope, 
and so on). The convexity of these sets arises 'naturally', as a by- 
product. 

It is clear that set-models of uncertainty are not by necessity convex; 
important situations arise in which the sets involved are not convex. 
However, the following elementary theorem [13] provides some indi- 
cation of why convexity is not just accidental in the modelling of uncer- 
tainty. 

Let f(t) be a time (or space) varying uncertain vector function, and 
let F be a set of such functions. For a positive integer n, consider the 
set of functions constructed as n-fold averages of elements of F: 

(11) Fn = {f:  f ( t ) =  nm=ll ~ gin(t), for all gmE F}. 

It is well known that, as n---~ o~ the sequence of sets Fn, n --- 1, 2 . . . .  
converges to the convex hull 5 of F: 

(12) lim Fn = ch(F). 
n....~oo 

(For more general results see [2], [3], [4]). 
This theorem suggests the following physical interpretation. If an 

uncertain, macroscopic process, represented by f(t), is formed as the 
linear superposition of numerous microscopic processes gin(t), each 
drawn from the set F, then the set of all processes f(t) will tend to be 
convex, regardless of the structure of the set F. In other words, we 
might expect that complex vector processes will tend to cluster in 
convex sets of functions. 

This result bears a suggestive similarity to the central limit theorem, 
even though the contents and proofs of these two theorems differ 
utterly. Let gl, g2 . . . .  be independent, identically distributed random 
variables. Technicalities aside, the central limit theorem states that, as 
n ~ % the distribution of the sum 

1 " 
f = "~n m~= l g m 

converges to a normal distribution, regardless of how the g,n's are 
distributed. The physical implication is that if a macroscopic random 
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quantity f is composed of a multitude of superimposed independent 
random microscopic quantities gin, then f should tend to display a 
normal distribution. 

The central limit theorem and Equation (12) both relate fairly arbi- 
trary microscopic uncertainties to rather more specific macroscopic un- 
certainty models. Despite this similarity, however, the points of empha- 
sis of these two results are completely disparate. The central limit 
theorem directs attention to the structure of the probabili ty measure,  
while Equation (12) focusses on the structure of the event  set. 

Historically speaking, the proof of the central limit theorem, pre- 
sented in 1810 by Laplace, was a great advance in understanding the 
fundamental mathematical nature of probability densities [41]. In ad- 
dition, the theorem provided a justification of the least-squares esti- 
mation method developed five years before by Legendre and, indepen- 
dently, by Gauss. Moreover, the central limit theorem directed the 
attention of researchers to probability densities and their derivations. 
This led, in the course of the 19th century, to the discovery of other 
statistical distributions. 

In recent decades attention has been placed on extending the concept 
of probability density. In the place of classical probability functions one 
has membership functions and measures of possibility and necessity in 
fuzzy logic [18], belief functions in the Dempster-Shafer theory [33], 
and so on. The logical diversity of these theories is real and substantial, 
as evidenced by the distinct axiomatic bases on which they rest [24]. 
However, the intellectual connection to traditional uncertainty models 
is clear: modern as well as classical thought concentrates on the proper- 
ties and structure of normalized non-negative functions defined on sets 
of events. 

In contrast, set-theoretical models of uncertainty, such as convex 
models, concentrate on the geometric structure of event-clusters. What 
has attracted the attention of workers in various technological areas is 
the fact that fragmentary information about uncertain events often 
leads to the definition of a convex set of events. This provides both a 
standardized framework for analysis, as well as a guide to the formula- 
tion of plausible uncertainty models based upon severe lack of prior 
information. 
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6. D E T A I L E D  E X A M P L E :  R E L I A B I L I T Y  O F  A X I A L L Y - L O A D E D  

S H E L L S  W I T H  I N I T I A L  G E O M E T R I C A L  I M P E R F E C T I O N S  

In this section we will use a convex model to perform a reliability- 
analysis with respect to structural uncertainty. We consider an axially- 
compressed thin-walled shell with initial geometrical imperfections. 

The shell length is L. The axial coordinate, along the length of the 
shell, is z, which we normalize as ~ = vrz/L ~ [0, 7r]. The azimuthal 
coordinate is 0 E [0, 27r]. The deviation of an actual shell from the 
nominal shell dimension at point (~, 0) is ~/(~, 0). We represent the 
set of allowed imperfection-functions by the uniform-bound convex 
model: 

(13) F(r~) = {r/(~, 0): Ir/(s e, 0)] ~< r~}. 

The deviations from the nominal shell shape are uniformly bounded 
by q: every imperfection-function, r/(~, 0), whose magnitude nowhere 
exceeds q, is included in F. One can view q as a radial tolerance of the 
shells whose imperfections are represented by F. 

A typical question which arises in design-for-reliability is: how large 
a radial tolerance is acceptable, when the shell will bear static axial 
loads up to the value Amax? 

Implicit in this question is a statement about the uncertainty in the 
actual shell shapes. If in fact the designer knows nothing about the 
geometrical imperfections other than the value of the radial tolerance 
to which the shells will be produced, then F is probably the most 
detailed representation of the range of possible shell shapes which can 
be justified by the available data. If additional information is available, 
such as spectral data about the spatial frequencies of the imperfections, 
then other convex models would be appropriate. Various more detailed 
convex models for this purpose are discussed in [8], [12], [13], [28], 
[291. 

We will proceed with the simple uniform-bound convex model. The 
design question can be formulated as follows. The design-parameter is 
q, the radial tolerance. For any shell, the lowest applied load which 
causes the shell to fail by buckling is the 'buckling load'. Denote by 
/~(q) the least buckling load of any shell in F(q).  Then determine the 
greatest value of the radial tolerance, q, for which the least buckling 
load,/~(q), exceeds the maximum applied load, A . . . .  

The mechanical analysis of geometrically imperfect shells is most 
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conveniently done when the imperfections are expressed in terms of 
their Fourier coefficients. Let x07) be a vector of the dominant spatial 
Fourier coefficients of ~/(~, 0). Let x ° be the vector of Fourier coef- 
ficients of the nominal shell shape. Let ~(x  °) be the buckling load of 
this nominal shell, and qZ(x° + x) be the buckling load of a shell with 
initial imperfections whose Fourier coefficients are x. For small imper- 
fections we can expand ~(x  ° + x) as: 

(14) ~[x ° + x(r/)] = * (x  °) + xT(r/) ~-x/=x °" 

Some manipulations lead to the following expression for the reduced 
buckling load due to the imperfection function r/(~:, 0): 

(15) ~[x  ° + x(r/)] = ~(x  °) + ~7(~:, O)S(,~, O) dt~ dO 
JO dO 

where S(~, O) is a combination of trigonometric functions with coef- 
ficients which depend on the elements of the vector O~(x = x°)/Ox. See 
[12], [13]. 

Examination of Equation (15) shows that the greatest reduction in 
the buckling load is obtained from the imperfection-function which 
switches between its extreme values, +4  and - 4 ,  as S((, 0) changes 
sign from negative to positive. The minimum buckling, load for shells 
whose radial tolerance is 4, is: 

(16) /z(~) -- min ~[x ° + x(r/)] 

(17) = ~(x °) - ~ [S(~, 0)[ d~ dO. 
J 0  .)0 

This relation expresses the buckling load of the weakest shell from 
among the ensemble of shells whose radial tolerance is 4. Additionally, 
it is based on mechanical data expressing the imperfection-sensitivity 
of the buckling load, which appears in the function S(~:, 0). Equation 
(17) is derived for small imperfections, and is therefore linear in the 
parameter ~. 

Equation (17) underlies the convex-modelling assessment of the reli- 
ability of the uncertain shell. The shell uncertainty is expressed by 
and the range of performance - embodied in the least buckling load - 
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is given by /z(~). One chooses the radial tolerance to assure that the 
maximum axial load does not exceed the least buckling load: 

(18) amax < ].£(~). 

Uncertainty plays a central role in this analysis: F represents a set of 
shells, any one of which could occur. Any given physical shell with 
tolerance not exceeding ~ is represented by one of the imperfection 
functions in F; which one, one does not know. The shell is 'reliable' in 
the sense of our non-probabilistic model of uncertainty when (18) is 
satisfied. 

While uncertainty in the shell shapes is fundamental to this analysis, 
there is no likelihood information, either in the formulation of the 
convex model or in the concept of reliability. It might be useful, for 
example, to summarize the reliability of a given radial tolerance by a 
quantity such as: 6 

/~rnax (19) r = 1 /*(~) 

When r is close to unity, the maximum applied load (hmax) is far less 
than the least load-bearing capacity (>(r~)); the system is 'reliable' in 
the non-probabilistic sense. As r approaches zero, the maximum applied 
load approaches the least buckling load, and failure becomes more 
imminent. However, unlike in a probabilistic analysis, r has no conno- 
tation of likelihood. We have no rigorous basis for evaluating how 
likely failure may be; we simply lack the information, and to make a 
judgement would be deceptive and could be dangerous. There may 
definitely be a likelihood of failure associated with any given radial 
tolerance. However, the available information does not allow one to 
assess this likelihood with any reasonable accuracy. 

7. CONCLUSION 

The quantitative representation of complex uncertain phenomena en- 
gages the attention of workers in many technological fields. Severe lack 
of information makes the verification of probabilistic models difficult 
or impractical in some situations. This has led to the development of 
quantitative uncertainty models in which the prior information about 
the uncertainty is invested in formulating the structure of event sets. 
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This emphasis on the structure of event sets is in contrast to traditional 
probability theory as well as the developments of recent decades in 
uncertainty modelling, like fuzzy logic or Dempster-Shafer theory, 
which emphasize a normalized real function defined on the space of 
events. 

It has been found that, with the type of information often available, 
these set-models of uncertainty often lead to convex sets. In this way, 
many technological problems are formulated, analyzed and solved with 
full cognition of the uncertainties involved but without invoking proba- 
bilistic thinking. Instead, set-theoretical convex models represent uncer- 
tainty in terms of indeterminacy. (Suppes and Zanotti discuss a related 
motivation for indeterminacy [42].) 

In formulating a convex model for design-for-reliability, the engineer 
starts with the realization that the conditions under which his artefact 
will operate are incompletely characterized. He then asks for the set 
of all conditions consistent with what is known, and then chooses his 
design so that acceptable performance is anticipated within this set of 
"possible worlds". His main task in formulating the uncertainty model 
is to choose a set-structure which adequately reflects the constraints 
defining the uncertainties. 
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N O T E S  

1 Italics occur in the original. 
2 A set S is convex if, for all elements f and g in S and all numbers 0 < ~ < 1, the 
quantity cef+ (1 - a)g also belongs to S. 
3 The buckling load is the least load at which the shell fails by buckling. 
4 Things can get complicated if one insists on including such inconveniences as chemical 
corrosion, stress corrosion cracking, material imperfections, or other unpredictable em- 
barrassments. 
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5 The convex hull of a set S is the intersection of all convex sets containing S. Conse- 
quently, ch(S) is a convex set. Roughly speaking, eh(S) is the "smallest" convex set 
containing S. 
6 I am indebted to Prof. C. Cempel, Technical University of Poznan, Poland, for this 
suggestion. 
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