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Abstract

Neoclassical consumer demand theory is based on two basic optimization problems: utility max-
imization and expenditure minimization. What the theory lacks, however, is treatment of knigh-
tian “true” and “unmeasurable uncertainty” as distinct from insurable probabilistic risk. This
paper presents two alternative optimization problems from which are derived two demand func-
tions analogous in meaning to the neoclassical Walrasian and Hicksian demand functions. These
alternative optimization problems include explicit treatment of non-probabilistic uncertainty and
are based on the robust-satisficing and opportune-windfalling functions of information-gap deci-
sion theory. The solution of the robust satisficing optimization problem is a wealth-compensated
demand function which obeys Walras’ law and the law of price-demand trade-off.
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1 Introduction

Economics is the foremost social science of optimization. Neoclassical consumer demand theory
is based on two basic optimization problems: utility maximization and expenditure minimization.
The Walrasian and Hicksian demand functions and much of the associated theory result from these
two optimization problems. What the theory lacks, however, is treatment of what Knight called
“true” and “unmeasurable uncertainty” as distinct from measurable (and hence insurable) prob-
abilistic risk. This paper presents two alternative optimization problems from which are derived
two demand functions analogous in meaning to the Walrasian and Hicksian functions. These alter-
native optimization problems include explicit treatment of non-probabilistic uncertainty and are
based on the robust-satisficing and opportune-windfalling functions of information-gap decision
theory.

The attractiveness of the neo-classical economic theory of demand resides in the fact that
meaningful theorems with observable manifestations are derived from two optimizations which
rest upon fundamental suppositions about rational choice. Most prominently, these suppositions
are that the consumer has sufficient knowledge to adopt preferences for all pairs of options, and
that these preferences are sufficiently consistent to assure transitivity. Alternatively, the slightly
less committal ‘weak axiom of revealed preference’ supposes that, if two options are accessible,
then changes in price or wealth will not cause first one option and then the other to be selected.
Economists have long recognized the importance of ill-defined information-gaps which lurk behind
all quantitative analysis. (The term “information-gap” appears occasionally in economic litera-
ture.) As a prelude to our treatment of uncertainty, section 2 carefully examines some of the
characterizations of unmeasurable uncertainties in economics.

In section 3 we briefly review the mathematics of information-gap models. An info-gap is the
disparity between what is known and what could be known. This concept is useful in representing
the imperfect knowledge and bounded rationality of micro-economic agents. No measure functions
are involved, and the sparseness of info-gap models matches the paucity of information common
to many decision situations. In section 4 we outline consumer-choice optimization problems,
both in the classical framework and in the context of info-gap decision theory. Info-gap theory
avoids the standard assumptions of complete, transitive preferences. This is pertinent to the
attempt to build a theory which corresponds to knowledge-deficient decision making. Our main
results appear in sections 5 and 6, in which we establish the info-gap versions of the Hicksian
and Walrasian demand functions. Proposition 1 in section 5 establishes the info-gap version of
the compensated law of demand. Propositions 2 and 3 in section 6 lay the theoretical basis for
identifying wealth-compensation, as well as other implications of this info-gap economic analysis.
These propositions show that the phenomenology of classical demand theory is retained in a
theory which treats imperfect knowledge in a distinctive manner relevant to much micro-economic
behavior. Section 7 contains several examples. All proofs appear in the appendix.

2 Uncertainty in Economics

There has been enormous progress in the economics of deficient information during the past half
century. However, this progress has been based almost exclusively upon probabilistic models of
uncertainty. Long before these developments, Knight distinguished very explicitly between ‘true’,
‘unmeasurable’ uncertainty, and probabilistic risk:

Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk,
from which it has never been properly separated. The term ‘risk’, as loosely used in
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everyday speech and in economic discussion, really covers two things which, function-
ally at least, in their causal relations to the phenomena of economic organization, are
categorically different. . . . It will appear [in later chapters] that a measurable uncer-
tainty, or ‘risk’ proper, as we shall use the term, is so far different from an unmeasuable
one that it is not in effect an uncertainty at all. We shall accordingly restrict the term
‘uncertainty’ to cases of the non-quantitative type. It is the ‘true’ uncertainty, and not
risk, as has been argued, which forms the basis of a valid theory of profit and accounts
for the divergence between actual and theoretical competition.” [1, pp.19–20, italics in
the original]

In practical terms, Knight repeatedly argued that the uncertainties upon which entrepreneurial
competition thrives are utterly different from probabilities:

The uncertainties which persist as causes of profit are those which are uninsurable
because there is no objective measure of the probability of gain or loss. . . . Situations
in regard to which business judgment must be exercised do not repeat themselves with
sufficient conformity to type to make possible a computation of probability. [2, p.120]

The distinction between probabilistic risk and generic uncertainty has been widely accepted by
economists. Samuelson notes that:

Thinkers have naturally questioned whether the phenomena of uncertainty can be
usefully handled by the quasi-mathematical notions of ‘probability.’ Certain subsets
of uncertainty — those dealing with risks, gambling, insurance, repetitive inventory
and quality control of production, and even with tactics of repeated investing — are
thought to lend themselves better to useful employment of probability procedures. [3,
pp.503–504, italics in the original]

Nobody disputes that probability distributions reflect imperfect knowledge. The point is that
real economic uncertainties, those which motivate the entrepreneur and are either a blessing or a
bane, are often starker and sparser than is reflected in frequentist or Bayesian/subjectivist measure
functions. Real economic uncertainty “is the complement of knowledge. It is the gap between
what is known and what needs to be known to make correct decisions.” [4, p.1]. Uncertainty is
an information gap: “the difference between the amount of information required to perform the
task and the amount of information already possessed by the organization.” [5, p.5].

Shackle explains that info-gaps arise as a necessary epistemic consequence of intelligent learning:

This insufficiency of knowledge is permanent and part of the nature of things, for
consciousness consists precisely in the continuous gaining of knowledge. [6, pp.3–4]

Consequently, Shackle continues, the enterpriser’s

duty is to fill, with inventions and figments, the gap between what can be known and
what needs to be known. When there is no such gap, there need be no enterpriser in
the sense of policy-originator. [6, p.145]

Keynes stated the same idea somewhat differently:

The outstanding fact is the extreme precariousness of the basis of knowledge on which
our estimates of prospective yield have to be made. Our knowledge of the factors
which will govern the yield of an investment some years hence is usually very slight
and often negligible. [7, p.149]

Nor can we rationalise our behaviour by arguing that to a man in a state of ignorance
errors in either direction are equally probable, so that there remains a mean actuarial
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expectation based on equi-probabilities. For it can easily be shown that the assumption
of arithmetically equal probabilities based on a state of ignorance leads to absurdities.
[7, p.152]

Hayek has also made this point, from the rather different perspective of modelling and opti-
mizing the naturally regulated behavior which is characteristic of competitive markets:

What is the problem we wish to solve when we try to construct a rational economic
order? On certain familiar assumptions the answer is simple enough. If we possess all
the relevant information, if we command complete knowledge of available means, the
problem which remains is purely one of logic. . . .

This, however, is emphatically not the economic problem which society faces. . . .

The peculiar character of the problem of a rational economic order is determined
precisely by the fact that the knowledge of the circumstances of which we must make
use never exists in concentrated or integrated form but solely as the dispersed bits of
incomplete and frequently contradictory knowledge which all the separate individuals
possess. [8, p.77, italics in the original]

Simon has stated much the same idea, expressing it against the backdrop of modern utility theory:

Global rationality, the rationality of neoclassical theory, assumes that the decision
maker has a comprehensive, consistent utility function, knows all the alternatives that
are available for choice, can compute the expected value of utility associated with
each alternative, and chooses the alternative that maximizes expected utility. Bound-
ed rationality, a rationality that is consistent with our knowledge of actual human
choice behavior, assumes that the decision maker must search for alternatives, has
egregiously incomplete and inaccurate knowledge about the consequences of actions,
and chooses actions that are expected to be satisfactory (attain targets while satisfying
constraints). [9, p.17]

March has presented the same criticism of traditional decision theory in the context of organi-
zational decision-making [10, p.12]:

Within decision theory, preferences are treated as important but unproblematic. A
decision-maker is assumed to have preferences that are consistent, stable, and exoge-
nous to the choice process. Observations of organizations suggest that preferences are
often far from consistent, stable, or exogenous.

Economists have long been aware of the critique of probability provided by the workers cited
here as well as by others. Since virtually all treatments of economic uncertainty have been proba-
bilistic, some writers have found it necessary to provide an explanation for why these treatments
can be expected to work at all. Mas-Colell, Whinston and Green suggest that the Bayesian ap-
proach, based on personal subjective probabilities, has usually underwritten these attempts “by
reducing all uncertainty to risk through the use of beliefs expressible as probabilities.” [11, p.207].
This, however, does not answer the critique of probability, it only sidesteps it by assuming that
there is actually no distinction at all between uncertainty and risk. Arrow follows Knight in ac-
cepting the reality of the distinction, and provides a revealing explanation for why uncertainty has
not been explicitly included in economic analysis. Arrow accepts in a “fundamental sense” that
the “seemingly mechanical nature of the probability calculus . . . [leads to its] failure to reflect
the tentative, creative nature of the human mind in the face of the unknown.” Arrow suggests,
however, that this “seems to lead only to the conclusion that no theory can be formulated for this
case.” [12, p.19].
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3 Info-gap Models of Uncertainty

Our quantification of knowledge-deficiency is based on non-probabilistic information-gap models
[13]. An info-gap is a disparity between what the decision maker knows and what could be known.
The range of possibilities expands as the info-gap grows. An info-gap model is a family of nested
sets. Each set corresponds to a particular degree of knowledge-deficiency, according to its level of
nesting. Each element in a set represents a possible event. There are no measure functions in an
info-gap model.

Info-gap theory provides a quantitative model for Knight’s concept of “true uncertainty” for
which “there is no objective measure of the probability”, as opposed to risk which is probabilisti-
cally measurable [1, pp.46, 120, 231–232]. Further discussion of the relation between Knight’s con-
ception and info-gap theory is found in [13, section 12.5]. Similarly, Shackle’s “non-distributional
uncertainty variable” bears some similarity to info-gap analysis [6, p.23]. Likewise, Kyburg rec-
ognized the possibility of a “decision theory that is based on some non-probabilistic measure of
uncertainty.” [14, p.1094].

Events are represented as vectors or vector functions f . Knowledge-deficiency is expressed at
two levels by info-gap models. For fixed α the set F(α, f̃) represents a degree of variability of f
around the centerpoint f̃ . A greater value of α entails a greater range of possible variation of f , so
α is called the uncertainty parameter and expresses the information gap between what is known
(f̃ and the structure of the sets) and what needs to be known for an ideal solution (the exact
value of f). The value of α is usually unknown, which constitutes the second level of imperfection
of knowledge: the horizon of variation is unbounded.

Let <+ denote the non-negative real numbers and let Ω be a Banach space in which the
uncertain quantities f are defined. An info-gap model F(α, f̃) is a map from <+ × Ω into the
power set of Ω. Info-gap models obey two basic axioms. Nesting: F(α, f̃) ⊂ F(α′, f̃) if α < α′.
Contraction: F(0, f̃) is the singleton set {f̃}. Nesting is the most characteristic of the info-gap
axioms. It expresses the intuition that possibilities expand as the info-gap grows. For more
discussion of these axioms see [15].

4 Consumer-Choice Optimization Problems

In section 4.1 we briefly review the utility maximization and expenditure minimization problems
from which neoclassical demand theory arises, and discuss the intuitions which underlie these
strategies of choice. Section 4.2 is devoted to a discussion of the info-gap robustness and oppor-
tunity functions. We employ these decision functions in section 4.3 to formulate two info-gap
optimization problems — robust satisficing and opportune windfalling — and explain their anal-
ogy to the traditional choice problems.

Notation: if x ∈ <L, then x > 0 means xi > 0 for all i = 1, . . . , L. Also, x ≥ 0 means xi ≥ 0
for all i = 1, . . . , L.

4.1 Neoclassical Consumer-Choice Optimization Problems

Our discussion follows [16]. A preference relation º on X ⊂ <L is rational if the following
properties hold:

(i) Completeness: For all x, y ∈ X, x º y or y º x or both.
(ii) Transitivity: For all x, y, z ∈ X, if x º y and y º z, then x º z.
A scalar function u(x) is a utility function representing the preference relation º if, for all

x, y ∈ X, x º y if and only if u(x) ≥ u(y).
Given prices p > 0 and utility u > u(0), the expenditure minimization problem (EMP)

5



is:
min
x≥0

pT x subject to u(x) ≥ u (1)

Given prices p > 0 and wealth w > 0, the utility maximization problem (UMP) is:

max
x≥0

u(x) subject to pT x ≤ w (2)

A vector x which solves the EMP is a Hicksian demand function, h(p, u), while a solution of
the UMP is a Walrasian demand function, x(p, w).

A central result in demand theory states that, if u(x) is a continuous utility function repre-
senting a locally non-satiated preference relation, then if x∗ is an optimal choice for the UMP
with wealth w > 0, then it is optimal for the EMP when the required utility is u(x∗). Likewise,
if x∗ is an optimal choice for the EMP when the required utility is u > u(0), then it is optimal
for the UMP with wealth w = pT x∗ [16, Proposition 3.E.1, p.58]. In otherwords, these two choice
problems coalesce for appropriate choices of the parameters.

Nonetheless, different intuitions motivate these two selections of a consumption vector x. This
is important for our study since it is the intuitions which we wish to preserve in the info-gap
context.

The UMP is an ambitious program of maximizing satisfaction subject to a budget constraint.
The UMP “squeezes the orange” as much as possible. And in fact any solution x∗ satisfies Walras’
law, pT x∗ = w, meaning that the budget is exploited to the limit [16, Proposition 3.D.2, pp.51–52].

The EMP, on the other hand, is motivated by (possibly cautious) satisficing. The decision
maker chooses a (possibly modest) level of utility u and pinches the budget as much as possible
to just achieve this level of utility. And in fact any solution x∗ does exactly that: u(x∗) = u; there
is no excess utility [16, Proposition 3.E.3, p.61].

4.2 Robustness and Opportunity

We now present two info-gap optimization problems and explain their conceptual proximity to
the intuitions underlying the neoclassical EMP and UMP.

The decision maker will choose a commodity vector x ∈ X ⊆ <L. The outcome of this choice
is influenced by an unknown vector (or vector function) f ∈ Ω whose range of possible variation
is represented by an info-gap model F(α, f̃), α ≥ 0, in a Banach space Ω.

We will define two real-valued reward functions defined on (x,A) where x ∈ X and A ⊂ Ω.
The lower reward function R∗(x,A) is monotonically decreasing on the power set of Ω, at fixed
choice x:

A ⊂ B implies R∗(x,A) ≥ R∗(x,B) (3)

The upper reward function R∗(x, A) is monotonically increasing on the power set of Ω, at
fixed choice x:

A ⊂ B implies R∗(x,A) ≤ R∗(x,B) (4)

The monotonicity of these reward functions does not relate to the commodity vector x, or to
the decision maker’s preferences regarding these choices. The reward functions are monotonic in
the space Ω of unknown auxiliary events f , and expresses the impact of this ambient variation on
the available outcomes of a choice. Properties (3) and (4) do not establish preference relations on
x.

The most common realizations of the lower and upper reward functions is in terms of least
and greatest available rewards as f varies within a set A ⊂ Ω. Let r(x, f) be the reward actually
realized when the choice is x ∈ X and the unknown quantity takes the value f ∈ Ω. Common
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choices of lower and upper reward functions are:

R∗(x,A) = min
f∈A

r(x, f) (5)

R∗(x,A) = max
f∈A

r(x, f) (6)

Thus R∗(x,A) is the least available reward, while R∗(x,A) is the greatest available reward, in the
uncertain environment A. In this realization, R∗ and R∗ still have not determined a preference
relation on x, both because the set A is undetermined and because the lower and upper rewards
may behave differently.

More specifically, we will subsequently choose the set A as a set F(α, f̃) in an info-gap family
of nested sets. Then, in eqs.(5) and (6), R∗[x,F(α, f̃)] is the least accessible reward up to info-gap
α, while R∗[x,F(α, f̃)] is the greatest accessible reward up to α.

Like the neoclassical utility function u(x), the reward functions R∗(x,A) and R∗(x,A) are
real-valued and represent desirable reward. The decision maker prefers more rather than less.
Unlike u(x), however, neither R∗(x,A) nor R∗(x,A) need be continuous or convex, (though we
will sometimes assume continuity), nor do they derive from preference relations. Moreover, the
decision maker can’t know the values of R∗(x,A) and R∗(x,A) which will be realized in practice
because the set A is unknown. Finally, while R∗ and R∗ entail knowledge-deficiency, they are not
probabilistic but instead depend on an info-gap model.

We will now use R∗(x,A) and R∗(x,A) to define two decision functions [13] which generate
preferences on values of x. These preferences are not unique, nor are the same preferences neces-
sarily derived from each of the two decision functions. These preferences will vary with aspiration
level, price, wealth and possibly other exogenous factors. These two decision functions are mo-
tivated by intuitions which are similar to those underlying the classical decision problems, EMP
and UMP.

Let rc be a value of reward which the decision maker strives to achieve; more reward would be
better, but less than rc would be unacceptable. The decision maker wishes to satisfice at reward
level rc. The decision maker might choose or contemplate rc-values in the same way that minimal
utility values u are chosen in the EMP of eq.(1). The robustness of choice x is the greatest level
of knowledge-deficiency at which reward no less than rc is guaranteed:

α̂(x, rc) = max
{
α : R∗[x,F(α, f̃)] ≥ rc

}
(7)

α̂(x, rc) is a robust satisficing decision function.
Let rw be a large value of reward (much greater than rc) which the decision maker would be

delighted to achieve; lower reward would be acceptable, but reward as large as rw is a windfall
success. The decision maker might evaluate or contemplate rw-values much as values of the
maximum utility obtained in the UMP of eq.(2) are evaluated. The opportunity inherent in
choice x is the least level of knowledge-deficiency at which windfall can occur:

β̂(x, rw) = min
{
α : R∗[x,F(α, f̃)] ≥ rw

}
(8)

β̂(x, rw) is an opportune windfalling decision function.
α̂(x, rc) and β̂(x, rw) are immunity functions. α̂(x, rc) is the immunity against failure (reward

less than rc). When α̂(x, rc) is large, failure can occur only at great ambient uncertainty; the
decision maker is not vulnerable to pernicious uncertainty. Similarly, β̂(x, rw) is the immunity
against windfall (reward no less than rw). When β̂(x, rw) is small, windfall can occur even under
mundane circumstances; the decision maker is not immune to propitious uncertainty.

These considerations lead to preference rankings on the choice vector x. While “bigger is
better” for robustness α̂(x, rc), “big is bad” for opportunity β̂(x, rw). The preferences induced by
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the robust-satisficing strategy are:

x ºr x′ if α̂(x, rc) ≥ α̂(x′, rc) (9)

Likewise, the preferences induced by the opportune-windfalling strategy are:

x ºo x′ if β̂(x, rw) ≤ β̂(x′, rw) (10)

We note that neither ºr nor ºo is necessarily single-valued for any pair of choices x and x′:
the preferences may change with rc and rw, respectively. Moreover, ºr and ºo may rank the
same pair of options differently. The preference relations ºr and ºo , either alone or together,
do not satisfy the rationality conditions of completeness and transitivity. They do not establish
unique preferences for all pairs of available choices, and they hence do not entail transitivity of
preference.

4.3 Info-gap Consumer-Choice Optimization Problems

We now formulate two info-gap optimization problems and explain their conceptual similarity to
the neoclassical EMP and UMP.

Given prices p > 0, critical reward rc, and demanded robustness α̂d, the robust satisficing
problem (RSP) is:

min
x∈X

pT x subject to α̂(x, rc) ≥ α̂d (11)

Given prices p > 0, windfall reward rw, and wealth w > 0, the opportune windfalling
problem (OWP) is:

min
x∈X

β̂(x, rw) subject to pT x ≤ w (12)

We now explain the intuitive similarity between robust satisficing (RSP) and expenditure min-
imization (EMP), and between opportune windfalling (OWP) and utility maximization (UMP).

RSP and EMP: The structural parallel between the EMP in eq.(1) and the RSP is obvious.
In both, the expenditure pT x is minimized subject to a satisficing constraint on a preference-
generating function: u(x) or α̂(x, rc). Furthermore, the RSP also satisfices the reward by means
of the inequality on the lower reward function R∗ in eq.(7). The critical value of utility u in the
EMP or the critical reward rc and demanded robustness α̂d in the RSP can be chosen small or
large at the decision maker’s discretion. In both cases the decision maker is adopting a cautious
or protective stance while attempting to guarantee a specified minimal level of satisfaction.

The fundamental difference between the RSP and the EMP is that the latter is based on a
complete, transitive preference relation while the former is not. The EMP presumes substantially
greater knowledge by the decision maker about the options and their import. The robustness
function α̂(x, rc) generates a preference relation contingent upon a choice of the critical reward, rc.
Preferences may change as the decision maker’s aspiration for reward, rc, changes. The robustness
function is not directly a utility, but an auxiliary evaluation of feasibility or justifiability of option
x with regard to reward-aspiration rc. Knowing a consumer’s robustness function tells us less
about the utility to that individual of option x, than knowing a utility function u(x).

OWP and UMP: The UMP in eq.(2) is structurally and conceptually similar to the OWP
once we recognize that a minimum β̂ optimizes the opportunity for sweeping windfall success.
This ‘windfalling’ is the info-gap analog of the classical search for maximum utility. Moreover,
both maxu(x) and min β̂ are subject to the same budget constraint, pT x ≤ w. Furthermore, we
explained in discussing eq.(2) that the UMP is an ambitious strategy, attempting to achieve the
greatest utility facilitated by the available budget. There is no margin of safety in the UMP;
large utility is its own protection. Similarly, the windfalling strategy aspires to facilitate reward
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as large as rw, expressed by the inequality on the upper reward function R∗ in eq.(8). In the info-
gap context there may be no maximal reward even given a finite budget because of the endless
potential for propitious uncertainty. What the windfalling decision maker is doing is optimizing
the possibility of exploiting this potential, while attempting to facilitate great reward rw far in
excess of the critical reward rc needed for survival.

The primary distinction between the OWP and the UMP, as in the RSP and EMP case, is that
the opportunity function β̂(x, rw) is not itself a utility function, but rather an auxiliary assessment
of the propitiousness of option x regarding windfall aspiration rw.

Viewing the four optimization problems together, the primary difference is the symmetry in
EMP/UMP which is broken in RSP/OWP by α̂(x, rc) and β̂(x, rw). Implications of this, together
with some substantive differences between robustness and opportunity, will arise in propositions 2
and 3.

5 Price-Demand Antagonism

In demand theory, h(p, u) is a Hicksian demand function if it is a solution of the EMP. That is,
x = h(p, u) minimizes pT x subject to u(x) ≥ u. If u(x) is a continuous utility function representing
a locally non-satiated preference relation, then h(p, u) obeys the compensated demand law [16,
Proposition 3.E.4, p.62]:

(p− p′)T [h(p, u)− h(p′, u)] ≤ 0 (13)

Let us define x̂r(p, α̂d, rc) as a consumer choice x which solves the RSP. That is, pT x̂r(p, α̂d, rc) is
minimal subject to the robustness constraint α̂(x, rc) ≥ α̂d. x̂r(p, α̂d, rc) is the robust satisficing
demand. In the theory we are developing here, x̂r(p, α̂d, rc) is the analog of h(p, u). The analog
of the classical Hicksian demand law is:

Proposition 1 Given: F(α, f̃) is an info-gap model in the Banach space Ω; α̂(x, rc) is a ro-
bustness function for F(α, f̃) based on a lower reward function R∗(x,A) which is monotonically
decreasing on the sets in Ω; x̂r(p, α̂d, rc) is a robust satisficing demand function for α̂(x, rc).

Then: for any price vectors p and p′ we have:

(p− p′)T [x̂r(p, α̂d, rc)− x̂r(p′, α̂d, rc)] ≤ 0 (14)

That is, like the Hicksian demand h(p, u), price p and robust satisficing demand x̂r vary antag-
onistically. Moreover, subsequent results will demonstrate that, like h(p, u), the robust satisficing
demand x̂r(p, α̂d, rc) is wealth-compensated.

Let us define x̂o(p, w, rw) as a consumer choice x which solves the OWP. That is, β̂(x̂o, rw) is a
minimal value of the opportunity function subject to the budget constraint pT x̂o ≤ w. Since the
OWP is the info-gap analog of the UMP, we see that x̂o(p, w, rw) is the analog of the Walrasian
demand function.

6 Wealth-Compensated Demand

Definition 1 The function robustness α̂(x, r) is continuous at x if, for each ε > 0 there is a
δ > 0 such that:

|α̂(x, r)− α̂(x′, r)| < ε whenever ‖x− x′‖ < δ (15)

Continuity of the opportunity function is similarly defined.
Relations (3) and (4) define the lower and upper reward functions as monotonic in the uncer-

tainty sets. The following property of strict monotonicity is different.
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Definition 2 The lower reward function R∗(x,A) is strictly monotonic in α for info-gap model
F(α, f̃) if, for all x ∈ X and all f̃ ∈ Ω:

α < α′ implies R∗[x,F(α, f̃)] > R∗[x,F(α′, f̃)] (16)

Definition 3 The upper reward function R∗(x, A) is strictly monotonic in α for info-gap model
F(α, f̃) if, for all x ∈ X and all f̃ ∈ Ω:

α < α′ implies R∗[x,F(α, f̃)] < R∗[x,F(α′, f̃)] (17)

Definition 4 The lower reward function R∗(x,A) is continuous in α at f̃ for an info-gap model
F(α, f̃) if, for each x ∈ X and for each ε > 0 there is a δ > 0 such that:

∣∣∣R∗(x,F(α, f̃)]−R∗(x,F(α′, f̃)]
∣∣∣ < ε whenever |α− α′| < δ (18)

Continuity of an upper reward function is similarly defined.

Definition 5 Lower and upper reward functions R∗(x,A) and R∗(x,A) are similarly ordered
if, for all x, x′ ∈ X and for all A ⊂ Ω:

R∗(x, A) < R∗(x′, A) if and only if R∗(x,A) < R∗(x′, A) (19)

An immunity function, α̂(x, rc) or β̂(x, rw), is ‘non-satiated’ if an arbitrarily small change in x
can improve the immunity. Since “bigger is better” for robustness α̂(x, rc), while “big is bad” for
opportunity β̂(x, rw), the definitions of non-satiation for these immunity functions are different
but symmetrical.

Definition 6 The opportunity function is non-satiated at x ∈ X if, for every ε > 0, there is an
x′ ∈ X such that

‖x− x′‖ < ε and β̂(x′, rw) < β̂(x, rw) (20)

Definition 7 The robustness function is non-satiated at x ∈ X if, for every ε > 0, there is an
x′ ∈ X such that

‖x− x′‖ < ε and α̂(x′, rw) > α̂(x, rw) (21)

Lemma 1 Given: R∗(x,A) is a lower reward function which is continuous in α at all f̃ for
an info-gap model F(α, f̃); α̂(x, rc) is the robustness function defined for this reward function;
α̂(x, rc) is continuous at all x.

If x solves the RSP of eq.(11) then:

α̂(x, rc) = α̂d and R∗[x,F(α̂(x, rc), f̃)] = rc (22)

The RSP entails satisficing both the robustness (the inequality in eq.(11)) and the reward (the
inequality in eq.(7)). Lemma 1 asserts that there is no excess robustness or reward at a solution
of the RSP.

Lemma 2 Given: R∗(x,A) is an upper reward function which is continuous in α at all f̃ for
an info-gap model F(α, f̃); β̂(x, rw) is the opportunity function defined for this reward function;
β̂(x, rw) is continuous at all x.

If x solves the OWP of eq.(12) and if β̂(x, rw) is non-satiated at this x, then:

pT x = w and R∗[x,F(β̂(x, rw), f̃)] = rw (23)
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Note that the opportunity function is satiated if β̂(x, rw) = 0. Hence (23) need not hold if the
minimal opportunity function vanishes.

Lemma 2 states that if x solves the OWP then x also obeys Walras’ law of complete utilization
of wealth. Furthermore, the lemma asserts that there is no excess reward in the solution of the
OWP: the inequality in the definition of the opportunity function, eq.(8), is an equality at x.

Proposition 2 Given: R∗(x,A) and R∗(x,A) are similarly ordered lower and upper reward
functions, respectively; R∗(x,A) is continuous in α at all f̃ for an info-gap model F(α, f̃);
R∗(x,A) is strictly monotonic in α; α̂(x, rc) and β̂(x, rw) are robustness and opportunity func-
tions, respectively, defined for these reward functions; α̂(x, rc) and β̂(x, rw) are continuous at all
x.

If x̂r solves the RSP of eq.(11), then x̂r solves the OWP of eq.(12) with w = pT x̂r and
rw = R∗[x̂r,F(α̂d, f̃)]. Moreover, β̂(x̂r, rw) = α̂d = α̂(x̂r, rc).

Proposition 3 Given: R∗(x,A) and R∗(x,A) are similarly ordered lower and upper reward
functions, respectively; R∗(x,A) is continuous in α at all f̃ for an info-gap model F(α, f̃);
R∗(x,A) is strictly monotonic in α; α̂(x, rc) and β̂(x, rw) are robustness and opportunity func-
tions, respectively, defined for these reward functions; α̂(x, rc) and β̂(x, rw) are continuous at all
x and α̂(x, rc) is non-satiated at all x.

If x̂o solves the OWP of eq.(12) and if β̂(x̂o, rw) is non-satiated at x̂o, then x̂o solves the
RSP of eq.(11) with α̂d = β̂(x̂o, rw) and rc = R∗[x̂o,F(β̂(x̂o, rw), f̃)]. Moreover, pT x̂o = w and
α̂(x̂o, rc) = α̂d.

We can summarize our results as follows. Let wrsp denote the minimum expenditure which is
obtained as the solution of the RSP, eq.(11): wrsp(p, rc, α̂d) = pT x̂r(p, rc, α̂d) where x̂r(p, rc, α̂d)
is the solution of the RSP. Proposition 2 relates x̂r(p, rc, α̂d) to x̂o(p, rw, w) (the solution of the
OWP) as follows:

x̂r(p, rc, α̂d) = x̂o[p,R∗[x̂r,F(α̂d, f̃)]︸ ︷︷ ︸
rw

, wrsp(p, rc, α̂d)] (24)

This relation explains the sense in which x̂r is a wealth-compensated demand. By definition,
the demand x̂r(p, rc, α̂d) is evaluated with fixed critical reward rc and fixed demanded robustness
α̂d. Moreover, eq.(24) shows that, as prices change, x̂r(p, rc, α̂d) gives the consumption when the
wealth wrsp(p, rc, α̂d), is adjusted while keeping both rc and α̂d constant. This parallels the
sense in which the Hicksian demand function is a compensated demand [16, p.62]. This further
strengthens the parallel between x̂r and the Hicksian demand, since we already know that they
both obey price-demand trade-off (proposition 1).

Let αowp(rw, w) denote the minimum β̂ obtained as the solution of the OWP: the lowest info-gap
which facilitates windfall reward rw given wealth w. Thus αowp(rw, w) = β̂(x̂o, rw). Proposition 3
relates the solutions of the OWP and the RSP as:

x̂o(rw, w) = x̂r[R∗[x̂o,F(αowp, f̃)]︸ ︷︷ ︸
rc

, αowp(rw, w)] (25)

Propositions 2 and 3, together with lemmas 1 and 2, also assert that:

α̂(x̂r,R∗[x̂r,F(α̂d, f̃)]︸ ︷︷ ︸
rc

) = β̂(x̂r,R∗[x̂r,F(α̂d, f̃)]︸ ︷︷ ︸
rw

) (26)

α̂(x̂o,R∗[x̂o,F(αowp, f̃)]︸ ︷︷ ︸
rc

) = β̂(x̂o,R∗[x̂o,F(αowp, f̃)]︸ ︷︷ ︸
rw

) (27)
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Each of these relations establishes rc and rw values at which the robustness and opportunity
functions obtain the same values when evaluated at the same level of demand.

Consider for instance eq.(26). When the consumer chooses the RSP-optimal demand x̂r, then
critical reward no less than rc is guaranteed if the info-gap is no greater than α̂(x̂r, rc). Eq.(26)
asserts that this is the lowest level of uncertainty at which reward as large as rw is possible. In
other words, eq.(26) identifies a situation in which survival (rc) is guaranteed while windfall (rw)
is possible. A similar situation is identified by eq.(27).

Furthermore, it can be shown that α̂(x, rc) decreases as rc increases, while β̂(x, rw) increases as
rw increases [13]. Thus eq.(26) specifies the greatest feasible windfall rw at which critical reward
rc is robustly guaranteed, when demand x̂r is chosen. Any greater value of rw cannot be attained
without increasing the info-gap above the value of robustness α̂(x̂r, rc). Conversely, rc is the lowest
value of critical survival-reward which can be robustly guaranteed while also enabling windfall as
large as rw, when choosing x̂r. Any larger value of rc would entail lower robustness and hence
a lower feasible value of windfall reward rw. Similar conclusions apply to eq.(27) when demand
function x̂o is chosen.

The lower and upper reward functions are very commonly ‘naturally ordered’ (definition 8).
We will explain that this property implies:

rc ≤ rw (28)

for each of the rc-rw pairs in eqs.(26) and (27).

Definition 8 Lower and upper reward functions R∗(x,A) and R∗(x, A) are naturally ordered
if, for all x ∈ X and for all f ∈ Ω:

R∗(x, {f}) ≤ R∗(x, {f}) (29)

We have not assumed natural ordering of our reward functions, but it does in fact hold for the
reward functions of eqs.(5) and (6). Natural ordering together with the monotonicity properties,
eqs.(3) and (4), imply relation (28) for the rc and rw values in eqs.(26) and (27).

7 Examples

We now consider several simple examples of robustness functions and robust-satisficing demand
functions obtained as solutions of the RSP.

7.1 Elasticity: 1

Consider non-negative choices, x1 and x2, for two commodities for which the reward function is
r(x, f) = fx1x2 where the fractional variation of the reward coefficient f is unknown:

F(α, f̃) =

{
f :

∣∣∣∣∣
f − f̃

f̃

∣∣∣∣∣ ≤ α

}
, α ≥ 0 (30)

The known nominal coefficient f̃ is positive.
The robustness of choices x1 and x2 is the greatest info-gap at which the reward is no less than

the aspiration, rc:

α̂(x, rc) = max

{
α : min

f∈F(α,f̃)

fx1x2 ≥ rc

}
(31)

The robustness function becomes:

α̂(x, rc) = 1− rc

f̃x1x2

(32)
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or zero if this expression is negative. If rc ≥ 0 then the robustness is no greater than unity. Hence
the demanded robustness, α̂d, can also be no greater than unity.

The RSP, defined in eq.(11), can be re-arranged to the following non-linear optimization prob-
lem:

min
x∈X

pT x subject to x1x2 ≥ µ (33)

where we have defined µ = rc

(1−α̂d)f̃
. The solution yields the following robust-satisficing demand

function:
x̂1 =

√
µp2

p1
, x̂2 =

√
µp1

p2
(34)

We note that these demand functions are homogeneous of degree zero in the price. That is, for
any θ 6= 0:

x̂i(θp) = x̂i(p) (35)

as is true of ordinary hicksian demand functions [17, pp.43].
We find the substitution matrix to be:

∂x̂

∂p
=

1
2

√
µ

p1p2



−p2

p1
1

1 −p1

p2


 (36)

which is symmetric, negative semi-definite and has the price vector p in its null space, as is true
of ordinary hicksian demand functions [17, pp.43–44]. The own-price elasticities are negative
and the cross-price elasticities are positive. The elasticities increase in magnitude with increasing
aspiration rc, and with increasing demanded robustness α̂d (both of which appear in the coefficient
µ). The elasticities decrease in magnitude as the nominal return coefficient f̃ increases. The
substitution curve, x̂2 vs. x̂1, is a hyperbole: x̂1x̂2 = µ for all positive levels of consumption.

7.2 Elasticity: 2

7.2.1 Formulation

Consider the choice vector x ∈ <N
+ of non-negative elements, for which the reward function

is r(x, f) = xT Fx where the matrix F is uncertain and belongs to an interval-bound info-gap
model:

F(α, f̃) =
{
f :

∣∣∣fij − f̃ ij

∣∣∣ ≤ wijα, i, j = 1, . . . , N
}

, α ≥ 0 (37)

Let F̃ and W denote the known symmetric matrices of nominal reward coefficients f̃ ij and uncer-
tainty weights wij . The uncertainty weights wij are all non-negative.

The robustness of choice x is the greatest info-gap at which the reward is no less than the
aspiration rc:

α̂(x, rc) = max

{
α : min

F∈F(α,f̃)

xT Fx ≥ rc

}
(38)

The lowest reward, up to uncertainty α, is:

min
F∈F(α,F̃ )

xT Fx = xT [F̃ − αW ]x (39)

The reward-aspiration rc is nominally feasible if:

xT F̃ x ≥ rc (40)
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When this holds, the robustness α̂ is infinite if xT Wx = 0, while α̂ is finite otherwise. On the
other hand, if condition (40) is violated, meaning that the reward-aspiration is infeasible, then
the robustness is zero. In summary:

α̂(x, rc) =





∞ if xT Wx = 0 and xT F̃ x ≥ rc

xT F̃ x− rc

xT Wx
if xT Wx > 0 and xT F̃ x ≥ rc

0 if xT F̃ x < rc

(41)

7.2.2 Diagonal Case

Having derived the robustness function we now proceed to consider the solution of the RSP. The
commodity vector x which solves the RSP is the robust-satisficing demand function, x̂.

Consider the special case that F̃ and W are diagonal matrices of positive numbers:

F̃ = diag(f̃11, . . . , f̃NN ), W = diag(w11, . . . , wNN ) (42)

For simplicity consider only x-values for which xT Wx > 0 and xT F̃ x ≥ rc. The RSP can be
formulated as:

min
x≥0

pT x subject to xT [F̃ − α̂dW ]︸ ︷︷ ︸
A

x = rc (43)

which defines the matrix A, which we assume to be non-singular. The demand function becomes:

x̂ =
√

rc

pT A−1p
A−1p (44)

The matrix A is diagonal with elements aii = f̃ ii − α̂dwii. It is evident from the RSP that
if aii ≤ 0 for some i, then the corresponding robust-satisficing demand must be zero, x̂i = 0, in
order to minimize the expenditure pT x. This means that if the uncertainty (wii) in commodity
i, weighted by the aspiration for global robustness (α̂d), exceeds the nominal reward (f̃ ii) from
commodity i, then the demand for that commodity vanishes. More generally we see how the RSP
of eq.(43) balances reward-anticipation, uncertainty and robustness in formulating the robust-
satisficing demand.

Let I be the set of indices of those commodities for which aii > 0. Let I−i denote the set I
after index i has been removed. The robust-satisficing demands are:

x̂i =
√√√√√

rc∑

j∈I
p2

j/ajj

pi

aii
, i ∈ I (45)

The own- and cross-price substitutions, for i, j ∈ I, are:

∂x̂i

∂pi
=

√
rc

aii

∑

j∈I−i

p2
j/ajj


∑

j∈I
p2

j/ajj



−3/2

(46)

∂x̂i

∂pj
= −√rc

pipj

aiiajj


∑

j∈I
p2

j/ajj



−3/2

, i 6= j (47)

The own-price substitutions are all positive, while the cross-price substitutions are all negative.
The explanation of the signs of these substitutions lies in the linear-quadratic optimization

of eq.(43), illustrated schematically in fig. 1. The curve is xT Ax = rc drawn for arbitrary (not
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Figure 1: Illustration of price elasticities, eqs.(46) and (47).

necessarily diagonal) A. Consider first the price vector labelled p(1). The solution of the RSP is
the smallest non-negative vector x̂ on a line perpendicular to p(1) and contained on the quadratic
surface xT Ax = rc. The solution is denoted x̂(p(1)). Now consider the price vector p(2) for which
the price of the first and second commodities have increased and decreased, respectively. The
robust-satisficing demand function for p(2) is the point marked x̂(p(2)): demand has increased for
the first commodity and decreased for the second, as anticipated by eqs.(46) and (47).

It is evident that if we consider a third price vector, obtained by rotating p(2) further towards the
x̂1 axis, the “return” curvature of the quadratic surface, if it is strong enough, would eventually
cause the demand function to display negative own-price substitutions and positive cross-price
substitutions. However, this will not happen when A is diagonal, as in eqs.(46) and (47), since
the quadratic surface is an ellipsoid with axes parallel to the coordinate axes and thus has no
“return” curvature at all within the positive quadrant. However, if A is not diagonal it may define
an ellipsoid tilted with respect to the axes as illustrated in fig. 1.

In short, the matrix A = F̃ − α̂dW controls the signs and magnitudes of the elements of
the substitution matrix. F̃ is the matrix of anticipated reward coefficients, α̂d is the demanded
robustness and W is the matrix of uncertainty-weights in the info-gap model.

8 Summary and Conclusion

We have developed a theory of consumer demand which preserves the phenomenological features
of classical demand, without the assumptions of rational-choice theory: complete, transitive pref-
erences. We have explained that the info-gap optimization problems of robust satisficing (RSP)
and opportune windfalling (OWP) correspond to the neoclassical optimization problems of expen-
diture minimization (EMP) and utility maximization (UMP), respectively. We have demonstrated
that the consumer choice resulting from the RSP, x̂r, is the analog of the Hicksian demand func-
tion, while the solution of the OWP, x̂o, is analogous to the Walrasian demand. Specifically, x̂r

is a wealth-compensated demand function which obeys Walras’ law and the law of price-demand
trade-off.

The workhorses of info-gap analysis are the immunity functions: the robustness function
α̂(x, rc) and the opportunity function β̂(x, rw). These functions are derived from an info-gap
model, F(α, f̃), α ≥ 0, which is an unbounded family of nested sets of events, and which ex-
presses the unbounded domain of pernicious as well as propitious possibilities entailed by the
decision maker’s incomplete knowledge. The immunities also depend upon the lower and upper
reward functions, R∗(x,A) and R∗(x,A), which describe anticipated reward accruing from choice
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x accompanied by uncertain environment A.
The robustness function α̂(x, rc) assesses the degree of robustness of choice x to pernicious

ambient uncertainty, when the decision maker aspires to satisfice at the reward level rc. The
opportunity function β̂(x, rw) expresses the immunity of option x to the possible attainment of a
great windfall reward rw. Both immunity functions depend upon aspirations, rc and rw, which are
not specified by the theory nor chosen a priori by the consumer. Once the aspiration levels rc and
rw are chosen, then each immunity function generates a complete transitive preference ranking of
the options. However, these preference rankings — based on robustness or opportunity — need not
be consistent with one another, nor need they remain constant as aspirations change. Since wealth,
price and other contextual factors will influence consumer aspiration, info-gap theory does not
presume prior knowledge of preference, nor can it predict consumer choice. Even in this context,
however, we have seen that the basic results of demand theory remain intact: complementarity of
the robust-satisficing and the opportune-windfalling choice problems; Hicksian- and Walrasian-like
demand functions derived from these consumer-choice optimization problems; wealth-compensated
price-demand trade-off.

9 Appendix: Proofs

Proof of proposition 1. x̂r(p, rc, α̂d) minimizes the expenditure with price vector p, so for any
p′:

pT x̂r(p, rc, α̂d) ≤ pT x̂r(p′, rc, α̂d) (48)

Likewise, x̂r(p′, rc, α̂d) minimizes the expenditure with price vector p′, so for any p:

p′
T
x̂r(p, rc, α̂d) ≥ p′

T
x̂r(p′, rc, α̂d) (49)

Subtracting (49) from (48) and re-arranging leads to the desired result, eq.(14).
Proof of lemma 1. (1) From the definition of the robustness function in eq.(7) and the

continuity of R∗ in α, and since x solves the RSP, we require that:

R∗[x,F(α̂(x, rc), f̃)] ≥ rc (50)

Suppose that:
R∗[x,F(α̂(x, rc), f̃)] > rc (51)

By the info-gap axiom of nesting we have: α < α′ implies that F(α, f̃) ⊂ F(α′, f̃). Since R∗(x,A)
is monotonically decreasing in A (eq.(3)) and continuous in α, (51) implies that there is an
α > α̂(x, rc) such that:

R∗[x,F(α, f̃)] > rc (52)

which contradicts the definition of α̂(x, rc). Hence

R∗[x,F(α̂(x, rc), f̃)] = rc (53)

(2) Suppose that α̂(x, rc) > α̂d. Based on this supposition, and since α̂(x, rc) is continuous in
x, there is an x′ ∈ X such that pT x′ < pT x and α̂(x′, rc) > α̂d. This contradicts the supposition
of the lemma that x solves the RSP. Hence there is no such x′. Consequently α̂(x, rc) = α̂d.

Proof of lemma 2. (1) From the definition of the opportunity function in eq.(8) and the
continuity of R∗ in α, and since x solves the OWP, we require that:

R∗[x,F(β̂(x, rw), f̃)] ≥ rw (54)

16



Suppose that:
R∗[x,F(β̂(x, rw), f̃)] > rw (55)

By the info-gap axiom of nesting we have: α < α′ implies that F(α, f̃) ⊂ F(α′, f̃). Since
R∗(x,A) is monotonically increasing in A (eq.(4)) and continuous in α, (55) implies that there is
an α < β̂(x, rw) such that:

R∗[x,F(α, f̃)] > rw (56)

which contradicts the definition of β̂(x, rw). Hence

R∗[x,F(β̂(x, rw), f̃)] = rw (57)

(2) Suppose that pT x < w. Based on this supposition, and since β̂(x, rw) is non-satiated at x,
there is an x′ ∈ X such that β̂(x′, rw) < β̂(x, rw) and pT x′ < w. This contradicts the supposition
of the lemma that x solves the OWP. Hence there is no such x′. Consequently pT x = w.

Proof of Proposition 2. α̂d = α̂(x̂r, rc) by lemma 1.
Suppose, contrary to the assertion of the proposition, that there is an x′′ ∈ X which solves the

OWP with the specified w and rw, so that pT x′′ ≤ w, and for which:

β̂(x′′, rw) < β̂(x̂r, rw) (58)

which means that x̂r does not solve the OWP. We will refer to this contradictory supposition as
CS.

Given CS and the continuity of the opportunity function β̂(x, rw), we see that there is an x′

such that:
β̂(x′, rw) < β̂(x̂r, rw) and pT x′ < w (59)

That is, the opportunity is better at x′ than x̂r, and the expenditure with x′ is strictly less than
w.

By definition of the opportunity function:

β̂(x′, rw) = min





α : R∗[x′,F(α, f̃)] ≥ R∗[x̂r,F(α̂d, f̃)]︸ ︷︷ ︸
rw





(60)

and:

β̂(x̂r, rw) = min





α : R∗[x̂r,F(α, f̃)] ≥ R∗[x̂r,F(α̂d, f̃)]︸ ︷︷ ︸
rw





= α̂d (61)

Equality to α̂d in eq.(61) arises as follows. Because α̂d appears in the expression for rw in (61),
it is evident from (61) that β̂(x̂r, rw) ≤ α̂d. From the nesting axiom of info-gap models we see
that α < α̂d implies that F(α, f̃) ⊂ F(α̂d, f̃). Strict monotonicity of R∗(x, A) in α implies
R∗[x̂r,F(α, f̃)] < R∗[x̂r,F(α̂d, f̃)] for α < α̂d. Hence β̂(x̂r, rw) cannot be less than α̂d. Therefore
β̂(x̂r, rw) = α̂d.

Relations (59)–(61), together with monotonicity of R∗(x,A) in α, imply:

R∗[x′,F(α̂d, f̃)] > R∗[x̂r,F(α̂d, f̃)] (62)

By similar ordering of R∗ and R∗ this implies:

R∗[x′,F(α̂d, f̃)] > R∗[x̂r,F(α̂d, f̃)] (63)
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By definition of the robustness function:

α̂(x′, rc) = max





α : R∗[x′,F(α, f̃)] ≥ R∗[x̂r,F(α̂d, f̃)]︸ ︷︷ ︸
rc





(64)

The identity to rc results from lemma 1.
Lemma 1 also implies that α̂(x̂r, rc) = α̂d. Relations (63) and (64), together with monotonicity

of R∗(x,A) in the uncertainty sets A, relation (3), and continuity in α, imply:

α̂(x′, rc) > α̂d = α̂(x̂r, rc) (65)

Since pT x′ < w (eq.(59)), while (by definition of w) pT x̂r = w, we see from (65) that CS
implies that x̂r is not a solution of the RSP. This contradicts the condition of the proposition, so
CS is false. Hence there is no x′′ satisfying relation (58). We conclude that x̂r solves the OWP:
it minimizes the opportunity function and pT x̂r = w.

Proof of Proposition 3. Lemma 2 implies pT x̂o = w.
Suppose, contrary to the assertion of the proposition, that there is an x′′ ∈ X which solves the

RSP with the specified rc and α̂d, so that α̂(x′′, rc) ≥ α̂d and for which:

pT x′′ < pT x̂o (66)

which means that x̂o does not solve the RSP. We will refer to this contradictory supposition as
CS.

Given CS and the non-satiation of the robustness function α̂(x, rc), we see that there is an x′

such that:
pT x′ < pT x̂o and α̂(x′, rc) > α̂d (67)

That is, the expenditure is lower at x′ than x̂o, and the robustness with x′ is strictly greater than
α̂d.

By definition of the robustness function:

α̂(x′, rc) = max





α : R∗[x′,F(α, f̃)] ≥ R∗[x̂o,F(α̂d, f̃)]︸ ︷︷ ︸
rc





(68)

and

α̂(x̂o, rc) = max





α : R∗[x̂o,F(α, f̃)] ≥ R∗[x̂o,F(α̂d, f̃)]︸ ︷︷ ︸
rc





= α̂d (69)

Equality to α̂d in eq.(69) arises as follows. It is evident from (69) that α̂(x̂o, rc) ≥ α̂d. From the
nesting axiom of info-gap models we see that α̂d < α implies that F(α̂d, f̃) ⊂ F(α, f̃). Strict
monotonicity of R∗(x,A) in α implies R∗[x̂o,F(α, f̃)] < R∗[x̂o,F(α̂d, f̃)] for α̂d < α. Hence
α̂(x̂o, rc) cannot be greater than α̂d. Therefore α̂(x̂o, rc) = α̂d.

Relations (67)–(69), together with the monotonicity of R∗(x,A) in α, imply:

R∗[x′,F(α̂d, f̃)] > R∗[x̂o,F(α̂d, f̃)] (70)

By similar ordering of R∗ and R∗:

R∗[x′,F(α̂d, f̃)] > R∗[x̂o,F(α̂d, f̃)] (71)
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By definition of the opportunity function:

β̂(x′, rw) = min





α : R∗[x′,F(α, f̃)] ≥ R∗[x̂o,F(α̂d, f̃)]︸ ︷︷ ︸
rw





(72)

The identity of rw in (72) results from lemma 2.
By definition, α̂d = β̂(x̂o, rw). Relations (71) and (72), together with the monotonity of

R∗(x,A) in the sets A, relation (4), and continuity in α, imply:

β̂(x′, rw) < α̂d = β̂(x̂o, rw) (73)

Since pT x′ < pT x̂o (from eq.(67)), and since pT x̂o = w, (73) contradicts the supposition of the
proposition that x̂o solves the OWP. Hence there cannot be such an x′ and the CS is false. Hence
x̂o solves the RSP.
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