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Abstract. In conservation biology it is necessary to make management decisions for 
endangered and threatened species under severe uncertainty. Failure to acknowledge and 
treat uncertainty can lead to poor decisions. To illustrate the importance of considering 
uncertainty, we reanalyze a decision problem for the Sumatran rhino, Dicerorhinus su- 
matrensis, using information-gap theory to propagate uncertainties and to rank management 
options. Rather than requiring information about the extent of parameter uncertainty at the 
outset, information-gap theory addresses the question of how much uncertainty can be 
tolerated before our decision would change. It assesses the robustness of decisions in the 
face of severe uncertainty. We show that different management decisions may result when 
uncertainty in utilities and probabilities are considered in decision-making problems. We 
highlight the importance of a full assessment of uncertainty in conservation management 
decisions to avoid, as much as possible, undesirable outcomes. 

Key words: conservation management; decision theory; Dicerorhinus sumatrensis; information 
gap; robustness of decisions; Sumatran rhino; uncertainty. 

INTRODUCTION 

Conservation biologists make management decisions 
for endangered and threatened species under severe un- 
certainty. Although frameworks for formal decision- 
making (Jeffrey 1983, 1992, Resnik 1987, Simon 1959) 
have been applied in conservation contexts (e.g., Ma- 
guire 1986, Maguire and Boiney 1994, Ralls and Star- 
field 1995, Possingham 1996, 1997), the full suite of 
uncertainty is rarely considered (Regan et al. 2002). 
Failure to acknowledge and treat the sources of un- 
certainty can lead to poor management decisions. 

Decision tables and trees are simple frameworks for 
formal decision-making that involve identifying three 
main components: acts, states, and outcomes (Resnik 
1987). The acts refer to the decision alternatives, the 
states refer to the relevant possible states of the system, 
and the outcomes refer to what will occur if an act is 
implemented in a given state (usually represented in 
terms of a utility, or value). This framework applies to 
static problems, where it is assumed that the state of 
the system does not change substantially through time. 

For decision-making under uncertainty, the usual 
procedure is to assign probabilities to each of the rel- 
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evant states and utilities to each of the outcomes. The 
approach usually taken is to maximize expected utility. 

Probabilities can be interpreted in different ways. 
Probabilities assigned to the states may represent the 
chance that the system is in that state. Although the 
state in which a system exists is uncertain, the prob- 
ability that the system is in that state is assumed to be 
known with certainty. Alternatively, probabilities may 
be estimates of the degree to which each factor con- 
tributes to an effect. 

It is extremely difficult, if not impossible, to assign 
state probabilities and utilities with any degree of cer- 
tainty in conservation applications. A management de- 
cision that assumes that probabilities and utilities are 
exact, when in fact they are uncertain, can result in 
management outcomes with unexpected or undesirable 
results. For example, Maguire et al. (1987) used a de- 
cision tree to choose between management actions to 
conserve the Sumatran rhino, Dicerorhinus sumatren- 
sis. Captive breeding gave the maximum expected util- 
ity. When implemented, it failed to increase population 
numbers. The capture of wild animals was substantially 
detrimental to at least some populations (Rabinowitz 
1995). This management action may have failed be- 
cause (1) not all the relevant states of the system were 
specified; (2) the relevant states were not mutually ex- 
clusive; (3) the states were not static; (4) the proba- 
bilities and utilities were incorrect; and/or (5) the prob- 
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abilities and utilities were correct, but the system 
turned out to be in a state with a relatively low utility. 
To rule out (4), a treatment of uncertainty in the input 
parameters (probabilities and utilities) is necessary. 

The purpose of this paper is to demonstrate the in- 

sights that arise when uncertainty in utilities and prob- 
abilities are considered explicitly in decision-making 
problems using information-gap theory. To illustrate 
the importance of considering uncertainty, we reana- 

lyze the decision problem explored by Maguire et al. 
(1987), using the theory to propagate uncertainties and 
to rank management options. Rather than requiring in- 
formation about the extent of parameter uncertainty at 
the outset, information-gap theory addresses the ques- 
tion of how much uncertainty is permissible in the sys- 
tem before our decision would change. It assesses the 
robustness of decisions in the face of severe uncer- 

tainty. 

GENERAL INFORMATION-GAP METHODOLOGY 

Information-gap theory was invented by Ben-Haim 
(2001) to assist decision-making when there are severe 

knowledge gaps and when probabilistic models of un- 

certainty are unreliable, inappropriate, or unavailable. 

Information-gap (henceforth referred to as info-gap) 
methodology requires three main elements: a mathe- 
matical process model, a performance requirement, and 
a model for uncertainty. 

A process model is a mathematical representation of 
a system or concept. It summarizes what the analyst 
believes to be true and important about the system. 
Process models may describe population dynamics, 
economic utility, groundwater plumes, stream flows, or 
the transport and fate of toxic substances. For instance, 
a process model here could be the expected utility 

EV[aj] 
= 

piviv 
i=1 

(1) 

where EV refers to the expected utility of the jth act, 
a, to am represent the m acts under consideration, p, to 

p, represent the probabilities of the n possible states 
of the system, and vii represent the utilities associated 
with the outcome of the state-act pairs. Eq. 1 is the 
model that we assume best describes the decision-mak- 

ing process. 
The performance requirement of a decision is as- 

sessed by the measure of performance. A measure of 

performance may be the chance of population decline, 
the concentration of a contaminant, the density of algal 
cells in a freshwater stream, or the size of a managed 
fish population. The performance measure is usually a 
value (or values) computed using the process model. 
The objective may be to reduce the measure, as in the 
case of extinction risk, or to increase it, as in the case 
of population size in fisheries management. Perfor- 
mance measures may include multiple attributes. For 
instance, we may want to reduce the exposure of hu- 

mans to a contaminant in a stream and increase the 

expected population sizes of game fish caught from the 
stream. Here, the performance measure is 

EV - EVc. (2) 

That is, we require the expected utility (from Eq. 1) to 
be no less than a critical threshold EVc. 

The model for uncertainty describes what is un- 
known about the parameters in the process model. An 

info-gap model is an unbounded family of nested sets 
of possibilities. In the case of the process models under 
consideration here, the corresponding info-gap models 
are denoted as the sets 

Up(ao, pf) and U,(ao,9), where the 

subscripts p and v refer to the info-gap models for 

probability and utility, respectively, a. is the uncertainty 
parameter, and pf and -Y are vectors of the best estimates 

pi, i = 1 
.... 

n and fi7, i = 1 . 
. , n; j = 1 ..., m. 

We identify Pi as the nominal model of the probability 
that the system is in state i. Likewise, we can identify 

ij 
as the nominal model of the utility of the outcome 

associated with act j if the system is in state i, and vi 
as the actual utility (however, see the Discussion for 
issues with the notion of actual utilities). In general, 
elements of the set U,(a, f) can be scalar, functions, 
or vectors (as in the current example). 

For the sake of simplicity, we will assume that un- 

certainty in the probabilities and utilities may be rep- 
resented by intervals of unknown size around each (al- 
ternative models of uncertainty are available; see Ben- 
Haim [2001] for details). An interval model of uncer- 

tainty is expressed as a set of values v,j (for utilities) 
or p, (for probabilities) whose fractional deviation from 
the respective nominal values vii and p, is no greater 
than at. Note however that the value of a, the horizon 
of uncertainty, is not known. The information-gap mod- 
el for utility uncertainty, then, is the family of nested 
intervals: 

IviJ 
-g 

OI Vii 

This implies that, at the horizon of uncertainty a, the 

vii is in the interval 

(1 - a)Fi &lt; 
vi 

&lt; (1 + a) j. 
In this model of uncertainty, vii varies from its nominal 
value, iij, by no more than a fraction oa. The horizon 
of uncertainty, a, is unknown and unbounded. 

For any given value of a., U(ao, ) is a set of possible 
values or models of the actual v. As a increases, the 
set U(a, 9f) becomes more inclusive. This imbues at 
with the notion of an "horizon of uncertainty." Hence 

info-gap models are summarized as a family of nested 
sets, U(a, O), a > 0, rather than a single set, of possible 
values of the uncertain entity (Ben-Haim 2001). When 
a = 0, then f is the only possible value in the absence 
of uncertainty and U(0, F) = { I}. It follows that if there 
is no uncertainty, the nominal model is the actual mod- 
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el. These cases are rare, and many woul 
they are nonexistent (e.g., Box 1976). 

The model for uncertainty in the proba 
similar. There are additional constraints 
must be positive and normalized to sum to 
the p values, we may express them as fra 
nominal value in a manner similar to th 
the utilities: 

i - il 
Pi 

which implies that, at the horizon of unce] 
ith probability is in the interval 

(1 - a) < p< o(1 + O)p. 

Uncertainties for both utilities and probabi 
fined to have identical relative uncertaint 
the p values nonnegative and their sum no] 
define the info-gap model for probabilitie 

Up(ao, 5) 

= p: 1 
n 

I Pi; 
i=l 

max[0, (1 - a-)Pi] 
< 

Pi 
- min[l, (1 

i = 1 .... n o> O0. 

Similarly, the info-gap model for uncerta 
defined as 

U, (c, v) 

= {v: max[0, (1 - a)v] < vij < min[1, 4 

i= 1, .... n,j= 1 .... m} 

Here the constraint of a normalized sum 
essary. As we will discuss, we restrict 
utilities between 0 and 1 in this example 1 
are defined as probabilities of persistence, 
theory they can take any value. 

There are many forms of info-gap mode 
ed to a different type of prior informatic 
certainty (Ben-Haim 2001). For instance, 
model used in this paper can be modified 
prior information about correlations betv 
certain parameters, or to reflect asymmet 
of variation. Different info-gap model st 
represent uncertain, transiently varying f 
uncertain functions that vary monotonica 
unknown slope, and so on. 

In all cases, the info-gap model helps t 
maker to address the basic question of robi 
wrong can the models and data be, without 
the quality of the outcome? A policy th 
immune to errors in the models and data 
over a policy that is vulnerable to error. 

Id argue that Although this phrasing of uncertainty looks similar 
to standard sensitivity analysis, there are critical dif- 

tbilities, p, is ferences. Most important among them is that the ho- 
that the p's rizon of uncertainty, oa, is unknown and unbounded. In 

) 1. To bound the types of sensitivity analyses that are usually per- 
tctions of the formed in ecological and conservation applications, pa- 
e bounds on rameters are perturbed and the corresponding change 

in model outputs is noted. These types of sensitivity 
analyses amount to a stability analysis, i.e., they tell 
us how stable the model results are around the input 
parameter values, and are uninformative about the ex- 
tent of uncertainty in the results or the input parameters. 

rtainty a, the Furthermore, they are only valid for the range of pa- 
rameter values that the perturbation encompasses. Oth- 
er methods address these problems by assigning inter- 
vals to values to incorporate the full suite of possible 

ilities are de- values that these parameters might take (Walley 1991, 
ties. To keep Moore 1966), but they too require knowledge of bounds 
rmalized, we on parameters, within which the true value must lie. 
,s as Info-gap modeling approaches the issue of uncertainty 

from the opposite direction. The power and novelty of 
the info-gap approach is in the ability to explore the 
sensitivity of the decision to a wide range of different 
types of parameter, functional, and structural errors and 
uncertainties simultaneously, given that we do not 

+ a)p ] know the extent of uncertainty in the system at the 
outset. We illustrate this approach in the current paper 
with a specific conservation decision problem. 

(3) With a process model, a performance requirement, 
and an info-gap model, information-gap theory now 

in utilities is allows us to evaluate robustness (immunity from error, 
avoiding unacceptably bad outcomes) and opportunity 
(chances of windfall, gains that exceed our expecta- 
tions). The decision-maker can trade robustness for 

(1 + oa)vi], performance. Thus, it recognizes implicitly that un- 
certainty can be pernicious or propitious (Ben-Haim 

(x ' 0. (4) 2001), although in this application, we explore only 
i is not nec- the former. 
ourselves to Info-gap theory takes the position that the best strat- 
because they egy is the one that satisfies us with an outcome that is 

although in both "good enough" and that makes us as immune as 
possible from an unacceptable outcome. That is, we 
choose a strategy that maximizes the reliability of an 

ls, each suit- 
adequate outcome. Let EVc be a critical value of the 

n about un- expected utility below which we regard performance 
the info-gap as unacceptable. We would like the value of the ex- 
to represent pected utility to be as large as possible, but it must be 

veen the un- no less than EVc. EVc thus represents a minimum as- 
tric intervals piration, and for greater generality, there is no need to 
:ructures can choose it a priori; we will return to it. 
functions, or The process model, performance requirement, and 
lly, but with uncertainty model provide a system of equations that 

may be solved for estimates of robustness. The robust- 
the decision- ness function for action aj is formulated as follows: 
ustness: how 

jeopardizing &(aj, EVc) = max cx: min EV[aj] > EVc . (5) 
iat is highly ve^ U,() 

: 
. . pcU(,p) is preterrec 

Eq. 5 states that the robustness function & for act aj 
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TABLE 1. Decision table (utilities and probabilities) for three management options and four states. Utilities are the prob- 
abilities that the population will persist for 30 years under the alternative management scenarios and in the relevant states. 

Utilities 

Option 1 (a1) Option 2 (a2) Option 3 (a3) 
Probability of (translocation), (new reserve), (captive breeding), 

States, Si (cause of decline) each state, pi vi vi2 i3 

Poaching 0.1 0.3 0.25 0.9 
Loss of habitat (timber, dams) 0.3 0.1 0.2 0.2 
Demographic accidents 0.5 0.05 0.09 0.01 
Disease 0.1 0.1 0.1 0.4 

Expected utilities pivil = 0.095 
, 

PiVi2 = 0.14 Pii3 = 0.195 
i i i 

and critical threshold EVc, is equal to the maximum 
value of ot, such that the minimum expected value 

EV[aj], given uncertainty in the utilities vi and prob- 
abilities pi, is greater than or equal to the critical thresh- 
old. For general EVc, this will result in a function with 
variable EVc. The robustness function & is the maxi- 
mum level of uncertainty ot that guarantees an expected 
utility, EV, no less than the critical threshold EVc. The 
robustness of action aj is the greatest horizon of un- 

certainty ex up to which all probabilities and utilities 
result in expected utility no worse than EVc. 

The goal is not to maximize expected utility, but to 
maximize the reliability of an acceptable outcome. This 
is an important distinction between info-gap analysis 
and standard decision theory. Because the robustness 
decreases as the demanded value of EVc increases, it 
is necessary to trade one off against the other. Con- 

sequently, the action that is recommended by the info- 

gap analysis, for specified demanded utility EVc, is that 
which maximizes the robustness at that value of EVc. 
We will see this explicitly in the example. 

APPLICATION TO SUMATRAN RHINO CASE STUDY 

The Sumatran rhinoceros (Dicerorhinus sumatren- 
sis) is listed as "critically endangered" by the IUCN 
(2004). In the mid-1980s, the species was reduced to 
a few small subpopulations in Sabah, Sumatra, Kali- 
mantan, Thailand, Malaysia, Burma, and Java. Unpro- 
tected habitat was threatened by several human activ- 
ities, including timber harvesting and dam develop- 
ment. Maguire et al. (1987) evaluated management op- 
tions with a decision tree in which alternatives were 
ranked according to maximum expected utility. Utili- 
ties were defined in terms of 

v = 1 - Pi(Ext) (6) 

where Pi(Ext) is the probability of extinction of pop- 
ulations within a 30-year time frame under each man- 

agement alternative aj and state Si with probability pi. 
This is a convenient choice of utility in the conser- 
vation of threatened and endangered populations be- 
cause it can be calculated using stochastic population 
models, thereby infusing some biological basis and ob- 

jectivity into the value of outcomes. Maguire et al. 

(1987) also estimated the costs (in dollars) of imple- 
menting each alternative in a separate decision anal- 

ysis, which we will not follow here. 
For the sake of illustration, we outline a sub-tree 

based loosely on the analysis of Maguire et al. (1987). 
It considers four potential causes of the loss of the 

population: poaching, loss of habitat, demographic ac- 
cidents, and disease (Table 1). These are the relevant 
states of the world. Note that here we are assuming 
that no other relevant states of the world exist and that 
all states are mutually exclusive. In fact, the Sumatran 
rhino is most likely affected by all of these processes 
simultaneously. For illustration, we assume that only 
single threats are important. 

The three management options that we consider from 
the original suite of alternatives in Maguire et al. (1987) 
are: captive breeding, translocation, and a new reserve. 
The utilities resulting from each option are selected as 
the probabilities that the population will persist for the 
next 30 years, i.e., the values resulting from Eq. 4. The 

Maguire et al. (1987) decision analysis differs in a 
number of respects; for instance, they reported prob- 
abilities of extinction for a range of scenarios not in- 
cluded here, and they did not consider demographic 
accidents explicitly as a potential cause of loss. We 
stress that we are not attempting to replace or supercede 
their decision analysis. We merely wish to use it as an 
illustration of how info-gap decision theory can be ap- 
plied to conservation contexts. 

Table 1 displays the decision table for the reduced 
decision problem. The values pi in the second column 
of Table 1 are the probabilities that the population is 
threatened by the process specified. We assigned values 
for these probabilities based on our interpretation of 
the literature. In many conservation applications, this 
is not too far from the norm. Subjective judgment is 
used extensively to assess threats and their likely im- 

pacts on populations (Andelman et al. 2001). The util- 
ities in Table 1 have been assigned subjectively for the 

purpose of illustration. In practice, the utilities could 
be generated using stochastic population models, his- 
torical records, experience with other related species, 
or by using the subjective judgment of experts (Ma- 
guire et al. 1987). 
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Expected utilities as a function of robustness 
0.30 - 

EVc = 0.28 

0.25 -e-- Translocation 

-E- New reserve 

S0.20 ~ - Captive breeding 

o EVc = 0.12 

0.1EV = 0.07 

0.05 

0 
-1 

T V 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

& (horizon of uncertainty) 
FIG. 1. Robustness curves &(aj, EVc) vs. expected utility, for the three management options in Table 1. The graph shows 

the expected utility gained per action, for each horizon of uncertainty & . The horizontal axis denotes the maximum uncertainty 
allowed to guarantee the given expected utility. The greater the uncertainty tolerated in the system, the lower the expected 
utility becomes. Three alternative aspirations, EVc = 0.28, 0.12, and 0.07, are emphasized. 

The main objective of conservation management of 
endangered species is to minimize the probability of 
population decline or extinction, or conversely, to max- 
imize the probability of population persistence. Table 
1 provides estimates of the response of a Sumatran 
rhino population to the range of management options 
considered here. According to standard decision the- 

ory, the best action is the one that maximizes expected 
utility, in this case option 3 (captive breeding). In all 
cases, substantial uncertainty is associated with these 
assessments, which motivates the info-gap analysis. 

Incorporating uncertainty using the info-gap model 

Using the info-gap models of uncertainty in the prob- 
abilities and utilities (Eqs. 3 and 4), we wish to deter- 
mine the greatest horizon of uncertainty, &, within 
which all of the outcomes of a given action result in 
an adequate performance (that is, they result in ex- 
pected utilities greater than a critical threshold EVc). 
As previously discussed, we express the robustness of 
an action as the maximum uncertainty up to which we 

always reach the performance aspiration. Combining 
Eqs. 2 and 5, the robustness of action aj, given per- 
formance aspiration EVc, is 

&(aj, 
EVc) = max 

ol: 
min 

i 

vijpi EVcI. (7) 
eU,,((X,) i=1 PE UPotfi 

The robustness &(aj, EVc) of action aj, with aspiration 
EVc, is the greatest horizon of uncertainty ot up to 
which all utilities v (in Uv,(, f)) and all probabilities 
p (in Up,(c, fp)) result in expected utilities no worse than 

EVc. Large robustness implies that attainment of the 

required expected utility, EVc, can be depended on, 
whereas low robustness means that reaching EVc can- 
not be relied upon. Hence the robustness function de- 
termines a preference ranking for the management al- 
ternatives. The action that maximizes robustness, for 
a given critical threshold EVc, is defined as the best 
action, in contrast to a strategy that simply maximizes 
the outcome. 

RESULTS 

We used the data in Table 1 and the info-gap model 
previously outlined (Eqs. 5 and 6) to evaluate the ro- 
bustness formula (Eq. 7). Fig. I displays robustness 
curves for the three alternatives under consideration. 
They show the expected utilities corresponding to each 
alternative for all values of &(aj, EVc) between 0 and 
1.0. We see that at &(aj, EVc) = 0 (i.e., when it is 
assumed that there is no uncertainty in the utilities or 
probabilities), the original expected utilities are ob- 
tained and captive breeding gives the maximum ex- 

pected utility. However, as & increases, the expected 
utilities for all alternatives decrease and their ranking 
alters. We see that although captive breeding would be 
chosen as the alternative with the maximum expected 
utility for very low values of &, as & increases to --0.15, 
it is overtaken by the act "new reserve" as the alter- 
native with the greatest expected utility. As & increases 
even further, beyond 0.4, captive breeding becomes the 
alternative with the lowest expected utility of the three 
considered. This indicates that the act "captive breed- 
ing" is not as robust to uncertainty in the parameters 
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p and v as the other two alternatives. The act "new 
reserve" has the greatest robustness to uncertainty, be- 
cause it consistently has the greatest expected utility 
for values & > 0.15. 

The values of & in Fig. I and Eq. 7 have a specific 
interpretation. For instance, a value of & = 0.5 means 
that all of the parameters (utilities vi and probabilities 
pi) can vary from their nominal values (Tij and pf) frac- 

tionally by as much as 0.5, without causing the ex- 

pected utility to fall below the critical value EVc. 
Fig. 1 also emphasizes three values of the critical 

value EVc. If we are prepared to accept only expected 
utility values no less than EVc = 0.07, then we should 
choose the act "new reserve" as the one with the great- 
est robustness to uncertainty, with an approximate val- 
ue of & = 0.34. Option 2 (new reserve) is preferable 
over most of the range of uncertainty. If our aspirations 
are less modest and the critical threshold is set to EVc 
= 0.12, then we should accept the act "captive breed- 

ing." In fact, the acts "captive breeding" and "new 

reserve" are the only options that have any chance of 

delivering an outcome that we can live with. However, 
we must recognize that our robustness to uncertainty 
is rather low. Finally, if the critical threshold is set to 
values EVc > 0.2, then none of the alternatives is ac- 

ceptable because they do not invoke an expected utility 
that meets or exceeds the aspiration. In this case, we 

may decide to lower our aspirations and choose the 
alternative with the maximum expected utility, i.e., 
captive breeding, with a very low tolerance to uncer- 

tainty, or introduce other management actions. Deci- 
sions based on maximum expected utilities at & = 0 
are only reliable if we can ensure that there is no un- 

certainty associated with the probabilities of the states 
or the utilities of the outcomes. 

Thus we see that the higher the aspiration, the lower 
the immunity to uncertainty. This is a general property 
of info-gap decision theory: robustness to uncertainty 
decreases as aspirations increase. 

DIscusSION 

Decision-making usually involves trade-offs. In this 

analysis, we highlight the trade-off between immunity 
to uncertainty and aspirations. Very demanding aspi- 
rations become more vulnerable to uncertainty. In the 
extreme, decisions based on maximum expected utility 
(the default in most applications of standard decision 

theory) are maximally vulnerable to uncertainty. Stan- 
dard decision theory is not realistically risk averse be- 
cause it ignores uncertainty in the utilities and prob- 
abilities. This is a consequence of assuming that there 
exists no uncertainty in the constituent parameters, 
when no such guarantees can be made. 

In conservation applications, where a precautionary 
approach to uncertainty is usually advised, it is crucial 
to represent uncertainty in all parameters because this 
can have a substantial effect on the outcomes, as seen 
in the example presented here. Two distinct issues arise. 

First, whose utilities do we wish to enhance? The util- 
ities of the agency charged with financing the recovery 
action may be very different from those of the con- 
servation manager, from those of the political party in 

power, and from those of broader society. The second 
issue is that even once it is agreed whose utilities we 
wish to promote, how are they to be measured? Do we 
measure them in terms of probability of persistence, 
expected minimum population size, or financial loss or 

gain? These two issues do not have obvious resolutions 

(Colyvan et al. 2001). Info-gap decision-making goes 
some way toward recognizing and assessing the im- 

pacts of uncertainty on the anticipated outcomes of 
decisions. For instance, once a utility measure has been 
chosen, info-gap decision theory can provide the range 
of utility values reliably achievable with a selected ac- 
tion. 

Info-gap decision theory provides a platform ex- 

tending decision theory into a broad range of conser- 
vation decision problems. For instance, it may be ap- 
plied to decisions related to translocation strategies 
(Haight et al. 2000), probabilistic risk assessments of 
invasive species (Johnson et al. 2001), species man- 

agement (Peterman and Anderson 1999), reserve de- 

sign, and habitat management (Haight et al. 2002). In 
all of these contexts, it will inform us of the action that 

gives a satisfactory outcome, and that provides the 

greatest immunity against parameter and model uncer- 

tainty. This will improve flexibility in decision-making 
under severe uncertainty and will foster more reliable 
conservation management decisions. 
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