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Abstract

The economic theory of crime views criminals as rational decision makers, implying elastic
response to law enforcement. Group-dependent elasticities can be exploited for efficient alloca-
tion of enforcement resources. However, profiling can augment both number of arrests and total
crime, since non-profiled groups will increase their criminality. Elasticities are highly uncertain, so
prediction is difficult and uncertainty must be accounted for in designing a profiling strategy. We
use info-gap theory for satisficing (not minimizing) total crime rate. Using an empirical example,
based on running red lights, we demonstrate the trade-off between robustness to uncertainty and
total crime rate.

JEL keywords: D81, K42

1 Introduction

The modern economic view of crime is traditionally traced back to Becker (1968). In his seminal pa-
per, Becker notes that potential offenders come from various backgrounds, and therefore have different
responses to the probability of conviction and to the expected punishment. He suggested that param-
eters such as premeditation, sanity and age may be used as proxies for the offenders’ elasticities of
response to punishment. The combination of elasticities for different groups, and the ability to statis-
tically predict the elasticities via proxies, is the basis for statistical discrimination (Arrow 1973), or
profiling1.

∗The authors are pleased to acknowledge useful comments by Avner Bar-Ilan and John Stranlund.
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1Of course, the use of actuarial tools in the context of criminology predates Becker. It is related to Burgess (1928), but he
did not refer to profiling as a result of an economic model, or suggest an economic model to utilize the differences between
the groups.
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Although profiling has been shown to be potentially beneficial (as a tool for minimizing crime rate,
or maximizing some abstract social benefit), it has been argued that the inequality that is the essence
of profiling is, in fact, unjust. After Lamberth (1994) showed that there is a discriminatory policy,
either official or de facto, against African American drivers in the context of drug interdiction, much
research discussed to what extent profiling can be justified as an economic result, rather than a racial
bias (Knowles et al. 2001; Borooah 2001; Hernández and Knowles 2004), and what is the trade-off
between equality and efficiency of law enforcement (Farmer and Terrell 2001; Persico 2002; Blumkin
and Margalioth 2005)2.

Setting aside ethical considerations, profiling has been criticized for being inefficient. Harcourt
(20073) demonstrates that, under a set budget, targeting groups with higher crime rates may cause the
total crime rate to increase. This is because shifting enforcement resources to a minority group will
cause the remaining majority to increase its participation in crime. The net effect can be an increase
in both total arrests as well as total crime. Bearing that in mind, a policy maker who wishes to use
profiling as means for reducing the total crime rate must take into account not only the current crime
rates of the different groups, but also the groups’ responsivenesses (or elasticities) to policing.

However, it is extremely difficult to estimate the responsiveness of crime to policing, even for the
general population. In fact, many researchers find that the correlation between policing efforts and
crime is either non-existent or positive (more policing means more crime)4. Although it has been
argued that the main reason for this is simultaneity problems5, it is still non-trivial to estimate the
responsiveness to policing6. Over the years, researchers have tried to optimize the social-welfare (or
some proxy of the social-welfare) using the responsivenesses of the different groups within the pop-
ulation7 (Becker 1968; Benson and Bowmaker 2005), the utility to the offender from the illegal act
(Malik 1990; Polinsky and Shavell 2000), the dis-utility from disrepute due to conviction (Polinsky
and Shavell 2000; Pradiptyo 2007), the knowledge of the criminals regarding their probability of con-
viction and expected punishment (Polinsky and Shavell 2000), and so on. The huge uncertainties of
the models involved were often overlooked. Bar-Ilan and Sacerdote (2004) point out that estimating
the elasticity to fine increases for running red lights may be compounded by “other costs to receiving a
ticket, including increased insurance premiums, time costs, and feelings of guilt.” Such effects may be
difficult to quantify and can vastly change the estimated elasticities.

2Heaton (2006) shows the decreased efficiency of policing (resulted in an increase in crime rates) due to “anti-profiling”
policy implemented in New-Jersey.

3Similar argument is presented in Harcourt (2006).
4See Levitt (1997) for examples of empirical research. Tsebelis (1990) uses game theoretic reasoning to prove that the

crime rate is independent of the severity of the punishment, though it might be influenced by the probability of detection. See
also Ehrlich and Liu (1999), as an example for the debate in the question of deterrence. On the other hand, Levitt (1998)
reports a strong negative correlation between arrest rates and reported crime rates.

5Crime and law enforcement affect each other simultaneously, since high crime rates lead to further investment in law
enforcement.

6Levitt (1997) uses the assumption that the growth in police size during election years (be it mayoral or gubernatorial) is
not related to the level of crime, to compare the level of crime in election years to non-election years. Klick and Tabarrok
(2005) utilize the increased police presence in periods of high-alert to show that the crime rate is mostly reduced in the area
of the National Mall in Washington DC, which is supposed to have a higher presence of police in periods of high-alert (this
district hosts the White House, Congress, Supreme Court, and so forth).

7Or the supply of offences.
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In this paper we suggest the use of info-gap theory (Ben-Haim 2006) in order to satisfice the total
crime rate, rather than to optimize it. By “satisficing” we mean keeping the value of a loss function
(like total crime rate) below an acceptable level. Satisficing is to be distinguished from optimizing
which entails minimizing the loss. The motivation for satisficing (rather than optimizing) derives from
the great uncertainty associated with estimates of the responsiveness to policing. We will demonstrate
the irrevocable trade-off between robustness to this uncertainty on the one hand, and reduction of the
total crime rate on the other. An allocation which attempts to minimize total crime is an allocation with
zero robustness to uncertainty in the responsiveness function. Under a fixed budget, elastic response
to profiling can result in an increase in total crime. Hence, knowledge of the elasticity is critical.
When this knowledge is highly uncertain, it is necessary to choose an allocation which is robust to this
uncertainty while at the same time aiming at adequate reduction in total crime. Allocation must aim
to reliably achieve acceptable reduction — rather than minimization — of the total crime rate. The
quantitative analysis of this trade-off underlies the choice of an allocation.

We will demonstrate the profiling of two groups with uncertain responsiveness functions, and show
how to choose an allocation of police resource which will be robust to errors in the estimation of
responsiveness functions. We will give a numerical example, based on research that estimated the
elasticities of different groups to policing in the context of driving through red lights (Bar-Ilan and
Sacerdote 2004).

The paper is organized as follows. Section 2 briefly describes how info-gap theory is used to ro-
bustly satisfice a requirement. Section 3 exemplifies the use of info-gap theory in the case of profiling
traffic violators. Section 4 discusses the similarity and difference between robust-satisficing and the
min-max strategy. A concluding discussion appears in Section 5. Mathematical definitions and deriva-
tions appear in appendices.

2 Info-Gap Theory: An Intuitive Discussion

In this section we present an intuitive description of info-gap models of uncertainty, and how info-
gap models can be used for deriving robust decisions. A mathematical description is available in
Appendix A.

Decision making may be viewed as choosing a decision q from a set Q of feasible decisions. The
outcome of the decision is expressed as a loss, L(q, u), where u is the value of parameters or functions
which are unknown or uncertain to the decision maker when the decision was made. u may be, for
instance, the parameters of a model, or a functional relationship between variables, or a probability
distribution of random variables, or sets of such entities. In this paper u is the uncertain responsiveness
to policing. We have a best estimate of u, denoted ũ, but our uncertainty about u is non-probabilistic.
That is, we do not know a probability distribution which describes the uncertainty of u. In many cases,
the uncertainty about u is unbounded: we cannot identify a worst case. Our analysis will be based on
info-gap decision theory (Ben-Haim 2006).

Info-gap models are used to quantify non-probabilistic Knightian uncertainty (Ben-Haim 2006).
An info-gap model is an unbounded family of nested sets. At any level of uncertainty, a set contains
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possible realizations of u. As the horizon of uncertainty gets larger, the sets become more inclusive.
The info-gap model expresses the decision maker’s beliefs about uncertain variation of u aroundũ.

Info-gap models of uncertainty obeys two axioms:

1. Contraction: ũ is the only possibility when there is no uncertainty.

2. Nesting: the range of possible realizations increases as the level of uncertainty increases.

Suppose the decision maker wishes to reduce the loss, and has some notion of a critical loss Lc,
whose exceedence cannot be tolerated. The robustness of a decision q, denotedα̂(q, Lc), is the greatest
level of uncertainty which still guarantees a loss no greater than Lc. Robust-satisficing decision making
maximizes the robustness and keeps the loss less than the value Lc, without specifying a limit on the
level of uncertainty. That is, given a critical loss, the decision maker will choose the decisionq̂ with
greatest robustness to uncertainty. Under non-probabilistic Knightian uncertainty, this is an attempt to
maximize the confidence in achieving no more than an acceptable loss.

It can readily be shown that there is an inherent trade-off between robustness and performance.
Since robustness is the immunity to failure, the robustness decreases as the performance requirement
Lc becomes more demanding. That is, α̂(q, Lc) gets smaller as Lc gets smaller. Another immediate
result is that the estimated optimal result — the minimal loss under our best estimate ũ — has zero
robustness, meaning that a slight deviation from our estimation ũ may result in exceeding Lc.

There are certain similarities between robust-satisficing and minimax. Section 4 presents the main
similarities and differences between the two methods.

3 Case Study: Running Red Lights

Not often do we come across data that may be used to infer the responsiveness to policing of different
groups within the population. However, we do have such data for driving through a red light. In
the United States, roughly 2,000 deaths resulted in 1998 from drivers running red lights (Bar-Ilan
and Sacerdote 2004). It should be noted that most of the enforcement of running red lights is done
automatically, using cameras. This means that profiling, in its “natural” meaning of assigning different
probabilities of detection to different groups within the population, is not easily implemented, but could
be done by varying the density of detectors in different regions.

Drug interdiction on highways is much more relevant for profiling. Since a car search is initiated as
a result of suspicion by a police officer, it is quite reasonable to assume that the suspicion is somewhat
correlated to the group to which the driver of the car belongs, be it an ethnic group, a socioeconomic
group, or a cultural group. Indeed, much research has examined the correlation between the ethnicity of
the driver and the probability of his car being searched (Lamberth 1994; Knowles et al. 2001; Borooah
2001; among many others).

Nonetheless, running red lights is one of the rare cases where information regarding responsive-
nesses of different groups within the population can be found, while similar information regarding drug
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interdiction is scarce. Therefore, in order to demonstrate the practical use of info-gap theory, we as-
sume that running red lights could be profiled in a similar fashion as drug interdiction. Namely, that
policing resources could be allocated arbitrarily between different groups, thus affecting the probabil-
ity of catching a driver running through a red light. We will then use the data gathered on running red
lights to demonstrate the robust-satisficing methodology described in section 2.

3.1 Responsiveness to Policing

Bar-Ilan and Sacerdote (2004) study running through red lights, and use incidents of change in the
probability of detection (when traffic cameras are added) and changes in the punishment in the case
of detection (when the fine for driving through red lights is increased) to show that the responsiveness
to these two factors is quite similar, which suggests some degree of risk-neutrality of the drivers. In
particular, Bar-Ilan and Sacerdote use very detailed data collected in Israel to compare the responsive-
ness and crime rates of different groups within the population, after Israel raised the fine for driving
through red lights from 400 shekels ($122) to 1,000 shekels ($305) in December of 1996. As assumed
by Harcourt (2007), the responsivenesses (or elasticities) of the different groups are not necessarily
similar: young drivers have a higher rate of violations, but also have an elasticity which is significantly
higher than the general population; drivers convicted of property crimes have a higher rate of red-light
violations, but an elasticity which is similar to that of the general population; non-jewish drivers have
a much lower elasticity than the general population.

In order to calculate the entire curve of responsiveness from limited data, we must assume the
general shape of the curve. We will use an info-gap model to represent uncertainty in the shape of this
curve. Our best guess is that the responsiveness curve of the ith group has the following form:

C̃i = exp
(
−γi

bi

πi
− δi

)
(1)

C̃i is the average crime rate of the ith group: the number of red light incidents per person in the group
per time period of 14 quarters (the length of the period examined by Bar-Ilan and Sacerdote). γi and
δi are parameters which characterize the responsiveness of the ith group. πi is the fraction of group i
within the general population. bi is the fraction of the budget allocated to police group i. Thus, πi and
bi are both between zero and one. This is the basis of the profiling: by setting bi > πi, we target group
i (the fraction of policing resources allocated to group i is greater than its fraction within the general
population). Appendix B gives the intuition for this model, and calculates its parameters, based on the
research of Bar-Ilan and Sacerdote (2004).

3.2 Satisficing the Crime Rate

A good group to target is a group which constitutes a considerable fraction of the population of drivers,
has a high value of γi (high elasticity), and of course, can be easily recognized by a police officer.
The group of drivers between the ages 17 and 30 meets all the above criteria. Therefore, we shall
concentrate our efforts on profiling this group, where the goal is to reliably reduce the total crime rate.
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Following is an intuitive review of the process of robustly satisficing the crime rate. Appendix C
gives the mathematical definitions and results.

3.2.1 Info-Gap Model of Uncertainty

The exponential model representing the responsivenesses of the different groups to policing, eq. (1), is
only a rough estimate; the shape of the curve may be different. The crime rate and responsiveness has
been measured by Bar-Ilan and Sacerdote for a specific allocation, which we shall denote b0. We may
be fairly confident of the crime rate for b0. However, it is reasonable to suppose that the uncertainty in
the responsiveness function grows as the difference between the actual allocation, b, and the reference
allocation, b0, increases.

Since we will be examining reallocation of fixed total policing resources, we shall describe an
allocation using the fraction of resources allocated to each group. That is, bi is the fraction, between
zero and one, of the resources allocated to group i, rather than the absolute amount of resources.

Let C̃ be a vector of responsiveness functions, representing our best estimate of the responsiveness
functions of the different groups. C̃i will be based on the exponential model, eq. (1). We will refer to
C̃ as the nominal model, and represent the uncertainty surrounding the actual responsiveness functions
using an info-gap model. Let C denote the vector of actual responsiveness functions, which may differ
in functional form from the nominal vector C̃. Our info-gap model, which is defined in Appendix C,
assumes that the maximal error in our estimation of the responsiveness functions increases as the al-
location deviates from b0. Figure 1 illustrates an uncertainty envelope for this info-gap model. At
the horizon of uncertainty shown in Figure 1, all functions Ci(bi) within this envelope are allowed.
The shape of the envelope (dashed curves) is specified, but the true magnitude of deviation (distance
between dashed and solid) is unknown. The info-gap model is an unbounded family of such envelopes.

3.2.2 Robustness

Let by denote the allocation of surveillance resources to the “young” population of 17 to 30 years old,
and let bȳ denote the allocation to the complementary group. Given some critical crime rate Lc, we can
calculate the robustness of any given allocation b. Since by + bȳ = 1, we can represent an allocation
through by.

In choosing an allocation, we wish to know how wrong the estimated response functions could be,
and the allocation would still result in acceptable total crime rate. The robustness, α̂(by, Lc), of an
allocation by , is the greatest horizon of uncertainty up to which all realizations of the responsiveness
functions, Ci, result in total crime rate not exceeding the critical value Lc. Figure 2 illustrates the
robustness curves for four different allocations of the policing resources: the current allocation (by =
0.145, which is equal to the fraction of “young” in the population, and is the allocation b0y measured by
Bar-Ilan and Sacerdote [2004]), the nominal optimal allocation (in the sense that it yields the minimal
crime rate under the nominal model, by = 0.268), and two other allocations (by = 0.2 and by =
0.12). As expected, all robustness curves are monotonic: robustness increases as the critical crime rate
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Figure 1: An envelope of possible responsiveness functions within the info-gap model when the max-
imal fractional error is proportional to the distance of the allocation from some observed allocation.
This is the info-gap model defined by eq. (C1).
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Figure 2: Robustness curves of four allocations: the current allocation (by = 0.145), the optimal
allocation (by = 0.268), and some other allocations (by = 0.2 and by = 0.12).

increases (a weaker requirement is more robustly achieved). Also, each curve crosses the horizontal
axis at the crime rate yielded by the corresponding allocation under the nominal model.
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The definition of robustness implies a vertical robustness curve for the reference allocation, b0. (We
are not concerned with the statistical uncertainty of the observation. Rather, we focus on the uncertainty
in the shape of the responsiveness functions as the allocation changes from the current value.) We can
understand this as follows: we are certain of the crime rate under the current (observed) allocation,
b0. Therefore, the robustness of that allocation is zero for crime rates less than the current crime rate,
and infinite for crime rates higher than that crime rate. The infinite robustness of the current allocation
appears as a vertical curve at Lc = 0.050, the current crime rate. This means that the current allocation
is the most robust (at the time of measurement) if the critical crime rate is at least the current crime
rate.

The nominal optimal allocation, by = 0.268, yields the lowest total crime rate under the nominal
model. This makes it more robust than any other allocation around the nominal optimal crime rate.
However, the optimal crime rate is not a good choice for the critical value, since the robustness for the
nominal optimal crime rate is zero. This means that the slightest deviation from the assumptions of the
models may cause the crime rate to exceed the nominal optimal value.

Note that the nominal optimal robustness curve is crossed by other robustness curves. The crossing
of the robustness curve of the nominal optimal allocation means that it is not the most robust allocation
for all choices of the critical crime rate. For instance, for crime rates equal or higher than 0.049, the
nominal optimal allocation is less robust than the allocation by = 0.2. Consequently, if a total crime
rate of 0.049 (which is lower than the current rate of 0.050) is acceptable, then we would prefer the
allocation by = 0.2 over the allocation by = 0.268, since the former is more robust than the latter,
while satisficing the total crime rate at 0.049.

Figure 3 illustrates the correlation between the critical crime rate and the most robust allocation.
The most robust allocation, b̂(Lc), maximizes the robustness and satisfices the total crime rate at the
critical value Lc:

b̂(Lc) = arg max
by

α̂(by, Lc) (2)

An important result is that, with the exception of the current allocation, most allocations are the most
robust for only one critical value. The current allocation, which is most robust for any crime rate higher
than the current crime rate, stands out as a single exception.

The importance of the above observation to the decision maker is that there is no “robust-dominant”
decision, an allocation which is more robust than any other allocation for all critical crime rates. The
most robust allocation is a function of the satisficing criterion, namely, of the crime rate which the
policy maker seeks to achieve. In other words, the robust-satisficing allocation, b̂(Lc), depends on the
decision maker’s choice of the critical crime rate, Lc. In fact, as proved by proposition D.1, this is not
a coincidental result of a specific choice of model and parameters.

Another interesting result is that some allocations are robust-dominated: for every critical crime
rate there is some other allocation with greater robustness. This is important, since robust-dominated
allocations should never be chosen. Sufficient conditions for an allocation to be robust-dominated can
be derived, but will not be elaborated here.

The negative slope of figure 3a implies that as the critical crime rate decreases, the robust-optimal
allocation requires an increased allocation to “young”. This is not surprising since the “young” cohort
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Figure 3: Figure 3a displays the correspondence between the critical crime rate and the most robust
allocation. In other words, for any critical crime rate it shows the most robust allocation of policing
resources. Proposition D.1 proves that for most allocations there can be only one critical crime rate
for which the allocation will be most robust. The proposition also states the correlation between the
allocation and the critical crime rate for which this allocation is most robust. Figure 3b illustrates
the maximal robustness for any given critical crime rate. Note that as the critical crime rate increases
(weaker requirement) the maximal robustness increases.

has higher participation in crime. However, the large negative slope near the “current” crime rate
implies that a robust satisficing decision maker is unlikely to make a minor modification to the initial
allocation. This is because small changes in the allocation are maximally robust only for negligible
improvement in the crime rate. That is, there is a threshold effect for the robust satisficing decision
maker: changes in the allocation are not robust-optimal for a meaningful reduction in the crime rate
until the change exceeds a particular threshold. This threshold is determined by the “bend” in the curve
in figure 3a, and occurs around by ≈ 0.17.

The slope of figure 3b may be viewed as the tradeoff between critical crime rate and the maximal
robustness. For instance, decreasing the critical crime rate by 0.001 entails a reduction in the maximal
robustness by more than 0.1. That is, reducing the number of criminal incidents from 0.049 to 0.048
per person in a 14-month period, “costs” a substantial reduction in the robustness to uncertainty from
0.21 to 0.08. Near the current allocation the slope is very high (asymptotically infinite), implying that
a small decrease in the critical crime rate has a great effect on the maximal robustness.

At any point of the curve of figure 3b, its slope equals the slope of the maximal robustness curve
for that critical crime rate. The difference between maximal robustness at Lc, and the robustness of the
nominal-optimal allocation at Lc, is called the “robustness premium” for the former allocation. A large
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robustness premium implies a strong preference for the robust-optimal allocation over the nominal-
optimal allocation. The robustness premium is calculated as the difference between the curve and the
tangent at the nominal optimum. The low curvature over most of figure 3b implies low robustness-
premium for maximal robustness over this range of Lc values. For instance, at Lc = 0.049, the
robustness premium is Δα̂ = 0.21 − 0.18 = 0.03. The maximal robustness at Lc = 0.049 is 0.21, so
the robustness premium is thus only about 15% of the maximal robustness. In other words, by choosing
the nominal-optimal allocation for the critical crime rate Lc = 0.049, we loose approximately 15% of
the robustness. Conversely, the high curvature of figure 3b near the current allocation implies large
robustness premium for the robust-optimal allocation in that range. In summary, the policy implication
of the curvature of figure 3b is that small reductions below the current crime rate have substantial
robustness premium, while large reductions have small differences in robustness between the nominal
and the robust-optimal allocations.

This is different from the threshold effect mentioned earlier. The large robustness premium, for
small changes in the current allocation, corresponds to very small improvement in the critical crime
rate (this is the threshold effect). Large robustness premium by itself does not motivate the policy
maker to change the allocation. The policy maker will require large robustness for acceptable (not
negligible) reduction in crime.

What if the fraction of “young” change? This can happen gradually, as a result of a demographic
change, or suddenly, by applying the our model to a specific sub-population (for instance, when consid-
ering the police enforcement in regions with different fraction of “young” drivers. Figure 4 illustrates
the most robust allocation and the maximal robustness as a function of the fraction of “young” in the
population.

The positive slope of figure 4a implies that as the fraction of “young” in the population increases,
a robust satisficing decision maker would increase the fraction of resources allocated to the “young”
group. However, as figure 4b demonstrates, this does not mean that the robustness will also increase.
The robustness has a turn-around effect — from some point, an increase in the fraction of “young” (the
more responsive group) actually decreases the robustness. This is because, as the fraction of “young”
increases, the most robust allocation tends to allocate more and more resources to the “young” group,
thus moving further away from the observed allocation, which entails increased uncertainty in the
responsiveness functions.

The slope of the two curves expresses the response of the allocation and the robustness to gradual
changes in the composition of the population. For instance, the slope of figure 4a is only slightly less
than unity. A change of 1% in the fraction of “young” within the population (relative to the current
πy = 0.145) will cause a change of only 0.9% in the robust-optimal allocation. Thus demographic
changes are matched by similar changes in the robust-optimal allocation. Similarly, a 1% change in
the fraction of “young” results in a change of approximately 0.001 in the maximal robustness (about
1.5%). Thus, both the robust-optimal allocation and the maximal robustness are will follow gradual
changes in the fraction of the “young” drivers within the general population.
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Figure 4: Figure 4a displays the correspondence between the fraction of “young” in the general
population and the most robust allocation. In other words, for any composition of the population it
shows the most robust allocation of policing resources. Figure 4b illustrates the maximal robustness
for any given fraction of “young” within the general population. Both figures assume critical crime
rate Lc = 0.048.

4 Robust-Satisficing vs. Minimax

One might get the impression that robust-satisficing is very similar (if not identical) to minimax (or
maximin) or various worst case or robust control strategies. While there are similarities, there are cru-
cial differences in policy-selection between the two methods. We will briefly describe the similarities
and differences.

In both methods, we are facing a set U of possible states of the world, and have to choose a decision
q from a set Q of possible decisions, where the consequence of q is expressed by a loss function L(q, u).
Here, u ∈ U is the unknown true state of the world. For convenient comparison we shall assume that
there is an estimate ũ ∈ U of the state of the world, and that U(ũ, α) ⊆ U denotes the set of states
accessible at horizon of uncertainty α. The horizon of uncertainty, of course, is unknown.

The technical difference between the two methods is the fixed parameter. When minimaxing, we
assume that we know the horizon of uncertainty and that its value is αm. Then, the minimax decision
maker looks for the decision q� that guarantees the minimal loss for any state of the world at uncertainty
αm. In other words, the minimax decision is:

q� = arg min
q∈Q

max
u∈U(αm,ũ)

L(q, u) (3)
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On the other hand, when robust-satisficing, we choose a critical loss Lc, and we have no idea what
is the worst case, since we do not know the true horizon of uncertainty. Now we are looking for the
decision that has the greatest tolerance (robustness) for mistakes in the estimate ofũ. In other words,
we are looking for a decision which guarantees that the critical loss will not be exceeded even when
faced with a great deviation from the estimate ũ. The robust-satisficing decision is:

q̂ = arg max
q∈Q

α̂(q, Lc) (4)

where α̂(q, Lc) is the robustness, discussed in section 2 and defined formally in eq. (A3) of appendix A.

q� and q̂ need not necessarily differ. If αm = α̂(q̂, Lc), then we have q� = q̂. Similarly, if Lc equals
the minimax loss, then, again, we have q� = q̂.

However, from the decision maker’s point of view, minimax and robust-satisficing can differ. First
of all, if the decision maker has no estimate of the uncertainty, αm, then the minimax strategy cannot
be implemented. However, even if the decision maker agrees that the horizon of uncertainty can be as
large as αm, the critical loss, Lc, may be less than the corresponding minimax loss. In this case q̂ and
q� differ, and the q̂ is more robust to uncertainty than q�, as we now demonstrate.

The relation between minimax and robust-satisficing decision strategies can be illustrated with
the help of figure 2, part of which is reproduced in figure 5. Consider the choice between the two
options, by = 0.268 and by = 0.2. Suppose the decision maker believes the uncertainty is αm = 0.4,
but desires (or is required) to keep the crime rate below Lc = 0.0485. The minimax decision at
αm = 0.4 is by = 0.2, which is also the robust-satisficing decision for the corresponding critical
loss, L� = 0.050. However, the decision maker needs to keep the crime rate below Lc = 0.0485.
The robust-satisficing decision is by = 0.268, whose robustness is α̂(0.268, 0.0485) = 0.13, which is
greater than the robustness of the minimax decision at this critical crime rate,α̂(0.2, 0.0485) = 0.09.
The loss will not exceed 0.0485 for a wider range of contingencies with by = 0.268 than with by = 0.2.
The robust-satisficing and minimax decisions differ. The decision maker who is concerned to keep the
crime rate below 0.0485, regardless of whatever beliefs are held regarding the horizon of uncertainty,
might justifiably prefer the robust-satisficing strategy over the minimax strategy.

5 Conclusion

The economic theory of crime views criminals as rational agents who adapt their behavior in response
to costs and benefits. This implies that involvement in criminal activity will respond with negative elas-
ticity to changes in penalties or probabilities of apprehension. Since different groups respond differ-
ently, knowledge of the elasticities (or the responsiveness functions) would enable efficient allocation
of enforcement resources. However, under a set budget, differential allocation of fixed total resources—
profiling—can augment both the number of arrests and the total crime rate, since non-profiled groups
will increase their criminal activity. Specifically, profiling a minority can cause increased total ar-
rests (mostly in the minority) but also increased total crime since the majority responds rationally to
decreased enforcement by engaging in more crime.
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Figure 5: Relation between robust-satisficing and minimax.

We have focussed on the problem of formulating a profiling strategy in light of the great uncertainty
accompanying estimates of responsiveness to law enforcement. Since elastic response to profiling
can result in increased total crime, the advocate of profiling must choose a strategy which will not
inadvertently result in this undesired outcome.

This paper has developed a robust-satisficing methodology for allocation of enforcement resources
when the responsiveness functions are highly uncertain. We have used info-gap theory for satisficing
(not minimizing) the total crime rate. We have demonstrated the trade-off between robustness to un-
certainty on the one hand, and reduction of total crime on the other hand. Attempting to minimize total
crime has zero robustness to uncertainty in the responsiveness to policing. Since the responsiveness to
policing is highly uncertain, low robustness is undesirable. Positive robustness is obtained only by aim-
ing at a crime rate which is larger than the estimated minimum. The robust-satisficing strategy chooses
an allocation which guarantees an acceptable total crime rate (which usually will not be the estimated
minimum), for the largest possible range of error in the estimated elasticities. The robustness analysis
enables the decision maker to evaluate profiling options in terms of whether they promise adequate
improvements in total crime, at plausible levels of immunity to error in the responsiveness functions.

We have presented an empirical example based on measurement of the responsiveness to enforce-
ment of traffic laws. We demonstrated a “threshold effect”: changes in the allocation are not robust-
optimal for a meaningful reduction in the crime rate until the change exceeds a particular threshold.
We have also seen the effect of changing demographics on the robust-optimal profiling strategy. While
the allocation changes approximately in parallel to the changing composition of the population, the
robustness changes non-linearly, showing a maximum at an intermediate fraction of “young” drivers.
Since it is the robustness premium that motivates adopting the robust-satisficing allocation, this implies
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that not all demographic changes should induce shifts in policy.

We have not addressed the ethical aspect of profiling. However, we note that arguments for profiling
which are based on the utility of optimal profiling (rather than satisficing) based on best-estimates of the
responsiveness functions, should be viewed skeptically. We have shown that optimal allocations have
zero robustness to error and, since responsiveness functions are highly uncertain, the purported benefits
of optimal allocations are highly unreliable. If profiling can be justified on utilitarian grounds, such
justification must rest on showing that desirable reduction of total crime can be obtained with adequate
robustness to the main source of uncertainty (the responsiveness functions). That is, the strategy of
robust-satisficing is directly relevant to the ethical argument for (or against) profiling.

We have studied the profiling of two groups with uncertain responsiveness to policing, and illus-
trated our results with estimated responsiveness to policing of running red lights. The extension of our
results to multi-group profiling is straightforward. An additional important extension is to study the
dynamic interaction between enforcement and criminal activity, in which each side learns about the
other.

A Info-Gap Theory: A Mathematical Précis

Let ũ denote our best estimate of u, a parameter, vector, function, and the like, which is used to estimate
the loss L(q, u) due to decision q ∈ Q. An info-gap model is an unbounded family of nested sets,
U(α, ũ), of u-values. As α gets larger, the sets become more inclusive. The info-gap model expresses
the decision maker’s beliefs about uncertain variation of u aroundũ.

Info-gap models obeys two axioms:

Contraction: U(0, ũ) = {ũ} (A1)

Nesting: α < α′ implies U(α, ũ) ⊆ U(α′, ũ) (A2)

Contraction asserts that ũ is the only possibility in the absence of uncertainty, α = 0. Nesting asserts
that the sets become more inclusive as α gets larger.

Given a critical loss Lc, the robustness function α̂(q, Lc) is the greatest level of uncertainty α which
still guarantees a loss no greater than Lc:

α̂(q, Lc) = max

{
α :

(
max

u∈U(α,ũ)
L(q, u)

)
≤ Lc

}
(A3)

Robust-satisficing decision making maximizes the robustness and satisfices the loss at the value Lc,
without specifying a limit on the level of uncertainty:

q̂ = arg max
q∈Q

α̂(q, Lc) (A4)

14



B Estimating the Responsiveness Function, C̃

Our best, but highly uncertain, guess of the responsiveness function is:

C̃i = exp (−μipif − δi) (B1)

Here, pi is the probability of a driver from the ith group being caught after driving through a red light,
and f is the fine for running a red light. Notice that this model assumes risk neutrality — a utility
maximizing driver will be indifferent between an increase to the fine and an increase in the probability
of detection (as long as the factor of increase is identical). μi and δi are parameters which characterize
the responsiveness of the ith group. This is precisely eq. (1).

The probability of detection is proportional to the fraction of policing resources which are allocated
to the ith group, bi:

pi =
bi

πi
p (B2)

where πi is the fraction of the ith group within the general population, and p is the probability of
detection under a fair allocation, bi = πi. Assuming p is sufficiently small1, we have 0 < pi < 1. We
can now rewrite eq. (B1) in the following way:

C̃i = exp
(
−μi

bi

πi
pf − δi

)
(B3)

We have two measurements of the crime rate for each group, due to Bar-Ilan and Sacerdote (2004).
These two measurements relate to two (known) fines: fbefore, and fafter. We shall denote the two
measured crime rates by Cbefore

i and Cafter
i for group i. We will assume that for both measurements the

allocation was “fair” (bi = πi). (This is justified since the traffic violations were detected by automatic
sensors.) Thus eq. (B3) becomes, for ‘before’ and ‘after’:

Cbefore
i = exp(−μipfbefore − δi) (B4)

Cafter
i = exp(−μipfafter − δi) (B5)

We can now use measured values of Cbefore
i and Cafter

i to calculate the values of δi and of μip for each
group.

We will define the following quantity for the ith group, whose value is known based on the estimates
of μip:

γi = μipfafter (B6)

Now the responsiveness to allocation of policing, eq. (B3), evaluated for the increased fine, fafter, can
be expressed succinctly as:

C̃i(bi) = exp
(
−γi

bi

πi
− δi

)
(B7)

1Israeli police (2007) estimates it as 0.5%.
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Table B1: MEASURED CRIME RATES
Crime Rate Responsiveness Parameters

Group Before Increase After Increase Fraction γ i δi

Age 17-30 (y) 0.123 0.056 0.145 1.31 1.57
Age 31+ (ȳ) 0.065 0.049 0.855 0.47 2.54

NOTE.—“Crime rate” is the mean number of tickets during the 14 quarter period before the fine increase and the
14 quarter period after the fine increase (Bar-Ilan and Sacerdote 2004). “Fraction” is the group’s relative fraction
within the general population of Israeli drivers, based on a random sample of 1% of the Israeli drivers (Bar-Ilan
and Sacerdote 2004).

C̃i(bi) is the estimate of the average number of violations, per unit of time, per individual in the ith
group, given an allocation bi of policing resources to this group. This is precisely eq. (1).

Table B displays the responsiveness parameters, γi and δi, for the two groups profiled in our ex-
ample. Also appearing in the table are the data needed to calculate the responsiveness parameters: the
crime rate before and after the increase to the fine, Cbefore

i and Cafter
i , and the fraction of the different

groups within the general population.

C Satisficing Crime Rate

C.1 Info-Gap Model

In Appendix B we derived an estimate to the approximated responsiveness functions of the different
groups. The estimation was based on two measurements of the crime rate, given two levels of fine. Let
b0 denote the allocation of policing resources during the periods analyzed by Bar-Ilan and Sacerdote.
As mentioned above, we assume that the allocation was fair, b0i = πi.

We may be fairly confident in the observed crime rate for b0 at the time of measurement. However,
it is reasonable to suppose that the uncertainty in the responsiveness function grows as the difference
between the sampled resource allocation and the current resource allocation grows.

Let C̃ be a vector of responsiveness functions, representing our best estimate of the responsiveness
functions of the different groups. C̃i will be the estimated exponential model, depicted in eqs. (1) and
(B7). We will refer to C̃ as the nominal model, and represent the uncertainty surrounding the actual
responsiveness functions using the following info-gap model:

U(α, C̃) =

{
C : Ci(bi) ≥ 0,

∣∣∣∣∣Ci(bi) − C̃i(bi)
C̃i(bi)

∣∣∣∣∣ ≤ α

∣∣∣∣∣bi − b0
i

b0
i

∣∣∣∣∣
}

, α ≥ 0 (C1)

At any horizon of uncertainty α, the set U(α,C̃) contains all non-negative responsiveness functions

Ci(bi) which deviate from the nominal function by no more than α

∣∣∣∣ bi−b0i
b0i

∣∣∣∣. Since α is unbounded, this

is an unbounded family of nested sets of responsiveness functions.
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The weight on the horizon of uncertainty (the absolute value term on the righthand side of the in-
equality) means that for any given horizon of uncertainty, the uncertainty regarding the responsiveness
grows as the allocation, b, deviates from the measured reference allocation, b0. An uncertainty envelope
for this info-gap model is illustrated in figure 1.

C.2 Robustness

Combining eqs. (C1) and (A3), one can readily show that, for any allocation which distributes the
policing resources between the groups y and ȳ, the robustness is:

α̂(b, Lc) = max

⎧⎨⎩α :

⎛⎝ max
C∈U(α,C̃)

∑
i∈{y,ȳ}

πiCi(bi)

⎞⎠ ≤ Lc

⎫⎬⎭
=

Lc −∑i∈{y,ȳ} πiC̃i(bi)∑
i∈{y,ȳ} πiC̃i(bi)

∣∣∣∣ bi−b0i
b0i

∣∣∣∣ (C2)

D Proposition and Proof

For the following proposition we will assume thatC̃(b) is a vector of differentiable, positive, monotonic
decreasing and strictly convex functions. y and ȳ will denote two disjoint and complementary groups.
C̃i represents our best estimate of the responsiveness of the ith group to policing. We will refer toC̃
as the nominal model. Note that C̃i need not necessarily be exponential, as assumed in eq. (1). Thus
eq. (1) is a special case.

b0 is the observed allocation, the only allocation of police resources for which the responsivenesses
of the groups are known. bopt will denote the optimal allocation, the allocation which yields the lowest
crime rate under the nominal model.

For later simplicity, we will introduce the following definitions:

ξ =
∑

i∈{y,ȳ}
πiC̃i(bi) (D1)

ξ′ =
∂ξ

∂by
− ∂ξ

∂bȳ
(D2)

ζ =
∑

i∈{y,ȳ}
πiC̃i(bi)

∣∣∣∣∣bi − b0
i

b0
i

∣∣∣∣∣ (D3)

ζ ′ =
∂ζ

∂by
− ∂ζ

∂bȳ
(D4)

The gist of our proposition is that, for most resource allocations, there can be at most one critical
crime rate for which the allocation is most robust. In fact, there are only four potential exceptions:
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the current (observed) allocation, the optimal allocation, and the two extreme allocations, by = 0 and
by = 1.

Proposition D.1 Nearly all profiling allocations are maximally robust for at most a single critical
crime rate.

Let b be an allocation such that b �= b0, by > 0 and bȳ > 0. If ζ ′ �= 0, or b �= bopt, then there is at
most one critical crime rate Lc for which b is most robust. When there is such a critical crime rate Lc,
it is

Lc = ξ − ξ′ζ
ζ ′

(D5)

Proof: We will separate the above proposition into two claims.

1. If ζ ′ �= 0, then there is at most one critical crime rate Lc for which b is most robust, given by
eq. (D5).

Since by > 0 and bȳ > 0 (meaning b is not on the “edge” of the valid values), then b being most
robust for some critical value Lc must mean(

∂

∂by
− ∂

∂bȳ

)
α̂(by, Lc) = 0 (D6)

In other words, increasing the policing resources of the y group by an infinitesimal amount, at the
expense of the ȳ group (or vice versa), will not change the robustness. Recall that by + bȳ = 1.

By differentiating eq. (C2) we have(
∂

∂by
− ∂

∂bȳ

)
α̂(by, Lc) =

−ξ′ζ + ζ ′ξ − ζ ′Lc

ζ2
(D7)

Thus, a necessary condition for b to maximize the robustness is that the term on the righthand
side of eq. (D7) equals zero. At fixed b, this can hold only for a single value of Lc, since ζ′ is
non-zero. Thus, if b maximizes the robustness, it does so for only a single Lc value, given by
eq. (D5).

2. If b �= bopt, then there is at most one critical crime rate Lc for which b is most robust.

We will assume that b is the most robust allocation for more than one critical crime rate, and
arrive at a contradiction.

If b is the most robust allocation for some critical value Lc, then, as shown in eqs. (D6) and (D7),
it must hold that

−ξ′ζ + ζ ′ξ − ζ ′Lc

ζ2
= 0 (D8)
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In order for b to be most robust for some other critical value L′c �= Lc it must hold that ζ′ = 0,
since eq. (D8) must hold for both Lc and L′

c. This in turn means that −ξ′/ζ = 0, and since ζ > 0,

this means that ξ′ = 0. Recall that ξ′ =
(

∂
∂by

− ∂
∂bȳ

)∑
i∈{y,ȳ} πiC̃i(bi), which is the change in

the total crime rate when trading an infinitesimal amount of resources between the two groups.
Both C̃y and C̃ȳ are strictly convex functions, which means that their sum,

∑
i∈{y,ȳ} πiC̃i(bi), is

also strictly convex. If the sum is strictly convex and the derivative is zero, then b is the minimum
of the total loss, which means b = bopt. This contradicts the suppostion that b �= bopt, so b is
most robust for at most one value of Lc, given by eq. (D5).
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