
Common Knowledge, Coherent Uncertainties and Consensus

Yakov Ben-Haim
Faculty of Mechanical Engineering

Technion — Israel Institute of Technology
Haifa 32000 Israel

yakov@aluf.technion.ac.il

Abstract

In this paper we study info-gap analogs of the classical game-theoretic concepts of information-
and knowledge-functions, common knowledge and consensus. Our main results are that knowledge is
constricted as info-gap-uncertainty grows (theorem 1), common knowledge is limited by the presence
of info-gap uncertainty (theorem 2), and that common knowledge is related to consensus via the info-
gap coherence functions (theorem 3). We discuss several examples, including the prisoners’ dilemma,
principal-agent contract negotiations, search and evasion strategies, and teamwork and the need for
costly transfer of information.
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1 Introduction

Aumann’s seminal paper of 1976 established the critical role of common knowledge in the achievement
of consensus. No less importantly, as Aumann himself notes, the result derives from an “appropriate
framework”, and thus establishes the fruitfulness of the concepts of partition and knowledge for the
analysis of agreement under disparate information.

In this paper we develop an information-gap framework for studying the role of common knowledge
in consensus among decision makers who operate with different information. We begin with a very
brief summary of the axioms and structure of info-gap models of uncertainty (section 2). Then, in
section 3, we explain how an info-gap model can be interpreted in a way which is similar to, though
different from, a partitional information function. We derive a knowledge function in section 4 based
on info-gap information functions, and compare it with the classical knowledge function based on a
partitional information function. Many though not all of the familiar properties of classical knowledge
functions are preserved. An important difference is that the info-gap knowledge function entails an
explicit dimension of info-gap uncertainty, and theorem 1 shows that knowledge is constricted as the
info-gap grows. Section 5 compares the info-gap knowledge function with the belief function studied
by Monderer and Samet (1989).

In section 6 we define common knowledge in the info-gap context. Our most important result in
this section, theorem 2, shows that common knowledge is limited by info-gap uncertainty. That is,
common-knowledge sets become empty beyond some level of iteration unless the info-gap is zero. We
apply this to a discussion of the prisoners’ dilemma.

In section 7 we employ the concept of info-gap coherence functions, which assess the degree of
similarity of distinct info-gap models of uncertainty. The coherence functions are important as an
indication of agreement on preferences among decision makers with different information. Complete
coherence guarantees consensus. We establish several relations between knowledge- and common-
knowledge-functions and the coherence functions. We show in theorem 3 that complete coherence is
equivalent to each agent being able to deduce common knowledge from self knowledge.

In section 8 we consider an example of contract negotiation between an employer and a potential
employee. We show how the disparity between the agents’ knowledge functions, and hence the loss of
common knowledge, increases with the incoherence of their info-gap models. In section 9 we examine
a general two-competitor situation such as a search-and-evasion problem. We show how each agent
can use the info-gap self-knowledge functions strategically by identifying situations in which the other
party cannot know about one’s own knowledge. In section 10 we study a reverse situation in which
information-transfer is needed for collaboration between design teams. Analysis of the knowledge
functions facilitates efficient formulation of the costly transfer of information.

All proofs appear in the appendix.

2 Info-gap Models of Uncertainty

Our quantification of uncertainty is based on non-probabilistic information-gap models (Ben-Haim,
2001). The info-gap intuition is that uncertainty is a disparity between what the decision maker
knows and what could be known. An info-gap model is a family of nested sets. Each set corresponds
to a particular degree of uncertainty, according to its level of nesting. Each element in a set represents
a possible realization of the uncertain event. There are no measure functions in an info-gap model
of uncertainty.

The theory of info-gap uncertainty provides a quantitative model for Knight’s concept of “true
uncertainty” for which “there is no objective measure of the probability”, as opposed to risk which is
probabilistically measurable (Knight, 1921, pp.46, 120, 231–232). Further discussion of the relation
between Knight’s conception and info-gap theory is found in (Ben-Haim, 2001, section 12.5). Sim-
ilarly, Shackle’s “non-distributional uncertainty variable” bears some similarity to info-gap analysis
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(Shackle, 1972, p.23). Likewise, Kyburg recognized the possibility of a “decision theory that is based
on some non-probabilistic measure of uncertainty.” (Kyburg, 1990, p.1094).

Uncertain quantities are vectors or vector functions. Uncertainty is expressed at two levels by info-
gap models. For fixed α the set U(α, x̃) represents a degree of variability of the uncertain quantity x
around the centerpoint x̃. The greater the value of α, the greater the range of possible variation, so
α is called the uncertainty parameter and expresses the information gap between what is known (x̃
and the structure of the sets) and what needs to be known for an ideal solution (the exact value of
x). The value of α is usually unknown, which constitutes the second level of uncertainty: the horizon
of uncertain variation is unbounded.

Let < denote the non-negative real numbers and let Ω be a Banach space in which the uncertain
quantities x are defined. An info-gap model U(α, x̃) is a map from < × Ω into the power set of
Ω. Info-gap models obey four axioms. Nesting: U(α, x̃) ⊆ U(α′, x̃) if α ≤ α′. Contraction: U(0, 0)
is the singleton set {0}. Translation: U(α, x̃) is obtained by shifting U(α, 0) from the origin to x̃:
U(α, x̃) = U(α, 0) + x̃. Linear expansion: info-gap models centered at the origin expand linearly:
U(α′, 0) = α′

α U(α, 0) for all α, α′ > 0. For more discussion of these axioms see Ben-Haim (1999).

3 Information Functions

In this section we will explain the sense in which an info-gap model can be understood as an ‘in-
formation function’ in analogy to the classical results reviewed by Osborne and Rubinstein (1994,
pp.67–70). In section 4 we will extend the discussion to an info-gap knowledge function.

Let Ω denote the set of all events or states: the universe of discourse. Ω need not be a Banach
space, nor even an infinite set. A classical information function P maps every element ω ∈ Ω to a
nonempty subset P (ω) of Ω. The interpretation of the information function P (ω) “is that when the
state is ω the decision maker knows only that the state is in the set P (ω). That is, he considers it
possible that the true state could be any state in P (ω) but not any state outside P (ω).” (Osborne
and Rubinstein 1994, pp.67–68). See also (Aumann 1976, p.594).

P (ω) is set-theoretic, non-probabilistic, and suggestive of info-gap ideas. However, P (ω) specifies
a precise boundary between the known and the unknown. This is softened in the info-gap approach
without introducing distributional modelling. From the epistemic point of view, sharp and immutable
assertions are not always compatible with severely deficient information. From the perspective of
objective or ontological uncertainty, the real world may simply not display the sort of crisp and clear
delineation which is entailed in a partition such as P (ω).

In this section we will explore an analogy between P (ω) and the info-gap model U(α, ω), α ≥ 0.
We henceforth consider the universe of discourse Ω to be a Banach space. An interpretation of
U(α, ω) as an information function is that the decision maker knows that, up to info-gap α, any state
in U(α, ω) is possible. The decision maker’s epistemic condition is the family of nested sets U(α, ω),
α ≥ 0. The decision maker knows that the state of the world is constrained to some of the sets in this
family, but he does not know which sets. What he does know is ω and the structure of the family
of sets, but he does not know the values of α which capture the true state of the world, nor what
that true state actually is. The decision maker suffers two levels of epistemic limitation: (1) for any
given α he does not know what (if any) element of U(α, ω) holds, and (2) regarding α he knows only
that α ≥ 0. Discussion of some further epistemological aspects of info-gap uncertainty is found in
Ben-Haim (2001, chapter 12).

Classical information functions are usually assumed to obey two conditions:

P1 ω ∈ P (ω) for every ω ∈ Ω (1)
P2 If ω′ ∈ P (ω) then P (ω′) = P (ω) (2)

It is clear from the axioms of info-gap models that U(α, ω) obeys the analog of P1 but does not have
a property analogous to P2. The info-gap analog of P1 is:
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Lemma 1
ω ∈ U(α, ω) (3)

Now consider P2. Many ‘garden variety’ info-gap models show that:

ω′ ∈ U(α, ω) does not imply U(α, ω′) = U(α, ω) (4)

which, were the implication valid, would be the info-gap analog of P2. For instance, consider an
ellipsoidal info-gap model:

U(α, ω) =
{
ν = ω + x : xT V x ≤ α2

}
, α ≥ 0 (5)

where V is a real, symmetric, positive definite matrix. U(α, ω), α ≥ 0, is the family of ellipsoids
centered at ω whose shape is determined by V . If ω′ lies on the boundary of one of these ellipsoids,
then U(α, ω′), α ≥ 0, is the family of ellipsoids of shape V centered at ω′, which is a different family
of sets from U(α, ω), α ≥ 0. Clearly ω′ ∈ U(α, ω) but U(α, ω′) 6= U(α, ω).

A partition of a set A is a collection of disjoint subsets of A whose union equals A. Osborne
and Rubinstein show that an information function P (ω) is a partition of Ω if and only if P obeys
conditions P1 and P2. An info-gap model — a family of nested sets U(α, ω), α ≥ 0 — is not a
partition, though it is nonetheless amenable to a set-theoretic interpretation as a decision maker’s
information: U(α, ω) is what the decision maker knows about the universe of possibilities, up to
info-gap α.

P2 is a particularly important property of classical information functions. Osborne and Rubinstein
explain that

P2 says that the decision maker uses the consistency or inconsistency of states with his
information to make inferences about the state. Suppose, contrary to P2, that ω′ ∈ P (ω)
and there is a state ω′′ ∈ P (ω′) with ω′′ 6∈ P (ω). Then if the state is ω the decision maker
can argue that since ω′′ is inconsistent with his information the true state cannot be ω′.
(Osborne and Rubinstein 1994, p.68).

Let’s examine how the analogous argument would proceed in the info-gap context, in light of the fact
that the analog of P2 does not hold.

Our info-gap model is the family of nested sets U(α, ω), α ≥ 0. Suppose that:

ω′ ∈ U(α, ω) (6)

which means that ω′ is consistent with our information, up to uncertainty α. Now suppose there is
an event ω′′ such that:

ω′′ ∈ U(α, ω′) and ω′′ 6∈ U(α, ω) (7)

That is, ω′′ is consistent with ω′ up to α, but inconsistent with ω up to α. Nonetheless, there is an
α′′ > α for which:

ω′′ ∈ U(α′′, ω) (8)

In other words, ω′′ is consistent with our information up to uncertainty α′′. The decision maker can
conclude that ω′′ is, in some sense, less consistent with our information than ω′. This may impugn
ω′ in some sense, (since ω′ is consistent with our information up to α) but ω′ cannot be excluded
from the realm of the possible. Information expressed by an info-gap model is less informative, more
flexible, and less committal than classical information functions.
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4 Knowledge Functions

In this section we will define an info-gap knowledge function which is analogous to the classical results
discussed by Osborne and Rubinstein (1994, pp.67–70).

For any event E, a subset of Ω, a classical information function P generates a knowledge func-
tion defined as:

K(E) = {ω ∈ Ω : P (ω) ⊆ E} (9)

Osborne and Rubinstein (1994, p.69) explain that “the set K(E) is the set of all states in which the
decision maker knows E.” Regardless of whether or not P obeys P1 and P2, the knowledge function
has the following properties: K(Ω) = Ω; E ⊆ F implies that K(E) ⊆ K(F ); and K(E) ∩K(F ) =
K(E ∩ F ).

We can define an info-gap knowledge function in a very similar way with respect to an info-gap
model:

Kα(E) = {ω : U(α, ω) ⊆ E} (10)

Kα(E) is the set of states ω in which the decision maker knows, up to uncertainty α, that event E
holds. Stated differently, Kα(E) is the set of states which, up to uncertainty α, are consistent with
E.

In discussing info-gap knowledge functions we define the domain of discourse Ω as the Banach
space in which the info-gap model is defined. It is then readily shown that Kα(E) obeys the analogs
of the basic properties of classical knowledge functions:

Lemma 2 The knowledge function Kα(E) has the properties:

K1 Kα(Ω) = Ω (11)
K2 E ⊆ F implies that Kα(E) ⊆ Kα(F ) (12)
K3 Kα(E) ∩Kα(F ) = Kα(E ∩ F ) (13)

The following proposition is an additional immediate consequence of the nesting axiom of info-gap
models:

Theorem 1 Knowledge is constricted as uncertainty grows:

α < α′ implies that Kα′(E) ⊆ Kα(E) (14)

An info-gap model, U(α, ω), α ≥ 0, is a family of nested sets, where α is the uncertainty parameter.
In theorem 1, α′ is a greater horizon of uncertainty than α. The result indicates that the set of states
in which we can know E is smaller at the greater horizon of uncertainty.

Theorem 1 is to be distinguished from the nesting property (axiom 1) of info-gap models:

α < α′ implies that U(α, ω) ⊆ U(α′, ω) (15)

An info-gap model is the analog of the classical partitional information function. The intuition in
relation (15) is similar to the idea expressed by Fudenberg and Tirole (1991, p.543) that “more precise
information corresponds to knowing a smaller set: Knowledge here is the ability to rule out some of
the states that were possible ex ante.” Regarding relation (15): the information at info-gap α (that
is, U(α, ω)) is “more precise” than the information at info-gap α′ (namely U(α′, ω)) since more states
can be ruled out at α than at α′. This greater precision is manifested in relation (14) by the fact
that at α we can assert the truth of E in a wider class of states than at α′.

We see that K(E) and Kα(E) have similar (though not identical) interpretations as knowledge
functions, and they both obey properties K1–K3 or their analogs without invoking property P1

5



or P2. Likewise we recognize that P (ω) and U(α, ω) bear analogous interpretations as information
functions.

Osborne and Rubinstein show that, if the information function P satisfies property P1, then the
knowledge function obeys: K(E) ⊆ E. The analogous relation holds for Kα(E):

Lemma 3
Kα(E) ⊆ E (16)

If the classical information function P (ω) satisfies both P1 and P2 then its knowledge function
obeys:

K(E) ⊆ K(K(E)) (17)
Ω−K(E) ⊆ K(Ω−K(E)) (18)

Osborne and Rubinstein note that in fact equality holds in both of these relations.
Inclusion (17) is interpreted by Osborne and Rubinstein to mean that “if the decision maker knows

E then he knows that he knows E.” (1994, p.70). In light of the fact that relation (17) is in fact an
equality, its interpretation is also that ‘knowledge of E’ and ‘knowledge of knowledge of E’ are the
same event. Whether this is reasonable depends upon, among other things, what exactly we mean
by ‘knowledge’. One sense of the term is “familiarity gained by experience” (Flexner, 1980; Oxford
English Dictionary, 1999). Who has not had the delightfully surprising experience of discovering that
one has an unanticipated ability, like for driving on ice or for installing complex computer programs.
In such cases knowing (how to drive on ice) is distinct from knowing that one knows (how to drive
on ice). The point is that (17) is not necessarily a requirement for a meaningful knowledge function.

Example 1 A simple example will illustrate that the info-gap analog of relation (17) does not
necessarily hold. Let the domain of discourse Ω be the set of real numbers and consider the info-gap
model U(α, ω) defined as the family of closed intervals centered at ω:

U(α, ω) = {v : |v − ω| ≤ α} , α ≥ 0 (19)

Let E be any subset of Ω, so the knowledge function Kα(E) is the set of centerpoints of intervals of
width 2α contained in E. In particular, for E = [0, 1]:

Kα(E) = {ω : U(α, ω) ⊆ E} (20)
= {ω : [ω − α, ω + α] ⊆ [0, 1]} (21)
= [α, 1− α] (22)

which is empty unless α ≤ 1/2.
In similar fashion we find:

Kα(Kα(E)) = {ω : U(α, ω) ⊆ Kα(E)} (23)
= {ω : [ω − α, ω + α] ⊆ [α, 1− α]} (24)
= [2α, 1− 2α] (25)

which is empty unless α ≤ 1/4. We see that Kα(Kα(E)) is a proper subset of Kα(E) unless they
are both empty, contradicting (17). In summary, in this example, ‘knowing that we know E’ entails
‘knowing E’, but not the converse.

In fact, lemma 3 immediately implies that ‘knowledge of knowledge of E’ entails ‘knowledge of
E’: Kα(Kα(E)) ⊆ Kα(E).

Relation (18) is interpreted by Osborne and Rubinstein (1994, p.70) to mean “that the decision
maker is aware of what he does not know: if he does not know E then he knows that he does not know
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E.” A decision maker with this level of self-awareness is to be admired; awareness of ones ignorance
is often purchased only at enormous cost. The following example illustrates that the info-gap analog
of (18) need not hold.

Example 2 Continuing example 1, we find from eq.(22) that:

Ω−Kα(E) =

{
(−∞, α) ∪ (1− α,∞) α ≤ 1

2

(−∞,∞) α > 1
2

(26)

From this we find that:

Kα(Ω−Kα(E)) =

{
(−∞, 0) ∪ (1,∞) α ≤ 1

2

(−∞,∞) α > 1
2

(27)

We see that, in this example:
Ω−Kα(E) 6⊆ Kα(Ω−Kα(E)) (28)

for 0 < α < 1/2, which shows that the info-gap analog of relation (18) need not hold.

5 Knowledge and Belief

In this section we briefly point out a parallel between the info-gap knowledge function and a proba-
bilistic conception of belief.

For an agent whose information structure is a partition P (ω) with probability measure µ, Monderer
and Samet (1989) denote the event ‘the agent p-believes E’ by:

Bp(E) = {ω : µ(E|P (ω)) ≥ p} (29)

Thus Bp(E) is the set of states of the world ω in which the agent’s information P (ω) indicates that
the probability of E is no less than p.

Now consider the info-gap knowledge function based on the info-gap model U(α, ω). The agent’s
info-gap knowledge function, Kα(E) in eq.(10), is the set of states of the world ω in which the
agent can conclude, at ambient uncertainty no greater than α, that E holds. If the agent’s info-gap
is no greater than α, then Kα(E) is the set of states in which he can infer E. Motivated by the
interpretation of Bp(E) as the event ‘p-belief in E’, we see that Kα(E) can be interpreted as the
event ‘α-belief in E’. The difference of course is that p-belief entails probabilistic knowledge, the
measure function µ, while info-gap-belief entails the non-probabilistic info-gap model U .

One way to further establish the parallel between p- and α-belief is to note that they display the
same inverse-nesting:

p < p′ implies that Bp′(E) ⊆ Bp(E) (30)
α < α′ implies that Kα′(E) ⊆ Kα(E) (31)

Relation (30) states that one’s p-belief diminishes as one demands greater certainty for the belief.
That is, the set of states in which one can be very confident (p′-confident) that E holds, is smaller
than the set of states in which one’s confidence is only p. Likewise, relation (31) (which is theorem 1)
states that one’s α-belief diminishes as one demands greater assertability for the belief. That is, the
set of states in which one can assert E even in the presence of a large info-gap, α′, is smaller than
the set of states in which one can assert E when one’s uncertainty is only α.
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6 Common Knowledge

In this section we discuss a direct info-gap analog of the classical idea of common knowledge.
Let the knowledge functions of two agents be K1,α(E) and K2,α(E), based on info-gap models

U1(α, ω) and U2(α, ω), respectively. The n-fold iterated knowledge function of agent i is, for j = 3− i
and for n ≥ 1:

Kn
i,α(E) = Ki,α(Kn−1

j,α (E)) (32)

where we define K0
i,α(E) = E. The interpretation is that Ki,α(E) is the set of states in which i can

infer that, up to info-gap α, E holds. Thus K2
i,α(E) = Ki,α(Kj,α(E)) is the set of states in which i

infers (up to α) that j infers (up to α) that E holds. In the set K3
i,α(E) = Ki,α(Kj,α(Ki,α(E))), i

infers (up to α) that j infers (up to α) that i infers (up to α) that E holds. And on it goes.

Definition 1 Event E is common knowledge between agents 1 and 2 in state ω and at info-gap
α if ω belongs to all the sets Kn

i,α(E) for i = 1, 2 and for all n ≥ 1.

We now discuss a fairly general theorem which shows that common knowledge is not possible at
any positive info-gap.

The universe of discourse Ω is a normed space whose norm is denoted ‖ · ‖. A ball of radius r and
centered at c is denoted Br,c:

Br,c = {ω : ‖ω − c‖ ≤ r} (33)

If r < 0 we define Br,c = ∅.

Theorem 2 Let E ⊆ Ω be contained in a ball E+ = Bρ,c. Two agents have info-gap models U i(α, ω),
i = 1, 2 for which there exist balls Bρi(α),ω such that:

Bρi(α),ω ⊆ U i(α, ω) (34)

for all ω ∈ E+. The radius functions ρi(α) are both positive for α > 0, and they do not depend upon
ω. For i = 3− j and for all n ≥ 1, define the functions:

σi,2n(α) = n[ρi(α) + ρj(α)] (35)
σi,2n−1(α) = nρi(α) + (n− 1)ρj(α) (36)

With these conditions, the iterated knowledge functions of the two agents satisfy:

Kn
i,α(E) ⊆ Bρ−σi,n(α),c (37)

What this result means is that, if α > 0, then there is an integer n∗(α) for which Kn
i,α(E) = ∅ for

all n ≥ n∗(α). That is, a positive info-gap of size α precludes the possibility of common knowledge
beyond the n∗(α)th layer. Full common knowledge, to all levels of iteration n, is possible in the
info-gap context only under full information: α = 0. We can estimate n∗(α): it is no larger than the
least value of n at which σi,n(α) > ρ, where ρ is the radius of E+, the ball containing E.

We see in theorem 2 a rather fundamental divergence between the classical theory of partitional
information and the info-gap analog of that theory which is developed here. In the classical theory,
an event E is common knowledge in state ω if ω belongs to all the iterated knowledge functions of E
(Osborne and Rubinstein 1994, p.73). Such common knowledge is not only possible, but its existence
is essential to such important results as Aumann’s theorem (1976). In the info-gap case, however,
complete common knowledge at all levels of iteration is not possible if α > 0, since theorem 2 implies
that no more than a finite number of knowledge functions are non-empty. Perhaps the ultimate
source of the difference is the absence of the analog of property P2, eq.(2), from the info-gap theory,
as explained in eqs.(4)–(8).
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Example 3 Consider two agents i = 1, 2 whose info-gap models are identical balls:

U i(α, ω) = Bα,ω, α ≥ 0 (38)

Thus their information functions are the same.
Let E = Bρ,c. The iterated knowledge function can be directly constructed, and is found to be:

Kn
i,α(E) =

{
∅ α >

ρ

n
Bρ−nα,c otherwise

(39)

The set-inclusions in theorem 2 become equalities in this spherical example, and n∗(α) = ρ/α. While
i’s individual knowledge is identical to j’s, common knowledge at info-gap α is possible only up to
and including the nth layer for n ≤ ρ/α.

Example 4 Prisoners’ dilemma. A typical penalty function for the prisoners’ dilemma (Davis,
1997) is shown in table 1 where ‘C’ means ‘confess’ and ‘D’ means ‘don’t confess’. For instance, in
situation ‘C, D’ the prisoners receive penalties 1 and 3, respectively. Larger entries represent greater
penalties. Each prisoner faces the dilemma that neither strategy, C or D, dominates the other. If
one prisoner chooses C then the other would prefer C over D to obtain penalty 2 rather than 3. On
the other hand, if one prisoner chooses D then the other would likewise prefer D to gain penalty 0
rather than 1. Since the prisoners can’t collude, they each face a dilemma.

C D
C 2, 2 1, 3
D 3, 1 0, 0

Table 1: Typical penalty matrix for the prisoners’ dilemma.

Now consider the situation in which neither player is certain about the penalties accruing under
(C, C) and (D, D). That is, the penalty matrix is table 2. The values of x and y are uncertain to the
prisoners, and can be any real numbers, positive and negative values being penalties and rewards,
respectively.

C D
C x, x 1, 3
D 3, 1 y, y

Table 2: Penalty matrix for the prisoners’ dilemma with uncertainty.

Let Ω be <2: the space of (x, y) values. Each prisoner’s info-gap model for uncertainty in (x, y)
is a ball, as in eq.(38).

Consider the event E = Bρ,c where c is the typical vector of penalty values: c = (2, 0). Option
D dominates C if and only if x ≥ 3 and y ≤ 1. Event E contains a penalty matrix in which C is
dominated if and only if ρ ≥ 1. The existence of D as a possibly dominating option might influence
the prisoners’ cogitations. Nominally (table 1) ‘D, D’ is the global optimum, though the choice of D
is also the riskiest for each individual prisoner. If D dominates, however, it is Nash stable and both
locally and globally optimal.

Recall from theorem 1 that one’s knowledge decreases as α increases. Also, the nesting axiom
of info-gap models states that the range of available contingencies increases as α increases. These
observations motivate the interpretation that one’s ampliative confidence decreases as α increases.
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Let us consider ρ ≥ 1, so D-dominance is possible (though not guaranteed) in E. We know from
example 3 that the iterated knowledge function Kn

i,α(E) is not empty if and only if n ≤ ρ/α. If α > ρ
then K1

i,α(E) = ∅, meaning that neither prisoner can infer, up to info-gap α, that E holds or that
C is possibly dominated. If α ≤ ρ then K1

i,α(E) 6= ∅ which means that each prisoner knows (with
info-gap α) that a D-dominant penalty matrix is possible. However, if α > ρ/2 then K2

i,α(E) = ∅,
which means that neither prisoner can infer that the other prisoner can know that a D-dominant
strategy is possible. Since collusion is the prisoners’ best hope, this lack of common knowledge is
significant.

7 Common Knowledge, Coherent Uncertainties and Consensus

We have shown in theorem 2 that full common knowledge is not possible when accompanied by
an info-gap. Consensus is nonetheless a possibility. We will show that consensus can occur if the
info-gap models of the agents are coherent (in a sense to be defined). Furthermore we will show that
coherence of the uncertainty models facilitates whatever common knowledge is possible. In summary,
we establish, in an info-gap context, the connection between consensus and common knowledge. In
this way we establish an info-gap analog of Aumann’s famous result (1976).

g(α) and h(α) are coherence functions for two info-gap models, U i(α, ω), i = 1, 2, if:

0 ≤ g(α) ≤ h(α) (40)

and if:
U1(g(α), ω) ⊆ U2(α, ω) ⊆ U1(h(α), ω) (41)

(Note the asymmetry of the indices 1 and 2.) g(α) and h(α) are, respectively, lower and upper
coherence functions. If g(α) = h(α) then U1(g(α), ω) = U2(α, ω), which means that U1 is simply a
scaled version of U2. If g(α) and h(α) are close then these info-gap models are similar though not
identical in shape. Coherence functions are important in providing an indication of the possibility of
agreement between the decision makers (Ben-Haim, 2001, chap. 9).

We defined the info-gap knowledge function Kα(E) in eq.(10), and the iterated info-gap knowledge
functions Kn

i,α(E), in eq.(32). Kn
i,α(E) regards common knowledge: what i knows about what j knows

about what i knows, etc. We now define an iterated self-knowledge function: what i knows about
his own knowledge. For all n ≥ 1 define:

Kn
i,α,β(E) = Ki,α(Kn−1

i,β,α(E)) (42)

where:
K0

i,α,β(E) = E (43)

For instance, K2
i,α,β(E) is the set of states in which i knows (up to info-gap α) the set of states in

which i knows E (up to info-gap β).
Our first result establishes set-inclusion relations involving common knowledge, self-knowledge

and coherence functions.

Lemma 4 Given coherence functions g(α) and h(α) defined for info-gap models U1(α, ω) and U2(α, ω)
in the sense of eq.(41), the knowledge functions satisfy:

Kn
1,h(α),α(E) ⊆ Kn

2,α(E) ⊆ Kn
1,g(α),α(E) (44)

Kn
1,α,h(α)(E) ⊆ Kn

1,α(E) ⊆ Kn
1,α,g(α)(E) (45)
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We have shown elsewhere (Ben-Haim, 2001, chap. 9) that, if g(α) = h(α), then the two agents have
identical robust-satisficing info-gap preferences on their options, regardless of the reward function.
That is, uncertainty-coherence implies consensus. Furthermore we have shown that if g(α) and h(α)
are ‘close’ then agreement is ‘facilitated’. Relation (44) shows that:

g(α) = h(α) =⇒ Kn
2,α(E) = Kn

1,g(α),α(E) for all n (46)

That is, if the coherence functions are equal, then each common-knowledge function Kn
2,α(E) is

equal to a self-knowledge function Kn
1,g(α),α(E). If the info-gap models are completely coherent, then

agent 1 can deduce all the accessible common knowledge from self knowledge alone. It is clear that
if g(α) = h(α), then the coherence functions defined in the other direction (2 and 1 interchanged in
eq.(41)) are also equal. Lemma 4 now implies that agent 2 can also deduce all common knowledge
from his own self-knowledge functions.

Furthermore, lemma 4 shows how 1’s self-knowledge can be used to bracket his re-construction of
common knowledge, when coherence between the info-gap models is less than complete.

To develop a result which is converse to implication (46) we first need lemma 5.
An info-gap model is bounded if all its sets U(α, ω) are bounded.

Lemma 5 U1(α, ω) and U2(α, ω) are bounded info-gap models with knowledge functions K1,α(E)
and K2,α(E), respectively.

K2,α(E) = K1,β(E) for some ω0 ∈ Ω, for E = U1(β, ω0) and for E = U2(α, ω0) (47)

if and only if:
U2(α, ω) = U1(β, ω) for all ω (48)

This result says that the agents have the same knowledge at two particular events, though possibly
at different levels of uncertainty, if and only if the info-gap uncertainty sets which comprise that
knowledge are the same, at the respective levels of uncertainty. (Incidentally, using eq.(10), (48)
implies that K2,α(E) = K1,β(E) for all E.)

Lemma 5 can be applied to show that:

K2,α(E) = K1,g(α)(E) for E = U1(g(α), ω0) and for E = U2(α, ω0) (49)

if and only if:
U2(α, ω) = U1(g(α), ω) for all ω (50)

If this holds for all α ≥ 0 then g(α) is both a lower and an upper coherence function. In other
words, the equivalence of the knowledge functions of agents 1 and 2 in relation (49) implies complete
coherence, g(α) = h(α).

We collect the results of this discussion of lemmas 4 and 5 in the following theorem.

Theorem 3 U1(α, ω) and U2(α, ω) are bounded info-gap models with knowledge functions K1,α(E)
and K2,α(E), respectively, and with lower and upper coherence functions g(α) and h(α) in the sense
of eq.(41). The following assertions are equivalent.

g(α) = h(α) for all α (51)

Kn
2,α(E) = Kn

1,g(α),α(E) for all n, α, E (52)

For each value of α there is an ω0 such that:

K2,α(E) = K1,g(α)(E) for E = U1(g(α), ω0) and for E = U2(α, ω0) (53)
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Aumann’s theorem states that if two agents have the same prior probabilities and if their posterior
probabilities are common knowledge, then these posteriors must be equal (Aumann, 1976; see also
Osborne and Rubinstein, 1994, section 5.3). This equality must hold even if the agents’ partitional
information functions differ. Since their probability assessments are identical, the agents will presum-
ably have a strong basis for further agreement on issues of judgment and action. In short, consensus
can arise through common knowledge despite differing information.

A literal analog of Aumann’s theorem is not possible in the info-gap context because there are no
measure functions in an info-gap model of uncertainty, and because full common knowledge to all
levels of iteration is not possible in the presence of an info-gap (theorem 2). Nonetheless, consensus
is possible and theorem 3 establishes a connection between knowledge and agreement.

We know that if the info-gap models of two agents are coherent, that is, their lower and upper
coherence functions are equal as in eq.(51), then their robust satisficing info-gap preferences will agree
(Ben-Haim, 2001, section 9.1, corollary 2). Theorem 3 states that the info-gap models are coherent if
and only if the knowledge functions are equal at particular events and at specific, perhaps differing,
levels of info-gap uncertainty (eq.(53)). Lemma 5 shows that this equality of the knowledge functions
is equivalent to identity of ‘shape’ though not ‘scale’ of the info-gap models. In other words, agents
whose information differs only in level of uncertainty will agree on their preferences over the available
actions (at any fixed level of satisficing reward).

We also know that if the coherence functions are ‘close’ (but not necessarily equal) at a point
which depends on any pair of options, then the agents will agree on their preferences between these
options (Ben-Haim, 2001, section 9.1, corollary 1). If the coherence functions differ, then so do the
mutual and self-knowledge functions, as seen in eqs.(51) and (52) of theorem 3. But relation (44) of
lemma 4 shows that if the coherence functions are close then these knowledge functions are also close.
In short, consensus is possible if self-knowledge and common knowledge do not differ too greatly.

8 Contract Negotiation

In this section we apply theorem 3 to a negotiation between an employer and a prospective employee.
For further discussion see (Ben-Haim, 2001, pp.240–243).

The problem. An employer wishes to offer a contract of employment to a prospective employee.
The employee’s activity will generate income η. The employee’s wages w(η, q) depend on the income
according to some formula encoded in the decision vector q. The choice of q is the essence of
the agreement which must be reached between employer and employee. In a bidding situation the
employer hopes to make an offer, entailing a specification of q, which will be acceptable to the
employee, and yet which will also assure adequate profit to the employer.

The income η depends on the effort ε which the employee will expend on the job, as well as on
other unknown and uncontrollable factors. Nominally, the income is related to the employee’s effort
according to:

η = γε (54)

where γ is a known quantity. Reality, of course, is more complicated. The employee declares an
intended effort εd. The employer may be uncertain about whether or not this declared intention
reflects the true future effort to be exerted by the employee. Likewise, the employee may be overly
optimistic (or deceptive) and hence uncertain as well about what effort will in fact be expended.
Furthermore, the degree of disparity between effort and effectiveness is unclear to both parties. In
short, the income is uncertain due to the uncertain effort and to additional unknown factors. The
income and the effort are uncertain to both the employer and the employee, though their perceptions
of these uncertainties are different.

The employer would like to know, before entering negotiations, or before actually specifying a class
of wage formulas w(η, q), that mutually acceptable agreement with an employee is plausible. A strong
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element of plausibility would be provided by coincidence of employee and employer preferences on
the available q-values, despite their different perceptions of the uncertainties. This does not entirely
guarantee that agreement will be reached, since the parties may disagree about the required minimal
(satisficing) level of reward. That is, the preferences generated by an info-gap robustness function
α̂(q, rc) depend on the critical reward rc, whose selection by the two sides may differ. Nonetheless, if
the robustness functions for employer and employee generate identical preferences at any given value
of rc, then this is a firm basis for seeking a final agreement.

Uncertainty models. Let us suppose that the employer’s uncertainty about the income η and
employee effort ε is represented by the following info-gap model:

U2(α, (γεd, εd)) = {(η, ε) : γε(1− α) ≤ η ≤ γε(1 + α)
εd(1− α) ≤ ε ≤ εd(1 + α)} , α ≥ 0 (55)

In other words, the employer’s uncertainty about the income, η, varies as a symmetric interval of
unknown size about the nominal value γε, where ε is the unknown effort exerted by the employee. In
addition, the employer’s uncertainty about the employee’s effort ε varies in an unknown symmetric
interval about the declared value εd.

The employee has a similar uncertainty model, with the single difference that the uncertain interval
for the employee’s effort is asymmetrical with respect to the same centerpoint. In particular, the
interval is extended to lower values:

U1(α, (γεd, εd)) = {(η, ε) : γε(1− α) ≤ η ≤ γε(1 + α) (56)
εd(1− ψα) ≤ ε ≤ εd(1 + α)} , α ≥ 0

where ψ ≥ 1 is a value chosen by the employee to reflect an inclination to implement lower-than-
declared values of effort ε.

Coherence functions and common knowledge. The maximal lower and minimal upper
coherence functions, defined in the sense of eq.(41), are:

g(α) =
α

ψ
and h(α) = α (57)

where ψ ≥ 1 because the employee anticipates the possibility of expending less than the declared
effort εd. The incoherence, h(α)− g(α), of these info-gap models is:

∆ =
ψ − 1

ψ
α (58)

which is non-negative and less than α.
We know from theorem 3 that, since the info-gap models are not coherent (that is, eq.(51) does

not hold if ψ > 1), neither agent can precisely deduce the other’s knowledge function from his own
(eq.(53) also does not hold). Specifically, the disparity between K1,g(α)(E) and K2,α(E) increases
with the incoherence, ∆.

As an example, let E = U2(α, ω0) for ω0 = (γεd, εd). The knowledge functions for this event are:

K2,α(E) = {ω0} (59)

K1,g(α)(E) =
{

(γε, ε) : ε ∈
[
εd,

1 + α

1 + α−∆
εd

]}
(60)

These knowledge functions are equal if and only if the info-gap models are coherent (∆ = 0). The
upper bound of the interval of ε-values in (60) gets larger, and the knowledge functions become more
different, as ∆ increases towards α. As we expect from eq.(44) of lemma 4 for n = 1, K2,α(E) is a
subset of K1,g(α)(E). However, if the employer (agent 2) tries to construct the employee’s knowledge
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of E from 2’s own self knowledge (which 2 could do if eq.(53) held), the employer errs increasingly
as the incoherence rises.

Curiously, K1,g(α)(E) grows as α, the info-gap, increases (recall from eq.(58) that ∆ is proportional
to α). This is surprising, in light of theorem 1 from which we know that knowledge is constricted
as the info-gap grows as expressed by the set-inclusion in eq.(14). However, in the present example
the event E also depends upon α, unlike theorem 1. So, in the present case K1,g(α)(E) and K2,α(E)
become more different with increasing α: K2,α(E), a singleton set, is invariant, while K1,g(α)(E)
grows. It becomes more difficult for 2 to estimate 1’s knowledge as 1’s knowledge grows.

9 Search and Evasion: Two Competitors

In a hunter’s search after an evasive prey, the vector function ω(t) represents the displacement
between hunter and prey as a function of time. Neither party knows ω(t), though each could know
ω(t) if he knew his own as well as the other agent’s strategy. In the absence of this knowledge, the
evolution of ω(t) is shrouded in a cloud of possibilities whose range of variation increases with the
agent’s info-gap.

Agent 1 does not know 2’s info-gap model for the uncertainty in ω(t). However, we will suppose
that 1 has the resources to estimate coherence functions, in the sense of eq.(41), of the form:

g(α) = ζα, h(α) =
1
ζ
α, 0 < ζ ≤ 1 (61)

Agent 1 knows his own info-gap model for ω(t), so, knowing the value of ζ, 1 can bracket 2’s knowledge
functions based on eq.(44) of lemma 4. This is strategically important since it allows 1 to estimate
what 2 knows, what 2 knows that 1 knows, etc. For instance, if 1 is going to try to force ω into a
particular region E of Ω, 1 would like to know if 2 can detect this, and if 2 can know that 1 knows
that ω is in E, etc. We will illustrate this with a simple example.

Agent 1 represents ω(t) as a truncated expansion of order M , the coefficients of which are uncertain
real numbers but the expansion functions are known. Thus 1’s info-gap model is a family of nested
sets in <M : the space of uncertain coefficient vectors. We consider an ellipsoid-bound info-gap
uncertainty model in which the major axes of the ellipsoids are parallel to the coordinate axes:

U1(α, ω) =
{
ν : (ν − ω)T D(ν − ω) ≤ α2

}
, α ≥ 0 (62)

where D is a diagonal real matrix with positive eigenvalues λ1, . . . , λM .
We will consider events which are rectangles in <M . Define the rectangle centered at c and with

side half-lengths s:
R(s, c) = {ω : |ωm − cm| ≤ sm, m = 1, . . . , M} (63)

which we define to be empty if sm < 0 for any m = 1, . . . , M .
The principal axes of the ellipsoid defining U1(α, ω) are parallel to the sides of R(s, c), and the

the lengths of the semi-axes of this ellipsoid are α/
√

λm, m = 1, . . . , M . Thus U1(α, ω) is contained
within the rectangle R(s, c) if ω is within the rectangle R(s − αµ, c) where µm = 1/

√
λm, m =

1, . . . , M . That is, if E = R(s, c), then 1’s knowledge function for E is:

K1,α(E) = R(s− αµ, c) (64)

which is empty if sm < α/
√

λm for any m. Eq.(64) states that the knowledge function of a rectangle
is a somewhat smaller rectangle. This enables the easy derivation of the self-knowledge functions
Kn

1,α,β(E), as we now show.
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Define the M -vector function whose mth element δm(n, α, β) is:

δm(2n, α, β) =
n(α + β)√

λm
(65)

δm(2n + 1, α, β) =
(n + 1)α + nβ√

λm
(66)

By induction one can show that, for E = R(s, c), 1’s self-knowledge functions are:

Kn
1,α,β(E) = R[s− δ(n, α, β), c] (67)

which is empty if and only if sm < δm(n, α, β) for some m = 1, . . . , M .
Define:

ρ = min
1≤m≤M

sm

√
λm (68)

which is the least ratio of the side half-length of the rectangle R(s, c) to the corresponding semi-axis
of the unit ellipsoid. Recalling g(α) in eq.(61) and using eq.(67) we see that, for E = R(s, c):

K2n
1,g(α),α(E) = ∅ if and only if n >

ρ

α(ζ + 1)
(69)

K2n+1
1,g(α),α(E) = ∅ if and only if n >

ρ− ζα

α(ζ + 1)
(70)

For instance, for n = 1 in eq.(69), we see from this and eq.(44) that K2
2,α(E) = ∅, meaning that 2

cannot know that 1 knows E at info-gap α, if and only if 1 > ρ
α(ζ+1) . However K1,α(E) = R(s−αµ, c)

which is not empty, meaning that 1 can know E at info-gap α, if and only if α ≤ ρ. These two
conditions can occur simultaneously:

1 + ζ >
ρ

α
≥ 1 (71)

which is strategically significant for 1. When (71) holds, agent 1 can know E at info-gap α, but
2 cannot know (at the same info-gap) that 1 knows E at info-gap α. From 1’s point of view, (71)
defines a “beneficial” level of uncertainty, α, which 1 can use against 2.

It is not surprising that the left inequality in (71) can fail if ζ is too small, since a small ζ means
that 1’s info-gap model is highly incoherent with 2’s model.

It is interesting to note that the left inequality in (71) can also fail if the info-gap is too small, while
the right inequality fails if α is too large. Both observations are explained by theorem 1: knowledge
constricts as α grows. When α is too large 1 cannot know E at all, while when α is small enough 2
can know that 1 knows E.

10 Teamwork and the Need to Know

In section 9 we showed how one agent can exploit uncertainty to his advantage against an opponent by
monitoring the access to common knowledge. We now consider an inversion of the search-and-evasion
problem; we study a situation in which coordinated effort between teams requires the transmission
of information. Since such transfer is costly, we explore the questions of how much and what sort of
information must be transmitted. We formulate this in the context of an example.

Consider two design teams. T2, the electronics team, is responsible for developing an electronics
card. T1, the thermal-hydraulics team, must design the system for cooling the card.

In order to complete its task, T1 must know the 3 linear dimensions of the card and its total power
consumption. Let ω ∈ Ω denote the vector of these 4 quantities. In fact, T1 can proceed with only
approximate knowledge of ω. This knowledge can be approximate in two senses: knowledge of a set
E ⊂ Ω rather than knowledge of ω itself, and knowledge of the set E with info-gap uncertainty α > 0
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rather than with absolute certainty. T1 has an info-gap model for its uncertainty in ω: U1(α, ω),
α ≥ 0.

The electronics folks, T2, also do not know ω, as well as many other aspects of the card design. In
fact, the domain of discourse in which T2 operates is much more complicated than Ω. Furthermore,
T2’s domain of discourse may not be separable into the form Ω × Ψ, where Ψ is the space of the
additional variables which concern T2. This means that T2’s info-gap model need not be a Cartesian
product U2,ω(α, ω)× U2,ψ(α, ψ) of uncertainty about ω with uncertainty about all the other factors
ψ which concern T2. If this separability were to hold, T2 could simply hand the model U2,ω(α, ω)
over to T1. Even if this is possible, however, U2,ω(α, ω) may be far more complex than T1 needs in
order to make its design decisions. U2,ω(α, ω) may be some elaborate and highly informative info-gap
model, while T1 only needs a simple interval or ellipsoidal model.

In liaison between the teams it is sufficient, as far as T1 is concerned, to talk only in terms of the
4-vector ω, and only in terms of an info-gap model whose level of sophistication meets T1’s design
needs. This raises the following possibility: T2 will periodically give to T1 coherence functions, in
the sense of eq.(40), which correspond roughly but adequately (for T1’s purposes) to T2’s improving
knowledge. That is, these coherence functions represent the fidelity of T1’s info-gap model to a
simplified version of T2’s model.

This scheme for knowledge transfer will be satisfactory if the following conditions can be satisfied.
E ⊂ Ω is a particular event which, when it happens:
• T1 must be able to infer that E holds, up to uncertainty α. This is because E is a ‘trigger’ event

of design-significance to T1.
• T2 must be able to infer that T1 is able to infer that E holds, up to uncertainty α. This is for

purposes of monitoring and control. T2 must be able to know that T1 is now triggered to act.
The info-gap, α, plays a central role. The knowledge we are dealing with is anticipation or

estimation of unknown and possibly future reality. For instance, T2 believes, with uncertainty α,
that E holds, where E specifies a class of final designs.

To see how this works let us adopt the formalism of section 9. T1’s info-gap model for uncertainty
in ω is eq.(62). T2 periodically provides T1 with coherence functions of the form of eq.(61). Consider
events E in Ω which are rectangles R(s, c) as in eq.(63). T1’s self-knowledge functions Kn

1,α,β(E) are
also rectangles as in eq.(67).

T1 can infer E, in the presence of uncertainty α, if K1,α(E) 6= ∅. K1,α(E) = R(s−αµ, c), eq.(64),
so this holds if sm ≥ α/

√
λm for all m = 1, . . . , M . Defining ρ as in eq.(68), this condition is α ≤ ρ.

T2 can infer (up to info-gap α) that T1 can infer E (up to α) if K2
2,α(E) 6= ∅. To avoid using T2’s

complicated info-gap models, we employ the lefthand inclusion in eq.(44) of lemma 4. K2
2,α(E) is not

empty if K2
1,h(α),α(E) 6= ∅, where h(α) is the upper coherence function, h(α) = α/ζ. We find that

K2
1,h(α),α(E) = R[s− δ(2, h(α), α), c] is not empty if:

α ≤ ρ
ζ

1 + ζ
(72)

which is stricter than the condition on K1,α(E). This relation is a constraint on the ambient uncer-
tainty under which adequate knowledge transfer occurs when T2 supplies T1 with coherence functions
alone.

A large value of ρ facilitates the success of the knowledge transfer, since then the conditions on
the two teams’ knowledge can be satisfied even in the presence of large info-gap. Recall that ρ is the
least ratio of the side half-length of the rectanglar trigger-event E = R(s, c) to the corresponding
semi-axis of the unit ellipsoid of T1’s info-gap model. ρ is large if T1’s uncertainty tends to be small
compared to the trigger-event E.

A large value of ζ, and hence of ζ/(1 + ζ), likewise facilitates successful knowledge transfer. ζ
varies from 0 to 1 as T1’s info-gap model increases in coherence with T2’s uncertainty about ω. Here
we face a trade-off. On the one hand, T1 needs only a simplied model as compared to T2’s model,
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so coherence will tend to be low. On the other hand, this limits the uncertainty-range within which
transfer of coherence functions is adequate.

11 Appendix: Proofs

Proofs for section 4

Proof of lemma 1. By the contraction axiom:

0 ∈ U(0, 0) (73)

By the translation axiom:
U(0, ω) = U(0, 0) + ω (74)

From which, with the nesting axiom, we have:

ω ∈ U(0, ω) ⊆ U(α, ω) (75)

which completes the proof.
Proof of lemma 2. K1 results from the fact that U(α, ω) ⊆ Ω.
K2:

ω ∈ Kα(E) implies that U(α, ω) ⊆ E (76)

Hence:
E ⊆ F implies that U(α, ω) ⊆ F (77)

Thus ω ∈ Kα(F ).
K3: By the definition of Kα(E) in eq.(10) we have:

Kα(E) ∩Kα(F ) = {ω : U(α, ω) ⊆ E and U(α, ω) ⊆ F} (78)
= {ω : U(α, ω) ⊆ E ∩ F} (79)
= Kα(E ∩ F ) (80)

which completes the proof that Kα(E) obeys the analog of K3.
Proof of lemma 3. For any ω ∈ Kα(E), the definition of Kα(E) and the contraction and

translation axioms of info-gap models imply that:

ω ∈ U(α, ω) and U(α, ω) ⊆ E (81)

Hence ω ∈ E which completes the proof.

Proofs for section 6

Proof of theorem 2. We first need a few elementary results which we present without proof.

B ⊆ B+ =⇒ {ω : A(ω) ⊆ B} ⊆ {
ω : A(ω) ⊆ B+}

(82)
A−(ω) ⊆ A(ω) =⇒ {ω : A(ω) ⊆ B} ⊆ {

ω : A−(ω) ⊆ B
}

(83)

An elementary property of balls is, for r ≥ 0:

{ω : Br,ω ⊆ Bρ,c} = Bρ−r,c (84)

Our proof of eq.(37) will be an induction on n.
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We first prove eq.(37) for n = 1. By definition:

Ki,α(E) = {ω : U i(α, ω) ⊆ E} (85)

From eqs.(34) and (83):
{ω : U i(α, ω) ⊆ E} ⊆

{
ω : Bρi(α),ω ⊆ E

}
(86)

From relation (82): {
ω : Bρi(α),ω ⊆ E

}
⊆

{
ω : Bρi(α),ω ⊆ E+

}
(87)

Hence:
Ki,α(E) ⊆

{
ω : Bρi(α),ω ⊆ E+

}
(88)

With eq.(84), and recalling that E+ = Bρ,c:

Ki,α(E) ⊆ Bρ−ρi(α),c (89)

which proves eq.(37) for n = 1.
Now suppose that eq.(37) holds for n. For n + 1:

Kn+1
i,α (E) = Ki,α(Kn

j,α(E)) (90)

=
{
ω : U i(α, ω) ⊆ Kn

j,α(E)
}

(91)

By eqs.(82) and (83) and the inductive hypothesis:

Kn+1
i,α (E) ⊆

{
ω : Bρi(α),ω ⊆ Bρ−σj,n(α),c

}
(92)

Thus by eq.(84):
Kn+1

i,α (E) ⊆ Bρ−σj,n(α)−ρi(α),c (93)

If n = 2k:
σj,n(α) + ρi(α) = kρj(α) + kρi(α) + ρi(α) = σi,2(k+1)−1(α) = σi,n+1(α) (94)

If n = 2k − 1:

σj,n(α) + ρi(α) = kρj(α) + (k − 1)ρi(α) + ρi(α) = σi,2k(α) = σi,n+1(α) (95)

So eq.(37) is confirmed inductively.

Proofs for section 7

Proof of lemma 4. Our proof is by induction on n. We will rely extensively upon eqs.(82) and
(83) and theorem 1.

Eq.(44) for n = 1. By definition:

K1
2,α(E) = K2,α(E) = {ω : U2(α, ω) ⊆ E} (96)

K1
1,h(α),α(E) = K1,h(α)(E) = {ω : U1(h(α), ω) ⊆ E} (97)

K1
1,g(α),α(E) = K1,g(α)(E) = {ω : U1(g(α), ω) ⊆ E} (98)

Employing the definition of the coherence functions g(α) and h(α) in eq.(40), the nesting of info-gap
models, and relation (83) we see from eqs.(96)–(98) that:

K1
1,h(α),α(E) ⊆ K1

2,α(E) (99)

K1
2,α(E) ⊆ K1

1,g(α),α(E) (100)
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which proves eq.(44) for n = 1.
Eq.(45) for n = 1: each of the three sets is, by definition, equal to K1,α(E). Thus lemma 4 is

proven for n = 1.
Now suppose the lemma holds for some n ≥ 1. We first prove the righthand side of relation (45)

for n + 1. From (44) for n:
Kn

2,α(E) ⊆ Kn
1,g(α),α,(E) (101)

This, together with property K2 of lemma 2, shows that:

K1,α(Kn
2,α(E)) ⊆ K1,α(Kn

1,g(α),α,(E)) (102)

This, by definition, is:
Kn+1

1,α (E) ⊆ Kn+1
1,α,g(α)(E) (103)

which is the righthand inclusion in (45) at n + 1.
We now prove the lefthand side of relation (45) for n + 1. From (44) for n:

Kn
1,h(α),α,(E) ⊆ Kn

2,α(E) (104)

This, together with property K2 of lemma 2, shows that:

K1,α(Kn
1,h(α),α,(E)) ⊆ K1,α(Kn

2,α(E)) (105)

This, by definition, is:
Kn+1

1,α,h(α)(E) ⊆ Kn+1
1,α (E)) (106)

which is the lefthand inclusion in (45) at n + 1 which completes the proof of (45).
We now prove first the righthand and then the lefthand side of relation (44) for n + 1. From (44)

for n = 1 for any set F :
K2,α(F ) ⊆ K1,g(α)(F ) (107)

Choose F = Kn
1,α,g(α)(E) so this becomes:

K2,α(Kn
1,α,g(α)(E)) ⊆ K1,g(α)(K

n
1,α,g(α)(E)) (108)

By (45) at n we have:
Kn

1,α(E) ⊆ Kn
1,α,g(α)(E) (109)

Combining this with property K2 of lemma 2, shows that:

K2,α(Kn
1,α(E)) ⊆ K2,α(Kn

1,α,g(α)(E)) (110)

Thus (108) becomes:
K2,α(Kn

1,α(E)) ⊆ K1,g(α)(K
n
1,α,g(α)(E)) (111)

This, by definition, is:
Kn+1

2,α (E) ⊆ Kn+1
1,g(α),α(E)) (112)

which is the righthand inclusion in (44) at n + 1.
We now prove the lefthand side of relation (44) for n + 1. From (44) for n = 1 for any set F :

K1,h(α)(F ) ⊆ K2,α(F ) (113)

Choose F = Kn
1,α,h(α)(E) so this becomes:

K1,h(α)(K
n
1,α,h(α)(E)) ⊆ K2,α(Kn

1,α,h(α)(E)) (114)
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By (45) at n we have:
Kn

1,α,h(α)(E) ⊆ Kn
1,α(E) (115)

Combining this with property K2 of lemma 2, shows that:

K2,α(Kn
1,α,h(α)(E)) ⊆ K2,α(Kn

1,α(E)) (116)

Thus (114) becomes:
K1,h(α)(K

n
1,α,h(α)(E)) ⊆ K2,α(Kn

1,α(E)) (117)

This, by definition, is:
Kn+1

1,h(α),α(E) ⊆ Kn+1
2,α (E) (118)

which is the righthand inclusion in (44) at n + 1. This completes the proof of lemma 4.
In order to prove lemma 5 we first need the following result.

Lemma 6 U(α, ω) is a bounded info-gap model.

U(α, ω) ⊆ U(α, ω1) =⇒ ω = ω1 (119)

Proof of lemma 6. Subtracting ω from both sides of the inclusion in the statement of the
lemma, and using the translation axiom, yields:

U(α, 0) ⊆ U(α, ω1 − ω) (120)

Likewise, subtracting ω1 rather than ω yields:

U(α, ω − ω1) ⊆ U(α, 0) (121)

Hence:
U(α, ω − ω1) ⊆ U(α, 0) ⊆ U(α, ω1 − ω) (122)

Adopt the inductive hypothesis:

U(α, 2n(ω − ω1)) ⊆ U(α, 0) ⊆ U(α, 2n(ω1 − ω)) (123)

which we have proven true for n = 0. Subtract 2n(ω−ω1) from the two outer sets in (123), resulting
in:

U(α, 0) ⊆ U(α, 2n+1(ω1 − ω)) (124)

Likewise, subtract 2n(ω1 − ω) from the two outer sets in (123), resulting in:

U(α, 2n+1(ω − ω1)) ⊆ U(α, 0) (125)

Inclusions (124) and (125) prove the inductive hypothesis, (123), for all n ≥ 0.
Now, since U(α, 0) is bounded there is a number ρ such that U(α, ω) is contained in a ball of

radius ρ centered at 0:
U(α, 0) ⊆ Bρ,0 (126)

The lefthand inclusion in (123) implies that:

2n(ω − ω1) ∈ Bρ,0 (127)

for all n ≥ 0. Hence ω = ω1.
Proof of lemma 5. That eq.(48) implies (47) derives from eq.(10) by substitution.
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Now consider the reverse implication. Choose E = U1(β, ω0). Employing the definition of K1,β(E)
and lemma 6 we find:

K1,β(E) = {ω : U1(β, ω) ⊆ U1(β, ω0)} = {ω0} (128)

By the supposition of the lemma:

K2,α(E) = K1,β(E) = {ω0} (129)

which, by the definition of K2,α(E), implies that:

U2(α, ω0) ⊆ U1(β, ω0) (130)

By a similar argument, interchanging α with β, 1 with 2, and using E = U(α, ω0), we can prove that:

U1(β, ω0) ⊆ U2(α, ω0) (131)

The last two relations, together with the translation axiom, show that:

U1(β, ω) = U2(α, ω) (132)

for arbitrary ω. This completes the proof.
Proof of theorem 3. Eq.(51): Eq.(51) implies eq.(52) by lemma 4 and eq.(46). Eq.(52) implies

Eq.(53) by inclusion.
Eq.(53): Eq.(53) implies eq.(51) by lemma 5 and eqs.(49) and (50). Eq.(51) implies eq.(52).
Eq.(52): Eq.(52) implies eq.(53) by inclusion, and eq.(53) implies. eq.(51).
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