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The problem: a decision maker wishes to choose a policy which will guide a system towards
a target value. However, the model of the system is highly uncertain. We will illustrate a very
simple info-gap analysis of this problem. In addition, we will show that policies which, based on
best-estimated model would seem to optimize the outcome, should sometimes be avoided in favor of
other policies. We will consider a very simple stylized example. More realistic examples are discussed
in the references cited below.

Consider the system model:
y = ax + b (1)

where a and b are both highly uncertain, with best-estimates ã and b̃, respectively. The decision
maker wishes to choose x so as to pilot y towards a target value, y?.

The system model, eq.(1), is highly uncertain and we do not know what probability distribution
describes the error in the estimates ã and b̃. The most we can say is that the fractional error in these
estimates is unknown. That is, true (or truer) values a and b deviate from the estimated values ã
and b̃ by no more than a fraction h. However, the horizon of uncertainty h is unknown. An info-gap
model for this uncertainty is the following unbounded family of nested sets of a and b values:

U(h) =

{
a, b :

∣∣∣∣
a− ã

ã

∣∣∣∣ ≤ h,

∣∣∣∣∣
b− b̃

b̃

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (2)

At any horizon of uncertainty, h, the estimates ã and b̃ may err fractionally by as much as h. However,
the value of h is not known. Thus an info-gap model does not allow a worst case analysis: there is
no known worst case since the horizon of error is unknown. We are deep in the domain of Knightian
uncertainty.

The performance function is the squared difference between the desired value y? and the realized
value y:

f(x, a, b) = [y(x, a, b)− y?]2 (3)

In the spirit of Simon’s bounded rationality and the concept of satisficing, we desire the targeting
error, f(x, a, b), to be no greater than the critical value E2

c :

f(x, a, b) ≤ E2
c (4)

E2
c can be chosen to be small or large to express demanding or modest performance aspirations.

The robustness of policy choice x is the greatest fractional error in the estimates ã and b̃, up
to which every realization a and b results in acceptable squared error. Formally, the robustness of
decision x with aspiration Ec is:

ĥ(x,Ec) = max

{
h :

(
max

a,b∈U(h)
f(x, a, b)

)
≤ E2

c

}
(5)

Large robustness ĥ(x,Ec) implies that policy choice x is immune to error in the estimated model
while satisficing the targeting-error at Ec. Low robustness implies that targeting-error as small as
Ec cannot be confidently expected with choice x.

Let ỹ(x) = ãx + b̃ denote the best estimate of the outcome, given choice x, and let us consider
values of x for which ỹ(x) ≤ y?. We will assume that ã > 0 and b̃ > 0. The robustness of choice x is
found to be:

ĥ(x,Ec) =





Ec − [y? − ỹ(x)]
ỹ(x) if Ec ≥ y? − ỹ(x)

0 else
(6)
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Targeting-error no greater than Ec is guaranteed with policy choice x if the horizon of uncertainty
is no larger than ĥ(x,Ec).
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Figure 1: Schematic illustra-
tion of the robustness func-
tion ĥ(x,Ec) in eq.(6).

Figure 2: Comparison of
two policy choices: reversal of
preferences.

As illustrated in fig. 1, the robustness gets worse (ĥ decreases) as the aspired targeting error
improves (Ec gets smaller). That is, robustness trades-off against performance.

Furthermore we see in eq.(6) and fig. 1 that the robustness vanishes when the aspiration Ec equals
or is less than the best-estimate of the output error, y? − ỹ(x). This is true for any choice of x. We
can have little confidence in attaining fidelity as good as the best-estimated fidelity; only poorer
fidelity has positive robustness. Since this is true for any x, it is also true for the choice of x which
minimizes the estimated error, f(x, ã, b̃).

This suggests that policies which optimize the outcome should sometimes be avoided.
Let us now consider two policy alternatives, x and x′, where:

ỹ(x) > ỹ(x′) > 0 (7)

Note that, if ã > 0, then eq.(7) implies that x′ < x. We will say that x′ is a “less aggressive”
intervention that x.

In particular, let x be the policy choice which, based on the best-estimated model, causes the
outcome to precisely match the required value: ỹ(x) = y?. This choice of x is what would normally
be called the optimal policy. Eq.(7) means that the estimated fidelity is worse with the less aggressive
policy x′ than with x:

0 = y? − ỹ(x) < y? − ỹ(x′) (8)

The robustness curves for choices x and x′ are shown in fig. 2. ĥ(x′, Ec) intersects the Ec-axis to the
right of ĥ(x,Ec) because the best-estimated fidelity of x′ is poorer than for x, eq.(8). However, eqs.(6)
and (7) imply that the slope of ĥ(x′, Ec) is steeper than the slope of ĥ(x,Ec), so these robustness
curves cross.

Crossing of robustness curves implies reversal of preference between choices x and x′, where x′ is
less aggressive than x. Let us suppose that the value of robustness, ĥ×, at which the curves in fig. 2
cross is fairly low. If we are quite confident that the estimates ã and b̃ are accurate, then we don’t
need much robustness, so ĥ× might be enough robustness and we would prefer choice x over choice
x′. However, we are considering severe Knightian uncertainty: great error in ã and b̃ is plausible
and we need to choose a policy whose anticipated outcome is both acceptable and reliably achieved.
Thus, if outcome-error Ed in fig. 2 is good enough fidelity, or if ĥd is great enough robustness, then
our robust-satisficing preference is for x′ over x. If an acceptable combination (Ed, ĥd) is not found
on the x′-curve, then we need to search for some other choice, x′′, whose robustness is adequate at
acceptable fidelity. If no such x′′ exists, then no acceptable policy choice is available in the current
state of knowledge. We either revise our aspirations, or do some data-hunting, or revise our model.

This very simple example has illustrated a info-gap robust-satisficing analysis in which one may
prefer a policy which is less aggressive than the nominal optimum. Fig. 2 shows that the optimal
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choice, x, is less desirable than the sub-optimal and less aggressive choice x′ under severe uncertainty,
because the latter more reliably yields acceptable outcomes (if Ed is adequate).

While crossing of robustness curves as in this example is very common, it is not universal. It
can happen that robustness curves do not cross one another, in which case the nominal-optimizing
choice will coincide with the robust-satisficing choice. However, caution is still called for in assessing
what outcome can be considered reliable. Since the trade-off between robustness and outcomes is
universal, the robust-satisficing policy maker will not anticipate (or depend upon) the best-estimated
outcome because the robustness of this outcome is zero. Rather, by “migrating up” the robustness
curve to an acceptable level of robustness, the analyst finds the corresponding outcome which can
reliably be anticipated.
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