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Abstract

An unconventional decision model describes consumption and investment with severe Knightian
uncertainty. Investors do not maximize utility. Instead, utility is satisficed and robustness to uncer-
tainty in returns is maximized. Information-gap models quantify Knightian uncertainty. Discounted
life-time utility leads to an info-gap generalization of the Lucas asset-pricing model. This suggests
an explanation of the equity premium puzzle without large Arrow-Pratt risk aversion. With robust-
satisficing, we show that reasonable values of risk aversion and discount rate are consistent with
observed equity premium, risk-free rate and consumption growth.

JEL Classification: G11 (Portfolio Choice; Investment Decisions), G12 (Asset Pricing).
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1 Introduction

This paper presents an unconventional decision model for relating consumption to the returns on
both highly uncertain and risk-free investments. This decision model provides a solution to the
equity premium puzzle.

Rather than assuming that investors choose the investment so as to maximize the total discounted
utility, we assume they satisfice the utility and maximize the robustness against uncertainty
in the future returns. We refer to this decision strategy as ‘robust-satisficing’. Investors cannot
confidently maximize utility because of the severe uncertainty in asset returns. The challenge facing
investors is to decide whether adequate returns are sufficiently reliable. If not, then the resources
can be invested elsewhere.

The crux of the matter is the treatment of uncertainty. We use an information-gap model to
represent the investor’s Knightian uncertainty of future returns (Ben-Haim, 2001): an unmeasurable
and non-probabilistic epistemic gap between known past returns and unknown future returns. The
info-gap formulation presumes that the investor knows the past returns, believes that future returns
may deviate greatly from past experience, and that reliable probabilistic models of these deviations
are unavailable. An info-gap model uses an unbounded family of nested sets to represent possible
payoffs. No measure functions are involved.

The investor has little confidence that past returns reflect future behavior reliably. The investor’s
central robustness question, which motivates our decision model, is: how wrong can the current
estimate of future returns be, without jeopardizing the attainment of a specified level of utility? The
answer to this question generates preferences on options, without requiring probabilistic information.

We present a multi-period two-asset implementation which provides insight into the equity pre-
mium puzzle. In section 2 we formulate the investment model, the info-gap model of uncertainty in
future returns, the robustness function and the robust-satisficing decision strategy. In section 3 we
derive asset-pricing relations which are the info-gap generalization of the Lucas asset-pricing model.
In section 4 we derive an expression for the equity premium and discuss robustness, consumption
growth, and risk aversion. In section 5 we discuss an info-gap concept of stationarity. A method-
ological summary and discussion of the results are presented in section 6.

2 Dynamics, Uncertainty and Robustness

We consider discrete time, t = 0, 1, . . . , T . ct is the total consumption at time step t and u(ct) is
the utility from this consumption. We assume that u(ct) is continuous and that the marginal utility
is positive: u′(ct) > 0.

We consider two assets, one a risky stock (i = 1) and the other a risk-free bond (i = 2). The gen-
eralization to more than two assets is straightforward and would not entail any substantive alteration
of our conclusions.

xit is the quantity of asset i held between t and t + 1 by a representative agent and can be either
positive or negative. The holdings at time t are xt = (x1t, x2t)′. The holdings throughout the time
horizon are x = (x0, x1, . . . , xT−1). x is chosen by the investor.

pit is the ex-dividend price of asset i at time t, where pt = (p1t, p2t)′. dit is the dividend of asset
i at time t. The prices throughout the time horizon are p = (p0, p1, . . . , pT−1).

yit = pit + dit is the payoff of asset i at time t, where yt = (y1t, y2t)′. y0 is known, y1t is risky
and uncertain while y2t is risk-free and known at t = 0 for all t ≥ 0. The uncertain payoffs are
y(1) = (y11, . . . , y1T ). y1t can be either positive or negative. (Requiring non-negative payoff would
alter our analysis only at robustness in excess of 100% of anticipated returns, which we will see is
not of practical interest for understanding the equity premium puzzle.)

The budget constraint is:

ct + p′txt = y′txt−1, t = 0, . . . , T (1)
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The initial endowment, x−1 and y0, are known at time 0. The investment in the last step is zero:
xT = 0. Short sells are allowed but ct cannot be negative. The choice variables are x0, . . . , xT−1,
which determine the consumptions through the budget constraints.

The payoff of the risky asset, y1t, is uncertain for t > 0, and ỹ1t is the best known estimate of y1t

at time 0. We assume that the anticipated payoff is positive: ỹ1t > 0. y10 is known. The investor
views ỹ1t as a best but rough estimate of future payoffs, without knowing how wrong this estimate
will turn out to be. We use the unbounded fractional-error info-gap model to represent uncertainty
in the risky-asset payoffs:

Y(α, ỹ) =
{
y(1) : |y1t − ỹ1t| ≤ αỹ1t, t = 1, . . . , T

}
, α ≥ 0 (2)

Y(α, ỹ) is the set of risky payoffs y1t, for t = 1, . . . , T , whose fractional deviations from the anticipated
payoffs ỹ1t are no greater than α. The fractional error, α, is unknown, so the ‘horizon of uncertainty’
is unbounded. This info-gap model is not a single interval, but rather an unbounded family of nested
payoff intervals.

The discounted utility up to time T is:

U(x, y) =
T∑

t=0

βtu(ct) (3)

The investor desires to choose the asset holdings x throughout the time horizon so as to attain
discounted utility no less than U . That is, the investor wishes to satisfice the discounted utility at
the value U :

U(x, y) ≥ U (4)

U can be thought of as a ‘reservation utility’. The investment will be pursued if the investor has
adequate confidence in achieving adequate reward.

The robustness to uncertainty in the payoffs, of holdings x with utility-aspiration U , is the
greatest horizon of uncertainty α up to which all payoffs yield at least the desired utility:

α̂(x, U) = max

{
α :

(
min

y(1)∈Y(α,ỹ)
U(x, y)

)
≥ U

}
(5)

The set of α-values in this definition is empty if U(x, ỹ) < U , meaning that holdings x do not attain
utility U with the anticipated payoffs ỹ. In this case we define α̂(x, U) = 0 and we say that utility
aspiration U is ‘infeasible’. Any other U is ‘feasible’.

We will be interested in robust-satisficing investments: those which satisfice the discounted utility
and maximize the robustness:

x̂(U) = arg max
x

α̂(x, U) (6)

where the maximum on x is subject to the budget constraint with non-negative consumption.

3 Asset-Pricing Relation

Consider the time horizon t = 0, 1, . . . , T . The investor has T choice vectors x0 = (x10, x20)′, . . . ,
xT−1 = (x1,T−1, x2,T−1)′. The uncertainties are the unknown risky payoffs y(1) = (y11, . . . , y1T )′.
The info-gaps in these payoffs are described by Y(α, ỹ) in eq.(2) where the horizon of uncertainty α
is unknown. The risk-free payoffs (y20, . . . , y2T ) are known. Using the budget constraint in eq.(1),
the discounted utility in eq.(3) is:

U(x, y) =
T∑

t=0

βtu(y1tx1,t−1 + y2tx2,t−1 − p′txt) (7)

x1t can be either positive or negative. Let φt = 1 if x1t ≥ 0 and φt = −1 otherwise for t ≥ 0.
Define φ−1 = 0. The marginal utility is positive, so the lowest utility up to horizon of uncertainty α
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occurs when the risky payoffs y1t are such that y1tx1,t−1 is minimal, for t = 1, . . . , T . (Recall that
y10 is known.) The risky payoffs which minimize the utility at uncertainty α are y1t = ỹ1t(1−αφt−1).
Thus the minimum in the definition of the robustness, eq.(5), is:

µ(α, x, p) = min
y(1)∈Y(α,ỹ)

U(x, y) (8)

=
T∑

t=0

βtu[(1− αφt−1)ỹ1tx1,t−1 + y2tx2,t−1 − p′txt︸ ︷︷ ︸
c̃t(α)

] (9)

which defines c̃t(α), the lowest anticipated consumption up to uncertainty α.
The utility aspiration U is feasible if the righthand side of eq.(9) is no less than U in the absence

of uncertainty (α = 0). Because the marginal utility is positive and αφt−1ỹ1tx1,t−1 is also positive,
the righthand side of eq.(9) decreases strictly monotonically as α increases. Hence, for any feasible
aspiration, the robustness is the value of α at which the righthand side of eq.(9) equals U :

u(y′0x−1 − p′0x0︸ ︷︷ ︸
c0

) +
T∑

t=1

βtu

[ (
1− α̂(x, U)φt−1

)
ỹ1tx1,t−1 + y2tx2,t−1 − p′txt

︸ ︷︷ ︸
c̃t(α̂)

]
= U (10)

If eq.(10) holds for a continuum of investments x, then its derivatives with respect to x1t and x2t

also hold. Suppose there is a robust-satisficing investment which maximizes the robustness without
constraint (we study the existence of such investments in section 5):

∂α̂

∂xit
= 0, i = 1, 2; t = 0, . . . , T − 1 (11)

Differentiating eq.(10) with respect to x1t (which we assume differs from zero) and x2t, for t =
0, . . . , T − 1, and using eq.(11) yields:

du(ct)
dct

p1t = β
du(ct+1)

dct+1
(1− α̂φt)ỹ1,t+1 (12)

du(ct)
dct

p2t = β
du(ct+1)

dct+1
y2,t+1 (13)

where ct = c̃t(α̂) is the argument of the utility function in eq.(10). These relations are the info-
gap generalizations of the first-order conditions in the Lucas asset-pricing model (see Blanchard and
Fischer, 1989, eq.(11), p.511). The ordinary Lucas relations result when α̂ = 0.

Eq.(12) asserts that the risky-asset price p1t depends not only on the marginal rate of substitution
as in the Lucas model, but also depends on the required robustness α̂. At low risk aversion the
marginal utility is nearly constant, so the dominant term on the righthand of eq.(12) is 1 − α̂φt.
When φt = +1 (e.g. the representative agent has positive risky holdings), this means that the risky-
asset price tends to decrease as the robustness which the investor requires increases. On the other
hand, for short sales of the risky asset (so φt = −1), the price tends to increase as the robustness
which the investor requires increases.

A basic theorem of info-gap theory asserts that robustness decreases as aspiration increases:
α̂(x, U) decreases as U increases. This holds both for arbitrary investments x and for the robust-
satisficing investments x̂(U) in eq.(6). Furthermore, the robustness vanishes at the greatest feasible
aspiration: α̂(x, U) = 0 if U = U(x, ỹ) (Ben-Haim, 2001, 2005). (These results derive from the
nested structure of info-gap models, e.g. Y(α, ỹ) in eq.(2), and the definition of the robustness,
eq.(5).) This trade-off between robustness and utility-aspiration is illustrated schematically in fig. 1.
Fig. 2 illustrates eq.(12) for low risk aversion and φt = +1. Consequently, combining figs. 1 and 2,
the risky-asset price rises as investor aspirations increase as shown in fig. 3.

The solid dots in figs. 1–3 identify corresponding points. In fig. 1 the robustness vanishes at the
maximal utility aspiration. In fig. 2 we see that zero robustness corresponds to maximal risky-asset
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price, which is the analog of the Lucas asset price. pc
10 represents the price when the aspiration is

maximal and the robustness is zero. In fig. 3 this maximal price corresponds to maximal utility
aspiration. Sub-maximal utility-aspiration (equivalently: positive robustness-aspiration) will force a
drop in the price of risky assets held by the representative agent (φt = +1).

-
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Figure 1: Trade-off of ro-
bustness α̂(x, U) against util-
ity aspiration U .

Figure 2: Price of risky as-
set vs. robustness, eq.(12) for
φt = +1.

Figure 3: Price of risky asset
vs. utility aspiration for φt =
+1.

4 Equity Premium

Define the anticipated or ‘best-estimate’ rates of return to the risky asset: r̃1t = ỹ1t/p1,t−1, for
t = 1, . . . , T . Likewise the known rates of return to the risk-free asset are r2t = y2t/p2,t−1. With
these definitions we can write eqs.(12) and (13), for t = 0, . . . , T − 1, as:

u′(ct) = βu′(ct+1)(1− α̂φt)r̃1,t+1 (14)
u′(ct) = βu′(ct+1)r2,t+1 (15)

We now use these relations to show, in the three different ways, how the info-gap robust-satisficing
decision paradigm provides insight into the equity premium puzzle.

Robustness. Subtracting eq.(15) from eq.(14) results in the info-gap generalization of a basic
CAPM relation (see Blanchard and Fischer, 1989, eq.(4), p.507):

0 = βu′(ct+1)[(1− α̂φt)r̃1,t+1 − r2,t+1], t = 0, . . . , T − 1 (16)

This relation can be re-arranged (assuming βu′(ct+1) > 0) to show that the premium for the risky
asset is proportional to the required robustness:

r̃1,t+1 − r2,t+1 = α̂ φtr̃1,t+1 (17)

Investors who do not require robustness to uncertainty (α̂ = 0) also do not need a premium to attract
them to have positive holdings on risky assets (φt = +1). As the investor becomes more sensitive
to Knightian uncertainty in the returns (as α̂ increases), a greater premium is needed to induce
investment in both risky and risk-free assets.

Investors need not be terribly sensitive to Knightian uncertainty in order to explain the usual
equity premium. For example, if r̃1,t+1 = 1.07 and r2,t+1 = 1.01, then the robustness in eq.(17)
which explains this 6% premium is α̂ = 0.06/1.07 ≈ 0.056. This is fairly low robustness compared
to the variation of risky returns which is on the order of 15%. In light of the monotonic trade-off
between robustness and aspiration for utility, illustrated in fig. 1, this low robustness suggests that
investors reduce their aspirations only slightly below the maximum. This is illustrated schematically
by the open circle on the robustness curve of fig. 1. This small reduction in aspiration, in response
to Knightian uncertainty in the returns, is responsible for the observed premium for the risky asset.
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Note that the only assumptions concerning the utility function u(c) are that it is continuous and
that the marginal utility is positive. We have assumed nothing about the magnitude of Arrow-Pratt
risk aversion. We have assumed time-separation of the discounted utility U(x, y). The time horizon
T is arbitrarily large.

Consumption growth. The equity premium can be understood in another manner from eqs.(14)
and (15), with explicit reference to consumption growth. Define m = βu′(ct+1)/u′(ct). In stochastic
pricing models the expectation of this quantity is sometimes called the stochastic discount factor
(Cochrane, 2001). Now eqs.(14) and (15) can be combined to yield the equity premium as:

(r̃1,t+1 − r2,t+1)m =
α̂φt

1− α̂φt
(18)

Consumption growth and equity premium imply robustness. If, as before, φt = +1, r̃1,t+1 − r2,t+1 =
0.06 and m = 1/1.01, then the robustness required by investors is again about 0.056.

Risk aversion. Eq.(14) can be written as:

1 = (1− α̂φt)mr̃1,t+1 (19)

where as before m = βu′(ct+1)/u′(ct). Both r̃1,t+1 and m depend on anticipations based on infor-
mation available at time t = 0. At time 0 the investor could roughly estimate these future values as
historical expectations. Specifically:

E0(mr̃1,t+1) = E0(m)E0(r̃1,t+1) + σ0(m)σ0(r̃1,t+1)ρ0(m, r̃1,t+1) (20)

where ρ0(m, r̃1,t+1) is the correlation coefficient between m and r̃1,t+1 whose value is in the interval
[−1, 1].

Eqs.(19) and (20) can be combined as:
∣∣∣∣∣
E0(r̃1,t+1)− r2,t+1

σ0(r̃1,t+1)

∣∣∣∣∣ ≤
r2,t+1α̂φt

(1− α̂φt)σ0(r̃1,t+1)
+ σ0(m)r2,t+1 (21)

where we have used eq.(15) to approximate E0(m) as 1/r2,t+1.
Adopt the constant relative risk aversion utility function u(c) = c1−γ/(1 − γ). Thus m =

β(ct+1/ct)−γ . Now suppose that ln(ct+1/ct) is distributed normally with mean and standard de-
viation E0[ln(ct+1/ct)] = 0.02 and σ0[ln(ct+1/ct)] = 0.01. From this it results that σ0(m) ≈ 0.01γ.
Thus the upper limit of relation (21) is approximately:

E0(r̃1,t+1)− r2,t+1

σ0(r̃1,t+1)
≤ r2,t+1α̂φt

(1− α̂φt)σ0(r̃1,t+1)
+ 0.01γr2,t+1 (22)

Typical values are E0(r̃1,t+1) = 1.07, σ0(r̃1,t+1) = 0.15 and r2,t+1 = 1.01. If α̂ = 0 then the risk
aversion coefficient required in relation (22) is γ = 39.6. This value of γ is much greater than usually
estimated, which is the traditional equity premium puzzle (Cochrane, 2001, chap. 1). On the other
hand, for φt = +1, if α̂ = 0.055 then relation (22) implies γ = 0.80 which is an entirely ordinary level
of Arrow-Pratt risk aversion.

The info-gap equity premium relations, eqs.(17), (18) and (22), each reveal a different aspect
of the role of robust-satisficing in understanding the equity premium. Together they constitute the
info-gap robust-satisficing version of the “empty fig. 4” in Mehra and Prescott’s famous paper (1985).
Mehra and Prescott’s fig. showed that reasonable values of risk aversion and discount rate cannot be
reconciled with observed equity premium, risk-free rate and consumption growth through a specific
utility-maximizing paradigm. Eqs.(17), (18) and (22) demonstrate that these quantities are coherent
within an info-gap robust-satisficing framework.
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5 Stationarity

Info-gap robust-satisficing stationarity at time t = 0 is the existence of a set of prices p and
investments x and a utility aspiration U such that x is a robust-satisficing investment x̂(U) which
maximizes the robustness, eq.(6), and the budget-constrained consumptions are non-negative for all
payoffs at horizons of uncertainty α ≤ α̂(x, U). In other words, at robust-satisficing stationarity the
representative agent satisfices the discounted utility, maximizes the robustness to payoff-uncertainty,
and has non-negative consumption within the budget if the realized uncertainty does not exceed the
robustness.

The existence of robust-satisficing stationarity was assumed, eq.(11), in deriving the asset price
relations, eqs.(12) and (13). In this section we identify conditions under which this assumption holds.

It is convenient to combine eqs.(5) and (8) to express the robustness of investment stream x, with
utility aspiration U , as:

α̂(x, U) = max
{
α : µ(α, x, p) ≥ U

}
(23)

We continue with the assumptions that u(c) is continuous and u′(c) > 0 and φt−1ỹ1tx1,t−1 > 0
for t > 0. Thus, from eq.(9), µ(α, x, p) is continuous in both x and α and strictly decreases as α
increases. The robustness, α̂(x, U), of investments x with aspiration U is the greatest value of α
satisfying µ(α, x, p) ≥ U . Hence:

µ(α, x, p) = U implies α̂(x, U) = α (24)

Finally, an investment stream x̂ which maximizes µ(α, x, p) also maximizes α̂(x, U), where the value
of the aspiration, U , is µ(α, x̂, p) and the corresponding maximal robustness is α. We explain this as
follows.

-

6

α̂(x,U)

U

α

µ(α, x, p)
-

6

α̂(x(1),U)

α̂(x(2),U)

U

µ(α,x(1),p)

µ(α,x(2),p)

α

µ(α, x, p)

Figure 4: Robustness evalu-
ated from µ(α, x, p).

Figure 5: Illustration of
eqs.(25) and (26).

Eq.(24) implies that a plot of α vs. µ(α, x, p) is the same as a plot of α̂(x, U) vs. U . This is
illustrated in fig. 4 (which is the same a fig. 1).

Consider two different investment streams, x(1) and x(2), for which c̃t(α) in eq.(9) is non-negative
for t ≥ 0. From the monotonicity and continuity of µ(α, x, p) in α we conclude that if, for some
horizon of uncertainty α1:

µ(α1, x
(1), p) > µ(α1, x

(2), p) (25)

then:
α̂(x(1), U) > α̂(x(2), U) = α1 for U = µ(α1, x

(2), p) (26)

This is illustrated in fig. 5.
Robust-satisficing investments, x̂(U), maximize the robustness, eq.(6). From relations (25) and

(26) we find that all robust-satisficing investments are those investment streams which maximize
µ(α, x, p) on x.
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Finally we return to the concept of info-gap stationarity. From eq.(9) we recognize that µ(α, x, p)
is the T -period discounted utility with risky payoffs (1−αφt−1)ỹt and risk-free payoffs y2t. Ljungqvist
and Sargent (2000) discuss recursive methods for finding investment sequences x which maximize the
discounted utility. Since maximizing µ(α, x, p) is equivalent to maximizing α̂(x, U), we see that the
robustness has a maximum, info-gap robust-satisficing stationarity exists, and eq.(11) can be satisfied
if and only if this discounted utility can be maximized. In other words, robust-satisficing stationarity
exists if and only if there is an investment stream x̂ which maximizes this discounted utility. The
utility aspiration at which the robustness is maximized is U = µ(α, x̂, p) and the maximal robustness
is α̂(x̂, U) = α.

6 Discussion

Info-gap robust-satisficing is a quantification of three concepts which have been discussed in economic
literature: Knightian uncertainty, bounded rationality and robustness. Info-gap robust-satisficing
explains the equity premium puzzle and suggests a method for modelling behavior under severe
uncertainty.

Knightian uncertainty. An info-gap model of uncertainty is a non-probabilistic representation
of uncertainty which is starkly minimalistic. Info-gap models provide no opportunity for insurance-
like calculations. The theory of info-gap uncertainty provides one plausible quantitative model for
Knight’s concept of “true uncertainty” for which “there is no objective measure of the probability”, as
opposed to risk which is probabilistically measurable (Knight, 1921, pp.46, 120, 231–232). Info-gap
models, together with the robust-satisficing decision model, have been used to explain the home-
bias phenomenon (Ben-Haim and Jeske, 2003) and the Allais and Ellsberg paradoxes (Ben-Haim,
2001, sections 7.8 and 7.9). Info-gap models have also been employed in financial risk assessment
(Ben-Haim, 2005a), modelling animal behavior under uncertainty (Carmel and Ben-Haim, 2005),
project management (Ben-Haim and Laufer 1998), biological conservation (Regan et al, 2005), and
engineering analysis and design (Ben-Haim, 2005).

Further discussion of the relation between Knight’s conception and info-gap theory is found in
(Ben-Haim, 2001, section 12.5). Similarly, Shackle’s “non-distributional uncertainty variable” bears
some similarity to info-gap analysis (Shackle, 1972, p.23). Likewise, Kyburg recognized the possibility
of a “decision theory that is based on some non-probabilistic measure of uncertainty.” (Kyburg, 1990,
p.1094).

Info-gap models are not the only possible way to quantify Knightian uncertainty. On the contrary,
Gilboa and Schmeidler (1989), Epstein and Wang (1994), Epstein and Miao (2003) and others, achieve
uninsurable uncertainty of a clearly Knightian type by replacing a single prior probability distribution
with a set of distributions. These approaches are Knightian “true uncertainty” since the absence of
a probability measure on the set of probability distributions makes the uncertainty uninsurable.
Nonetheless, an info-gap model of uncertainty is a more extreme departure from the probabilistic
tradition. In our formulation, preferences are generated by the robustness function without any
distribution functions at all.

Bounded rationality and robustness. The investor’s ability to optimize future outcomes is
severely limited. Past asset returns provide only a rough indication of future returns. The investor’s
access to information about and understanding of the relevant social and economic forces is far too
limited to enable reliable assessment of maximal future behavior. Furthermore, the great variability of
the returns motivates the choice of a strategy which balances aspiration for utility against aspiration
for immunity to uncertainty. The info-gap robust-satisficing decision strategy does precisely that.

Hansen, Sargent and Tallarini (1999) “show how a preference for robustness lies concealed within
the quantity implications of the permanent income model” (p.873). That is, a desire for robustness
against uncertainty influences the choices of economic agents. This insight can be viewed as a
starting point of the current paper, which shows that desire for robustness is as important as desire
for material utility. In that spirit, the theorem which underlies the current paper establishes an
irrevocable trade-off between robustness and reward. This trade-off motivates the robust-satisficing
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strategy, very deliberately violating the classical axiom of economic rationality. The investor does not
attempt to maximize utility, or even a risk-adjusted utility. In the info-gap decision model, utility
is satisficed; what is maximized is robustness to uncertainty. The “rationality” of this strategy
is expressed in the trade-off of the aspiration for utility against the aspiration for robustness to
uncertainty (illustrated in fig. 1). This trade-off is a general theorem which asserts that maximal
utility is invariably accompanied by zero robustness. Utility-maximization is entirely unreliable.

Equity premium. Kocherlakota concludes his discussion of the equity premium puzzle with the
comment:

The universality of the equity premium tells us that, like money, the equity premium
must emerge from some primitive and elementary features of asset exchange that are
probably best captured through extremely stark models. With this in mind, we cannot
hope to find a resolution to the equity premium puzzle by continuing in our current mode
of patching the standard models of asset exchange with transactions costs here and risk
aversion there. Instead, we must seek to identify what fundamental features of goods
and asset markets lead to large risk adjusted price differences between stocks and bonds.
(Kocherlakota, 1996, p.67)

The info-gap robust-satisficing decision model offers the possibility of new insight. Two ideas are
prominent. First, risk aversion is a multi-faceted phenomenon which is not captured entirely by
utility-function curvature. Especially in situations of great Knightian uncertainty, where betting
is not a particularly useful concept, risk aversion is expressed in part by the willingness to forego
utility in exchange for robustness-to-failure. Second, the info-gap robust-satisficing decision model
demonstrates that the classical axiom of utility maximization can be relaxed without losing touch
with economic intuition and data. The fundamental psychological premise — that utility is desirable
— does not imply that maximal utility is most desirable. In this paper we have shown that realistic
and sensible economic reasoning can be based on, and modelled by, the concept of satisficing the
utility and maximizing the robustness with non-probabilistic info-gap models of uncertainty.
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