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Abstract

Designers face an ineluctable trade-off of system-performance against robustness to information-
gaps in the designer’s knowledge base. A design which optimizes performance, based on the best
available models and data, will have no immunity to deficiencies in those models and data. Immunity
is obtained only by relinquishing aspiration for high performance. Info-gap uncertainty is ignorance
or incomplete understanding of the systems and processes being optimized. This is broader than
usually treated with probability theory. The strategy advocated here is one of robust-satisficing. The
robustness function is the greatest horizon of info-gap uncertainty within which the performance is
guaranteed to meet the aspirations. For fixed design: as the aspirations become more demanding, the
immunity to uncertainty becomes lower and finally vanishes when maximal performance is demanded.
Robustness can be recovered only by retreating from maximal aspiration. For fixed aspirations: one
design is preferred over another if the first entails greater robustness than the latter. This search for
robustifying designs is feasible (contains a non-empty search set) only when the aspiration is sub-
optimal. Sub-optimal designs can have greater robustness than performance-optimal designs, when
evaluated at the same performance requirement. We consider four examples: designing the shape of
a cantilever, maneuvering a dynamic system, identifying a system model, and supervising a go/no-go
decision. One theorem is presented which establishes the theoretical foundations of this analysis.

1 Introduction and Overview

We call ourselves Homo sapiens, in part because we value our ability to optimize, but our sapience
is not limited to the persistent pursuit of unattainable goals. Rather, what eons have taught the
species is the lesson of balancing goals against the constraints of resources, knowledge and ability.
Indeed, the conjunction of reliability-analysis and system-design is motivated precisely by the need
to balance idealized goals and realistic constraints.

The reliability-analyst/system-designer seeks to optimize the design, so the question is: What
constitutes feasible optimization? First we must recognize that even our best models are wrong
in ways we perhaps cannot even imagine. In addition, our most extensive data is incomplete and
especially lacks evidence about surprises — catastrophes as well as windfalls — which impact the
success and survival of the system. These model- and data-deficiencies are information-gaps or
epistemic uncertainties. We will show that optimization of performance is always accompanied
by minimization of robustness to epistemic uncertainty. That is, performance and robustness are
antagonistic attributes and one must be traded-off against the other. A performance-maximizing
option will have less robustness against unmodelled information-gaps than some sub-optimal option,
when both are evaluated against the same aspiration for performance. The conclusion is that the
performance-sub-optimal design is preferable over the performance-optimal design.

The principles just mentioned are explicated with four examples in sections 2–5. These sections
can be read independently, though the examples supplement one another by emphasizing different
applications, aspects of the problem, and methods of analysis. A theoretical framework is provided
in section 6.

Section 2 considers the design of the profile of a cantilever which is subjected to uncertain static
loads. We first formulate a traditional design analysis, in the absence of uncertainty, which leads
to a family of performance-optimal designs. These designs are Pareto-efficient trade-offs between
minimizing the stress and minimizing the weight of the beam. We then show that these Pareto-
efficient designs in fact have no immunity to info-gaps in the load. Robustness to load-uncertainty
is obtained only by moving off the Pareto-optimal design surface. We also consider the windfall
gains which can be garnered from load uncertainty, and examine the relation between robust and
opportune designs.
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Section 3 examines the maneuvering of a vibrating system whose impulse response function is
incompletely known. The emphasis is not on control technology, but rather on modelling and man-
aging unstructured info-gaps in the design-base model of the system. We formulate a traditional
performance-optimization of the control input based on the best-available model. We demonstrate
that this performance-optimization has no immunity to the info-gaps which plague the design-base
dynamic model. This leads to the analysis of performance-sub-optimal designs which magnify the im-
munity to uncertainty in the dynamic behavior of the system. A simple numerical example shows that
quite large robustness can be achieved with sub-optimal designs, while satisficing the performance
(making the performance good enough) at levels not too much less than the performance-optimum.

Section 4 differs from the previous engineering-design examples, and considers the process of up-
dating the parameters of a system model, based on data, when the basic structure of the model
is inaccurate. The case examined is the impact of unmodelled quadratic non-linearities. We begin
by formulating a standard model up-dating procedure based on maximizing the fidelity between the
model and the data. We then show that the result of this procedure has no robustness to the structural
deficiencies of the model. We demonstrate, through a simple numerical example, that fidelity-sub-
optimal models can achieve substantial robustness to model-structure errors, while satisficing the
fidelity at levels not too far below the fidelity-optimum.

In section 5 we consider hybrid uncertainty: a combination of epistemic info-gaps and explicit
(though imprecise) probability densities. A go/no-go decision is to be made based on the evaluation of
the probability of failure. This evaluation is based on the best available probability density function.
However, this probability density is recognized to be imperfect, which constitutes the info-gap which
beleaguers the go/no-go decision. An info-gap analysis is used to address the question: how reliable
is the probabilistic go/no-go decision, with respect to the unknown error in the probability density.
In short, the info-gap robustness-analysis supervises the probabilistic decision.

The examples in sections 2–4 illustrate the assertion that performance-optimization will lead
inevitably to minimization of immunity to information-gaps. This suggests that performance should
be satisficed — made adequate but not optimal — and that robustness should be optimized. Section 6
provides a rigorous theoretical basis for these conclusions.

2 Design of a Cantilever with Uncertain Load

In this section we will formulate a simple design problem, and solve it by finding the design which
optimizes a performance criterion. We will then show that this solution has no robustness to un-
certainty: infinitesimal deviations (of the load, in this example) can cause violation of the design
criterion. This will illustrate the general conclusion (to be proven later) that optimizing the per-
formance in fact minimizes the robustness to uncertainty. Stated differently, we will observe that
a designer’s aspiration for high performance must be accompanied by the designer’s acceptance of
low robustness to failure. Conversely, feasible solutions will entail sub-optimal performance. Again
stated differently, the designer faces an irrevocable trade-off between performance and robustness-to-
failure: demand for high performance is vulnerable to uncertainty; modest performance requirements
are more immune to uncertainty.

2.1 Performance Optimization

Consider a uniform cantilever of length L [m] subject to a continuous uniform load density ϕ̃ [N/m]
applied in a single plane perpendicular to the beam axis, as in fig. 1. The beam is rectangular in cross
section. The beam width, w [m], is uniform along the length and determined by prior constraints,
but the thickness in the load plane, T (x) [m], may be chosen by the designer to vary along the beam.
The beam is homogeneous and its density is known. The designer wishes to choose the thickness
profile to minimize the mass of the beam and also to minimize the maximum absolute bending stress
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Figure 1: Cantilever with uniform load.

in the beam. These two optimization criteria for selecting the thickness profile T (x) are:

min
T (x)>0

∫ L

0
T (x) dx (1)

min
T (x)>0

max
0≤x≤L

|σT (x)| (2)

where σT (x) is the maximum bending stress in the beam section at x. The positivity constraint on
T (x) arises because the thickness must be positive at every point, otherwise the “beam” is not a
beam.

These two design criteria are in conflict, so a trade-off between mass- and stress-minimization
will be needed. To handle this we will solve the stress-minimization with the mass constrained to
a fixed value. We will then vary the beam mass. Consider the following set of thickness profiles
corresponding to fixed mass:

Θ(θ) =

{
T (x) :

∫ L

0
T (x) dx = θ

}
(3)

For any given value of θ, which determines the beam mass, we choose the thickness profile from Θ(θ)
to minimize the maximum stress. The performance criterion by which a design proposal T (x) is
evaluated is:

R(T ) = max
0≤x≤L

|σT (x)| (4)

The design which optimizes the performance from among the beams in Θ(θ), which we denote T̂ θ(x),
is implicitly defined by:

R(T̂ θ) = min
T (x)∈Θ(θ)

max
0≤x≤L

|σT (x)| (5)

From the small-deflection static analysis of a beam with thickness profile T (x), one finds the
magnitude of the maximum absolute bending stress at section x to be:

|σT (x)| =
3ϕ̃(L− x)2

wT 2(x)
[Pa] (6)

where x = 0 at the clamped end of the beam.
In light of the integral constraint on the thickness profile, T (x) ∈ Θ(θ) in eq.(3), and of the

demand for optimal performance, eq.(5), we find that the optimal design makes the stress uniform
along the beam and as small as possible. The optimal profile is a linear taper:

T̂ θ(x) =
2θ(L− x)

L2
[m] (7)

The performance obtained by this design is:

R(T̂ θ) =
3ϕ̃L4

4wθ2
[Pa] (8)
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To understand eq.(7) we note from eq.(6) that the linear taper is the only thickness profile which
achieves the same maximum stress at all sections along the beam. From eq.(6) we know that we
could reduce the stress in some regions of the beam by increasing the thickness profile in those
regions. However, the mass-constraint, eq.(3), would force a lower thickness elsewhere, and in those
other regions the stress would be augmented. Since the performance requirement is to minimize the
maximal stress along the beam, the uniform stress profile is the stress-minimizing solution at this
beam mass. Eq.(8), the performance obtained by this optimal design, is the value of the stress in
eq.(6) with the optimal taper of eq.(7).

-
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Figure 2: Optimal (min-max) stress R(T̂ θ) vs. mass-parameter θ, eq.(8).

We may think of eq.(8) as a curve, R(T̂ θ)-vs.-θ, representing the trade-off between minimal stress
and minimal mass, as shown in fig. 2. As the beam mass, θ, is reduced, the least possible maximum
stress, R(T̂ θ), increases. Every point along this curve is optimal in the Pareto sense that either of
the design criteria—mass or stress minimization—can be improved only by detracting from the other
criterion.

Consider a point P on this optimal design curve, corresponding to the min-max stress σ1 of a beam
of mass θ1. That is: σ1 = R(T̂ θ1). Let Q be a point to the right of P . Q represents beams whose
mass is θ2 > θ1 and whose min-max stress is still only σ1. These beams are sub-optimal: at this
min-max stress they have excessive mass. Alternatively, consider the point R lying above P , which
represents beams of mass θ1 whose min-max stress exceeds the optimum for this mass: σ2 > R(T̂ θ1).
This again is sub-optimal. We can interpret any sub-optimal beam as either mass-excessive for its
min-max stress, or stress-excessive for its mass. Finally, because the curve is a Pareto frontier, there
are no beams corresponding to points below the curve.

2.2 Robustness to Uncertain Load

Now we depart from the performance-optimization analysis described above. Any designer wants
better performance rather than worse, but aspirations are tempered by the need for feasibility,
the need for reliable design. We will now consider the very common situation in which the load
profile is uncertain and, in response, we will develop a robust satisficing design strategy. We will
be particularly interested in the relation between the optimal design under this strategy, and the
performance-maximizing design described in section 2.1.

The designer will choose a thickness profile, T (x), which satisfices the aspiration for good perfor-
mance, that is, which attempts to guarantee that the maximum stress is no greater than a specified
level, for a given beam mass. Satisficing is not an optimization, so an element of design freedom
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still remains. The designer will use this degree of freedom to maximize the immunity to error in the
design-base load. The design specification is satisficed, while the robustness to failure is maximized.

In order to implement this we will first define an info-gap model of uncertainty, and then define
the robustness function.

Let ϕ(x) [N/m] represent the unknown actual load-density profile, and let ϕ̃(x) denote the de-
signer’s best estimate of ϕ(x). For instance, the nominal estimate may be the constant load density
used in section 2.1. Let U(α, ϕ̃) be a set of load profiles ϕ(x), containing the nominal estimate ϕ̃(x).
An info-gap model for the designer’s uncertainty about ϕ(x) is a family of nested sets U(α, ϕ̃),
α ≥ 0. As α grows, the sets become more inclusive:

α ≤ α′ implies U(α, ϕ̃) ⊆ U(α′, ϕ̃) (9)

Also, the nominal load belongs to all the sets in the family:

ϕ̃(x) ∈ U(α, ϕ̃) for all α ≥ 0 (10)

The nesting of the uncertainty-sets imbues α with its meaning as a horizon of uncertainty. A
large α entails great variability of the potential load profiles ϕ(x) around the nominal estimate ϕ̃(x).
Since α is unbounded (α ≥ 0), the family of uncertainty sets is likewise unbounded. This means
that we cannot identify a worse case, and the subsequent analysis is not a worst-case analysis in the
ordinary sense, and does not entail a min-max as in eq.(5). We will see an example of an info-gap
model of uncertainty shortly. (Info-gap models may obey additional axioms as well [4].)

Now we define the info-gap robustness function. The designer’s aspiration (or requirement)
for performance is that the bending stress not exceed the critical value σc anywhere along the beam
of specified mass. That is, the condition σ(x) ≤ σc is needed for ‘survival’; better performance
(σ(x) ≪ σc) is desirable but is not a design requirement. The designer will choose the critical stress
σc as small as necessary, but no smaller than needed. The designer attempts to satisfy the design
specification with the choice of the thickness profile T (x) from the set Θ(θ) in eq.(3) but, since
the actual load profile ϕ(x) is unknown when T (x) is chosen, the maximum bending stress is also
unknown. The robustness of thickness profile T (x) is the greatest horizon of uncertainty, α, at
which the maximum stress is guaranteed to be no greater than the design requirement:

α̂(T, σc) = max

{
α : max

ϕ∈U(α,ϕ̃)

ρ(T, ϕ) ≤ σc

}
(11)

where:
ρ(T, ϕ) = max

0≤x≤L
|σϕ,T (x)| (12)

which is the analog of eq.(4) for the current case of unknown load profile. σϕ,T (x) denotes the
maximum stress in the beam section at x, given load profile ϕ(x) and thickness profile T (x).

We can ‘read’ eq.(11) from left to right: The robustness α̂(T, σc) of thickness profile T (x), given
design specification (or aspiration) σc, is the maximum horizon of uncertainty α such that the worst
performance ρ(T (x), ϕ(x)), for any realization ϕ(x) of the actual load profile up to α, is no greater than
σc. This is a worst-case-up-to-α analysis, but since α is unknown, what we are doing is determining
the greatest α which does not allow failure.

More robustness to failure is better than less, provided the design requirements are satisfied. An
info-gap robust-optimal design is an allowed thickness profile, T̂ θ(x) ∈ Θ(θ), which maximizes the
robustness while also satisficing the performance:

α̂(T̂ θ, σc) = max
T∈Θ(θ)

α̂(T, σc) (13)
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This is the info-gap analog of the optimal design criterion in eq.(5). Note that, unlike eq.(5), we are
not minimizing the maximum stress. Rather, we are maximizing the robustness to uncertainty; the
stress-requirement is satisficed to σc by the robustness function α̂(T, σc).

Let’s consider a concrete example. Suppose that the known nominal load density is the constant
non-negative value ϕ̃, and that we are also aware that the actual load profile ϕ(x) may deviate from
ϕ̃, but we have no information about this deviation. One representation of this load-uncertainty is
the envelope-bound info-gap model, which is the following family of nested sets of load profiles:

U(α, ϕ̃) =
{
ϕ(x) :

∣∣∣ϕ(x)− ϕ̃
∣∣∣ ≤ α

}
, α ≥ 0 (14)

U(α, ϕ̃) is the set of load profiles whose deviation from the nominal profile ϕ̃ is bounded by α. Since
the horizon of uncertainty, α, is unbounded, we have an unbounded family of nested sets of load
profiles. Note that U(α, ϕ̃) satisfies the nesting and inclusion properties of eqs.(9) and (10).

The maximum absolute stress in the beam section at x, |σϕ,T (x)|, given load profile ϕ(x) and
thickness profile T (x), is found to be:

|σϕ,T (x)| =
6

wT 2(x)

∫ L

x
(v − x)ϕ(v) dv (15)

Employing this relation with eq.(12) in eq.(11) yields, after some manipulation, the following
expression for the robustness of thickness profile T (x) with design specification σc:

α̂(T, σc) =
wσc/3

max
0≤x≤L

(
L− x

T (x)

)2 − ϕ̃ (16)

provided that this expression is positive. A negative value arises if the maximum stress in response
to the nominal load exceeds the design requirement, σc. A negative value means that, even without
uncertainty, the design requirement cannot be achieved. In this case the robustness to uncertainty
vanishes and we define α̂(T, σc) = 0.

2.3 Info-gap Robust-optimal Design: Clash with Performance-optimal Design

We now discuss the robustness-maximizing design, T̂ θ(x) in eq.(13). We will find the beam-shape
which maximizes the robustness, for any choice of the stress-requirement σc. Significantly, this
beam-shape will be the linear taper which maximizes the performance. However, we will find that
when σc is chosen on the Pareto-optimal curve, the robustness of this linear taper is precisely zero.
That is: performance-optimization entails robustness-minimization. This motivates the choice of
performance-sub-optimal designs as the only way to obtain positive robustness to uncertainty.

Consider beams of mass θ whose maximum bending stress is no greater than σc. We are considering
any σc, so (θ, σc) is not necessarily Pareto-optimal and does not necessarily fall on the optimal-design
curve of fig. 2. From examination of eq.(16), we find that the thickness profile in the allowed-mass set
Θ(θ) which maximizes the robustness and satisfices the stress (at stress requirement σc) is precisely
the profile which maximizes the performance: the linear taper T̂ θ(x) in eq.(7). With this robustness-
maximizing thickness profile, the robustness in eq.(16) becomes:

α̂(T̂ θ, σc) =
4wθ2σc
3L4

− ϕ̃ (17)

Fig. 3 illustrates this optimal robustness versus the maximum-stress design requirement, σc.
Fig. 3 demonstrates one of the most important universal properties of the robustness function:

robustness decreases monotonically as the performance-requirement becomes more stringent. A small
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Figure 3: Optimal robustness curve, α̂(T̂ θ, σc), versus the maximum-stress design requirement σc,
eq.(17).

value of σc is a demanding specification, while a large value of σc is more lenient. A modest stress
requirement will be quite robust, while a demanding design will be prone to failure. The value
of σc at which the robustness becomes zero is denoted in fig. 3 by σ∗. This is such an exacting
requirement that even infinitesimal deviations of the actual load profile from the nominal profile may
entail violation of the design requirement. Clearly, choosing the requirement σc = σ∗ is infeasible
and unrealistic since σc is defined as a stress level which must not be exceeded.

The value of σ∗ is obtained by equating α̂(T̂ θ, σc), in eq.(17), to zero and solving for σc. The
result is:

σ∗ =
3ϕ̃L4

4wθ2
[Pa] (18)

which is precisely the minimal stress obtained by the performance-optimizing design, eq.(8). We see
here an instance of another general phenomenon of great importance: a design which optimizes
the performance (as in section 2.1), also minimizes the robustness. That is, the locus of (θ, σ)
values on the optimal-design curve of fig. 2 coincides with the zero-robustness points (σ∗, 0) in fig. 3.
A point with positive robustness on the curve in fig. 3 (α̂(T̂ θ, σ2) > 0) corresponds to a point above
the Pareto-optimal curve like R on fig. 2 for which σ2 > σ(θ). Performance optimization leads to the
least feasible of all realizable designs. The designer is therefore strongly motivated to satisfice the
performance and maximize the robustness, as we have done in this section. We explore this
further in the next subsection.

2.4 Resolving the Clash

We will seek a thickness profile, T ∗(x), which has two properties:

1. The design has positive robustness to load-uncertainty, so that α̂(T ∗, σc) in eq.(16) is positive.

2. The design has sub-optimal performance, so it is not on the optimal trade-off curve between
mass and stress, eq.(8). This is necessary in order to enable positive robustness.

If the beam mass is constrained to Θ(θ), then the min-max stress is given by eq.(8). Let us adopt
this value, σ∗ in (18), as the design requirement. We know from our analysis in section 2.3 that we
must accept a beam-mass in excess of θ in order to satisfice this stress requirement with positive
robustness. That is, following our discussion of eq.(8) and fig. 2, we must choose a design point to
the right of the optimum-performance design curve, such as point Q in fig. 2.
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From eq.(16), the condition for positive robustness is:

wσ∗/3

max
0≤x≤L

(
L− x

T (x)

)2 > ϕ̃ (19)

When T (x) is the performance-optimal linear taper, T̂ θ(x) of eq.(7), and σ∗ is given by eq.(18), we
obtain equality in (19) and hence zero robustness, so we must choose the thickness profile so that:

T (x) ≥ 2θ(L− x)

L2
= T̂ θ(x) (20)

with strict inequality over at least part of the beam. There are many available solutions; we consider
one simple class of solutions:

T ∗(x) = T̂ θ(x) + γ (21)

where γ ≥ 0. From eq.(16), the robustness of this profile is:

α̂(T ∗, σ∗) =
wσ∗

3L2

(
2θ

L
+ γ

)2

− ϕ̃ (22)

With σ∗ from eq.(18), this robustness becomes:

α̂(T ∗, σ∗) =
ϕ̃L2

4θ2

(
2θ

L
+ γ

)2

− ϕ̃ (23)

whose positivity is controlled by γ which also controls the extent of deviation of T ∗ from the
performance-optimum solution T̂ θ. When γ is zero, the beam shape lies on the performance-optimal
curve, eq.(8): it has minimal mass for the stress-requirement σc. However, at γ = 0 the robustness
to load-uncertainty is zero. As γ becomes larger, the robustness increases but the beam also becomes
more mass-excessive.

In eqs.(20)–(23) we have derived a performance-sub-optimal design which has positive robustness.
This design is formulated as a point Q to the right of the performance-optimal curve in fig. 2: we
have increased the mass while holding the stress-requirement fixed. Another approach to defining
designs which are performance-sub-optimal and yet have positive robustness is to seek points R which
are above the curve. Positive robustness is obtained if inequality eq.(19) is satisfied. This can be
obtained with the linear beam shape of eq.(7), and with a stress-requirement σc in excess of the
minimal (optimal) stress for this beam mass given by σ∗ in eq.(18) (or equivalently by R(T̂ θ) in
eq.(8)). One way to understand this alternative approach is in terms of the relation between points
P and R in fig. 2. The mass-optimal linear taper is used, eq.(7) with θ1, but the aspiration for
stress-performance is weakened: rather than adopting the optimal-stress requirement (σ1 in fig. 2),
the designer adopts a less demanding stress requirement (σ2 in fig. 2).

The added beam thickness, γ in eq.(21), can be thought of as a safety factor.1 The designer
who proceeded according to the performance-optimization procedure of section 2.1 may add the
thickness γ as an ad hoc protection. However, eq.(23) enables one to evaluate this deviation from
the optimum-performance design in terms of the robustness-to-uncertainty which it entails. The
robustness, α̂(T ∗, σ∗) in eq.(23), is the greatest value of the uncertainty parameter, α in the info-gap
model of eq.(14), which does not allow the maximum bending stress to exceed σ∗(θ) of eq.(18). α̂
is the interval of load-amplitude within which the actual load profile, ϕ(x), may deviate from the
design-base nominal load profile, ϕ̃, without exceeding the stress requirement. Suppose the designer

1The author is indebted to Prof. Eli Altus, of the Technion, for suggesting this interpretation.
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desires that the robustness, α̂, be equal to a fraction f of the nominal load: α̂ = fϕ̃. The thickness
safety factor which is needed is obtained by inverting eq.(23) to obtain:

γ =
2θ

L

(√
1 + f − 1

)
(24)

f = 0 means that no robustness is needed, and this causes γ = 0, meaning that the optimal-
performance design, T̂ θ, is obtained. f is increased to represent greater demanded robustness to
uncertainty, causing the safety factor, γ, to increase from zero.

2.5 Opportunity from Uncertain Load

In section 2.2 we defined the robustness function: α̂(T, σc) is the greatest horizon of uncertainty which
design T (x) can tolerate without failure, when σc is the maximum allowed stress. The robustness
function addresses the adverse aspect of load uncertainty. It evaluates the immunity to failure, which
is why a large value of robustness is preferred to a small value, when the stress-limit is fixed.

In this section we explore the idea that uncertainty may be propitious: unknown contingencies
may be favorable. The ‘opportunity function’ which we will formulate is also an immunity function:
it assesses the immunity against highly desirable windfall outcomes. Since the opportunity function is
the immunity against sweeping success, a small value is preferred over a large value. Each immunity
function—robustness and opportunity—generates its own preference ranking on the set of available
designs. We will see that, in general, these rankings may or may not agree.

As before, σc is the greatest acceptable bending stress. Let σw be a smaller stress which, if not
exceeded at any point along the beam, would be a desirable ‘windfall’ outcome. It is not necessary
that the stress be as small of σw, but this would be viewed very favorably. The nominal load produces
a maximum bending stress which is greater than σw. However, favorable fluctuations of the load could
produce a maximum bending stress as low as σw. The opportunity function is the lowest horizon
of uncertainty at which the maximum bending stress at any section of the beam can be as low as σw:

β̂(T, σw) = min

{
α : min

ϕ∈U(α,ϕ̃)

ρ(T, ϕ) ≤ σw

}
(25)

where ρ(T, ϕ) is the maximum absolute bending stress occurring in the beam, specified in eq.(12).
β̂(T, σw) is the lowest horizon of uncertainty which must be accepted in order to enable maximum
stress as low as σw. β̂(T, σw) is the immunity to windfall: a small value implies that windfall
performance is possible (though not guaranteed) even at low level of uncertainty. The opportunity
function is the dual of the robustness function in eq.(11).

Employing eq.(12), we can write the opportunity function more explicitly as:

β̂(T, σw) = min

{
α : min

ϕ∈U(α,ϕ̃)

max
0≤x≤L

|σϕ,T (x)| ≤ σw

}
(26)

The evaluation of the opportunity function requires a bit of caution because, in general, the order
of the inner ‘min’ and ‘max’ operators can not be reversed. In the current example, however, a
simplification occurs.

Let us define a constant load profile, ϕ∗ = ϕ̃−α, which belongs to U(α, ϕ̃) for all α ≥ 0. One can
readily show that this load profile minimizes the maximum stress at all sections, x. That is:

|σϕ∗,T (x)| = min
ϕ∈U(α,ϕ̃)

|σϕ,T (x)| (27)
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Since this minimizing load profile, ϕ∗, is the same for all positions x, we can reverse the order of the
operators in eq.(26) as:

min
ϕ∈U(α,ϕ̃)

max
0≤x≤L

|σϕ,T (x)| = max
0≤x≤L

min
ϕ∈U(α,ϕ̃)

|σϕ,T (x)| (28)

= max
0≤x≤L

|σϕ∗,T (x)| (29)

= max
0≤x≤L

3(ϕ̃− α)(L− x)2

wT 2(x)
(30)

The opportunity function is the smallest horizon of uncertainty, α, for which the righthand side of
eq.(30) is no greater than σw. Equating this expression to σw and solving for α yields the opportunity
for design T (x) with windfall aspiration σw:

β̂(T, σw) = ϕ̃− wσw/3

max
0≤x≤L

(
L− x

T (x)

)2 (31)

This expression is non-negative unless the righthand side of eq.(30) is less than σw at α = 0, which
occurs if and only if the nominal load entails maximal stress less than σw; in this case we define
β̂(T, σw) = 0.

We have already mentioned that each immunity function—robustness and opportunity—generates
its own preference ranking of available designs. Since “bigger is better” for the robustness function,
we will prefer T over T ′ if the former design is more robust than the latter. Concisely:

T ≻r T ′ if α̂(T, σc) > α̂(T ′, σc) (32)

The opportunity function is the immunity against windfall performance, so “big is bad”. This means
that we will prefer T over T ′ if the former design is more opportune than the latter:

T ≻o T ′ if β̂(T, σw) < β̂(T ′, σw) (33)

The generic definitions of the immunity functions do not imply that the preference-rankings in
eqs.(32) and (33) agree. The immunity functions are said to be sympathetic when their preference
rankings agree; they are antagonistic otherwise. Both situations are possible. In the present
example the immunities are sympathetic, as we see by combining eqs.(16) and (31) as:

β̂(T, σw) = − σw
σc

α̂(T, σc)︸ ︷︷ ︸
A

+

(
1− σw

σc

)
ϕ̃︸ ︷︷ ︸

B

(34)

Expression ‘B’ does not depend upon the design, T (x), and expression ‘A’ is non-negative. Conse-
quently, any change in the design which causes α̂ to increase (that is, robustness improves), causes
β̂ to decrease (which improves opportunity). Likewise, robustness and opportunity deteriorate to-
gether. These immunity functions are sympathetic for any possible design change, though they do
not necessarily improve at the same rate; marginal changes may be greater for one than for the other.

In general, robustness and opportunity functions are not necessarily sympathetic. Their sympathy
in the current example is guaranteed because B in eq.(34) is independent of the design. This need
not be the case. If B increases due to a design-change which causes α̂ to increase, the net effect may
be an increase in β̂, which constitutes a decrease in opportunity. For an example see [4, p.52].
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3 Maneuvering a Vibrating System with Uncertain Dynamics

In section 2 we considered the design and reliability analysis of a static system subject to uncertain
loads. We now consider the analysis and control of a simple vibrating system whose dynamic equa-
tions are uncertain. That is, the best model is known to be wrong or incomplete in some poorly
understood way, and an info-gap model represents the uncertainty in this system-model. Despite
the uncertainty in the system-model, the designer must choose a driving function which efficiently
“propels” the system as far as possible.

3.1 Model Uncertainty

Consider a one-dimensional linear system whose displacement x(t) resulting from forcing function
q(t) is described by Duhamel’s relation:

x(t; q, h) =

∫ t

0
q(τ)h(t− τ) dτ (35)

where h(t) is the impulse response function (IRF).
The best available model for the IRF is denoted h̃(t), which may differ substantially from h(t) due

to incomplete or inaccurate representation of pertinent mechanisms. For instance, for the undamped
linear harmonic oscillator:

h̃(t) =
1

mω
sinωt (36)

where m is the mass and ω is the natural frequency. This IRF is seriously deficient in the presence
of damping, which is a complicated and incompletely understood phenomenon.

Let U(α, h̃) be an info-gap model for uncertainty in the IRF. That is, U(α, h̃), α ≥ 0, is a family
of nested sets of IRFs, all containing the nominal best-model, h̃(t). That is:

α < α′ implies U(α, h̃) ⊂ U(α′, h̃) (37)

and
h̃(t) ∈ U(α, h̃) for all α ≥ 0 (38)

As an example we now construct a Fourier ellipsoid-bound info-gap model of uncertainty in the
system dynamics. Actual IRFs are related to the nominal function by:

h(t) = h̃(t) +
∑
i

ciσi(t) (39)

where the σi(t) are known expansion functions (e.g. cosines, sines, polynomials, etc.) and the ci
are unknown expansion coefficients. Let c and σ(t) denote the vectors of expansion coefficients and
expansion functions, respectively, so that eq.(39) becomes:

h(t) = h̃(t) + cTσ(t) (40)

A Fourier ellipsoid-bound info-gap model for uncertainty in the IRF is a family of nested ellipsoids
of coefficient vectors:

U(α, h̃) =
{
h(t) = h̃(t) + cTσ(t) : cTV c ≤ α2

}
, α ≥ 0 (41)

where V is a known, real, symmetric, positive definite matrix which determines the shape of the
ellipsoids of c-vectors. V is based on fragmentary information about the dispersion of the expan-
sion coefficients. The size of each ellipsoid is determined by the (unknown) horizon-of-uncertainty
parameter α.
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3.2 Performance Optimization with the Best Model

We now consider the performance-optimal design of the driving function q(t) based on the model
h̃(t) of eq.(36) which is, for the purpose of this example, the best-known IRF of the system. The
goal of the design is to choose the forcing function q(t) to achieve large displacement x(T ; q, h̃) at
specified time T with low control effort

∫ T
0 q2(t) dt. Specifically, we would like to select q(t) so as to

achieve an optimal balance between the following two conflicting objectives:

max
q(t)

x(T ; q, h̃) (42)

min
q(t)

∫ T

0
q2(t) dt (43)

Let Q(E) denote the set of all control functions q(t) whose control effort equals E:

Q(E) =

{
q(t) : E =

∫ T

0
q2(t) dt

}
(44)

Using the Schwarz inequality, one can readily show that the q-function in Q(E) which maximizes
the displacement x(T ; q, h̃) at time T is:

q∗E(t) =

√
f0E

mω
sinω(T − t) (45)

where:

f0 =
4m2ω3

2ωT − sin 2ωT
(46)

From this one finds that the greatest displacement at time T , obtainable with any control function
in Q(E), is:

x(T ; q∗E , h̃) =

√
E

f0
(47)

Eq.(47) expresses the trade-off between control effort E and maximal displacement x: large dis-
placement is obtained only at the expense of large effort, as shown in fig. 4. Like fig. 2, this relationship
expresses the Pareto-optimal design options: any improvement in control effort (making E smaller)
is obtained only by relinquishing displacement (making x smaller).

-

6x(T ; q∗E , h̃)

s
s
s

P
S

R

E1 E2

E

x1

x2

Figure 4: Maximal displacement x(T ; q∗E , h̃) vs. control effort E, eq.(47).

Points above the curve in fig. 4 are inaccessible: no design can realize those (E, x) combinations.
Points on the curve are Pareto-optimal and points below the curve are sub-optimal designs. For
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instance, point P on the curve is Pareto-optimal: E1 is the lowest control effort which can achieve
displacement as large as x1. Point S is sub-optimal and represents excessive control effort (E2 > E1)
to achieve displacement x1. Likewise, point R is Pareto-optimal: x2 is the greatest displacement
which can be attained with control effort E2. So again S is sub-optimal: greater displacement
(x2 > x1) could be achieved with effort E2.

3.3 Robustness Function

We now develop an expression for the robustness, of the displacement x(T ; q, h), to uncertainty in
the system dynamics h(t).

The first design goal, eq.(42), implies that a large value of displacement is needed. The second
design goal, eq.(43), conflicts with the first and calls for small control effort. In section 3.2 we found
that performance optimization leads to a Pareto trade-off between these two criteria, expressed in
eq.(47) and fig. 4. In this section, in light of the uncertainty in the IRF, we take a different approach.
For any given control function q(t), we “satisfice” the displacement by requiring that the displacement
be at least as large as some specified and satisfactory value xc. Since x(T ; q, h) depends upon the
unknown IRF we cannot guarantee that the displacement will be satisfactory. However, we can
answer the following question: for given forcing function q(t), by how much can the best model h̃(t)
err without jeopardizing the achievement of adequate displacement? More specifically, given q(t),
what is the greatest horizon of uncertainty, α, up to which every model h(t) causes the displacement
to be at least as large as xc? The answer to this question is the robustness function:

α̂(q, xc) = max

{
α : min

h∈U(α,̃h)

x(T ; q, h) ≥ xc

}
(48)

We can “read” this relation from left to right: the robustness α̂(q, xc) of control function q(t) with
displacement-aspiration xc is the greatest horizon of uncertainty α such that every system-model
h(t) in U(α, h̃) causes the displacement x(T ; q, h) to be no less than xc. If α̂(q, xc) is large then the
system is robust to model-uncertainty and q(t) can be relied upon to bring the system to at least
xc at time T . If α̂(q, xc) is small then this driving function cannot be relied upon and the system is
vulnerable to uncertainty in the dynamics.

Using Lagrange optimization one can readily show that the smallest displacement, for any system
model h(t) up to uncertainty α, is:

min
h∈U(α,̃h)

x(T ; q, h) = x(T ; q, h̃)− α
√
bTV b (49)

where we have defined the following vector:

b =

∫ T

0
q(t)σ(T − t) dt (50)

Eq.(49) asserts that the least displacement, up to uncertainty α, is the nominal, best-model, displac-
ment x(T ; q, h̃), decremented by the uncertainty term α

√
bTV b. If the nominal displacement falls

short of the demanded displacement xc, then uncertainty only makes things worse and the robustness
to uncertainty is zero. If x(T ; q, h̃) exceeds xc then the robustness is found by equating the righthand
side of eq.(49) to xc and solving for α. That is, the robustness of driving function q(t) is:

α̂(q, xc) =


0 if x(T ; q, h̃) ≤ xc

x(T ; q, h̃)− xc√
bTV b

else
(51)

Eq.(51) documents the trade-off between robustness, α̂(q, xc), and aspiration for performance, xc,
as shown in fig. 5. A large and demanding value of xc is accompanied by a low value of immunity
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to model-uncertainty, meaning that aspirations for large displacements are unreliable and infeasible.
Modest requirements (small values of xc) are more feasible since they have greater immunity to
uncertainty. The value of xc at which the robustness vanishes, x∗ in the figure, is precisely the
displacement predicted by the best model, x(T ; q, x̃). That is:

α̂
(
q, x(T ; q, h̃)

)
= 0 (52)

This means that, for any driving function q(t), the displacement predicted by the best available model
h̃(t) cannot be relied upon to occur. Short-fall of the displacement may occur due to infinitesimally
small error of the model. Since this is true for any q(t) it is also true for the performance-optimum
control function q∗E(t) in eq.(45):

α̂
(
q∗E , x(T ; q

∗
E , h̃)

)
= 0 (53)

While q∗E(t) is, according to h̃(t), the most effective driving function of energy E, and while x(T ; q∗E , h̃)

is, again according to h̃(t), the resulting displacement, eq.(53) shows that this prediction has no
immunity to modelling errors.

-

6

α̂(q, xc)

J
J
J
J
J
J
J
J Required displacement, xc

demandingmodest
x∗

Robustness

high

low
0

Figure 5: Robustness α̂(q, xc) versus the demanded displacement xc, eq.(51).

It is important to recognize that ordered pairs such as
(
E, x(T ; q∗E , h̃)

)
correspond to points such

as P and R on the Pareto-optimal design surface in fig. 4. That is, E and x(T ; q∗E , h̃) are related by
eq.(47). Hence eq.(53) shows that all of the performance-optimal designs on the Pareto surface have
no immunity to errors in the design-base model of the system. These Pareto-efficient designs are not
feasible or reliable predictions of the system performance.

The conclusion from eqs.(52) and (53) is likely to be that, since x(T ; q∗E , h̃) cannot be relied
upon to occur, one must moderate one’s aspirations and accept a lower value of displacement. The
designer might “travel” up and to the left on the robustness curve in fig. 5 until finding a value of
xc < x∗ at which the robustness is satisfactorily large. But then the question arises: what driving
function q(t)maximizes the robustness at this selected aspiration for displacement? The optimization
studied in section 3.2 was optimization of performance (displacement and control effort). We now
consider satisficing these quantities and optimizing the robustness. Specifically, for any displacement-
aspiration xc, the robust-optimal control function q̂E(t) of energy E maximizes the robustness
function:

α̂(q̂E , xc) = max
q(t)∈Q(E)

α̂(q, xc) (54)

This robust optimum may not always exist, or it may be inaccessible for practical reasons. In any
case one will tend to prefer more robust over less robust solutions. More specifically, if q1(t) is more
robust than q2(t), while satisficing the performance at the same level xc, then q1(t) is preferred over
q2(t):

q1(t) ≻ q2(t) if α̂(q1, xc) > α̂(q2, xc) (55)
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Relating this to our earlier discussion, suppose that E is an accessible control effort and that xc
is a satisfactory level of performance. In order for xc to be feasible it must be less than the best
performance obtainable with effort E, namely xc < x(t; q∗E , h̃). This assures that the robustness of
the performance-optimal control function, q∗E(t), will be positive: α̂(q∗E , xc) > 0. However, we might
well ask if there is some other control function in Q(E) whose robustness is even greater. This will
often be the case, as we illustrate in the next subsection.

3.4 Example

To keep things simple suppose that σ(t) in the unknown part of the IRF in eq.(40) is a single linearly
decreasing function:

σ(t) = η(T − t) (56)

where η is a positive constant. Thus c is a scalar and the shape-matrix in the info-gap model of
eq.(41) is simply V = 1.

The performance-optimal control function of effort E is q∗E(t) in eq.(45), which is a sine function at

the natural frequency of the nominal IRF, h̃(t). From eq.(51), the robustness of this control function
is:

α̂(q∗E , xc) =

1

mω

∫ T

0
q∗E(t) sinω(T − t) dt − xc∣∣∣∣∣η
∫ T

0
q∗E(t)(T − t) dt

∣∣∣∣∣
(57)

Similarly, the robustness of any arbitrary control function q(t) is:

α̂(q, xc) =

1

mω

∫ T

0
q(t) sinω(T − t) dt − xc∣∣∣∣∣η
∫ T

0
q(t)(T − t) dt

∣∣∣∣∣
(58)

(Presuming the numerator is positive.) In light of our discussion of eq.(55), we would like to find a
control function q(t) in Q(E) whose robustness is substantially greater than the robustness of q∗E(t).

We will illustrate that very substantial robustness benefits can be achieved by abandoning the
performance-optimal function q∗E(t). We will not consider the general maximization of α̂(q, xc), but
only a parametric case. Consider functions of the form:

qµ(t) = A sinµ(T − t) (59)

where 0 < µ < ω and A is chosen to guarantee that q(t) belongs to Q(E) (which was defined in
eq.(44)):

A =

√
4µE

2µT − sin 2µT
(60)

For the special case that ωT = π the robustness functions of eqs.(57) and (58) become:

α̂(q∗E , xc) =
π
√
ωE −

√
2πmω2xc

2mη
√
ωE

(61)

α̂(qµ, xc) =

Aµ2
(
sin[π(µ− ω)/ω]

2(µ− ω)
− sin[π(µ+ ω)/ω]

2(µ+ ω)

)
−mωµ2xc

ηmA [ω sin(πµ/ω)− πµ cos(πµ/ω)]
(62)

Fig. 6 shows the ratio of the robustnesses of the sub-optimal to the performance-optimal con-
trol functions, vs. the frequency of the control function. The robustness at control frequencies µ
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Figure 6: Ratio of the robustnesses of the sub-optimal to performance-optimal control functions,
vs. frequency of control function. xc = 0.5, ω = E = η = m = 1. α̂(q∗E , xc) = 0.94

much less than the nominal natural frequency ω, is substantially greater than the robustness of the
performance-maximizing function. For instance, at point P , µ = 0.2 and the robustness ratio is
α̂(qµ, xc)/α̂(q

∗
E , xc) = 4.0, meaning that qµ(t) can tolerate a horizon of model-uncertainty 4 times

greater than the uncertainty which is tolerable for q∗E(t), when satisficing the displacement at xc.

q∗E(t) maximizes the displacement according to the best IRF, h̃(t). However, this displacement-
optimization of the control function leaves little residual immunity to uncertainty in the IRF at this
value of xc. A control function such as qµ(t), for µ < ω, belongs to Q(E), as does q∗E(t), but qµ(t) is

sub-optimal with respect to displacement. That is, x(T ; qµ, h̃) < x(T ; q∗E , h̃). However, because qµ(t)
is sub-optimal, there are many functions with control effort E which cause displacement as large as
x(T ; qµ, h̃). In other words, there is additional design freedom with which to amplify the immunity to
uncertainty. What fig. 6 shows is that large robustness-amplification can be achieved. This answers,
by way of illustration, the question raised at the end of section 3.3.

4 System Identification

A common task encountered by engineering analysts is the up-dating of a system-model, based on
measurements. The question we consider in this section is, given that the structure of the model
is imperfect, what constitutes optimal estimation of the parameters? More precisely, is it sound
procedure to maximize the fidelity between the model and the measurements, if the model structure
is wrong (in unknown ways, of course)?

4.1 Optimal Identification

We begin by formulating a fairly typical framework for optimal identification of a model for predicting
the behavior of a system. We then consider an example.

Let yi be a vector of measurements of the system at time or state i, for i = 1, . . . , N . Let fi(q)
denote the model-prediction of the system in state i, which should match the measurements if the
model is good. The vector q, containing real and linguistic variables, denotes the parameters and
properties of the model which can be modified to bring the model into agreement with the measure-
ments. We will denote the set of measurements by Y = {y1, . . . , yN} and the set of corresponding
model-predictions by F (q) = {f1(q), . . . , fN (q)}.

The overall performance of the predictor is assessed by a function R[Y, F (q)]. For example, this
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might be a mean-squared prediction error:

R[Y, F (q)] =
1

N

N∑
i=1

∥fi(q)− yi∥2 (63)

A performance-optimal model, q∗, minimizes the performance-measure:

R[Y, F (q∗)] = min
q

R[Y, F (q)] (64)

4.2 Uncertainty and Robustness

The model fi(q) is undoubtedly wrong, perhaps fundamentally flawed in its structure. There may
be basic mechanisms which act on the system but which are not represented by fi(q). Let us denote
more general models, some of which may be more correct, by:

ϕi = fi(q) + ui (65)

where ui represents the unknown corrections to the original model, fi(q). We have very little knowl-
edge about ui; if we had knowledge of ui we would most likely include it in fi(q). So, let us use an
info-gap model of uncertainty to represent the unknown variation of possible models:

ϕi ∈ U(α, fi(q)), α ≥ 0 (66)

The centerpoint of the info-gap model, fi(q), is the known model, parameterized by q. The horizon
of uncertainty, α, is unknown. This info-gap model is a family of nested sets of models. These sets
of models become ever more inclusive as the horizon of uncertainty increases. That is:

α ≤ α′ implies U(α, fi(q)) ⊂ U(α′, fi(q)) (67)

In addition, the up-date model is included in all of the uncertainty sets:

fi(q) ∈ U(α, fi(q)), for all α ≥ 0 (68)

As before, the model-prediction of the system output in state i is fi(q), and the set of model-
predictions is denoted F (q) = {f1(q), . . . , fN (q)}. More generally, the set of model-predictions with
unknown terms u1, . . . , uN is denoted Fu(q) = {f1(q) + u1, . . . , fN (q) + uN}.

We wish to choose a model, fi(q), for which the performance index, R[Y, Fu(q)], is small. Let
rc represent an acceptably small value of this index. We would be willing, even delighted, if the
prediction-error is smaller, but an error larger than rc would be unacceptable.

The robustness to model-uncertainty, of model q with error-aspiration rc, is the greatest
horizon of uncertainty, α, within which all models provide prediction-error no greater than rc:

α̂(q, rc) = max

{
α : max

ϕi∈U(α,fi(q))

i=1, . . . ,N

R[Y, Fu(q)] ≤ rc

}
(69)

When α̂(q, rc) is large, the model fi(q) may err fundamentally to a great degree, without jeopardizing
the accuracy of its predictions; the model is robust to info-gaps in its formulation. When α̂(q, rc) is
small, then even small errors in the model result in unacceptably large prediction errors.

Let q∗ be an optimal model, which minimizes the prediction-error as defined in eq.(64), and let r∗c
be the corresponding optimal prediction error: r∗c = R(Y, F (q∗)). By using model q∗, we can achieve
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prediction error as small as r∗c , and no value of q can produce a model fi(q) which performs better.
However, the robustness to model-uncertainty, of this optimal model, is zero:

α̂(q∗, r∗c ) = 0 (70)

This is a special case of the theorem to be discussed in section 6 that, by optimizing the performance,
one minimizes the robustness to info-gaps. By optimizing the performance of the model-predictor,
fi(q), we make this predictor maximally sensitive to errors in the basic formulation of the model.

In fact, eq.(70) is a special case of the following proposition. For any q, let rc = R[Y, F (q)] be the
prediction-error of model fi(q). The preliminary lemma in section 6 shows that:

α̂(q, rc) = 0 (71)

That is, the robustness of any model, fi(q), to uncertainty in the structure of that model, is precisely
equal to zero, if the error-aspiration rc equals the value of the performance function of that model.
No model can be relied upon to perform at the level indicated by its performance function, if that
model is subject to errors in its structure or formulation. R[Y, F (q)] is an unrealistically optimistic
assessment of model fi(q), unless we have reason to believe that no auxiliary uncertainties lurk in
the mist of our ignorance.

4.3 Example

A simple example will illustrate the previous general discussion.
We begin by formulating a mean-squared-error estimator for a 1-dimensional linear model.

The measurements yi are scalars, and the model to be estimated is:

fi(q) = iq (72)

The performance function is the mean-squared error between model and measurements, eq.(63),
which becomes:

R[Y, F (q)] =
1

N

N∑
i=1

(iq − yi)
2 (73)

=
1

N

N∑
i=1

y2i︸ ︷︷ ︸
η2

− 2q
1

N

N∑
i=1

iyi︸ ︷︷ ︸
η1

+ q2
1

N

N∑
i=1

i2︸ ︷︷ ︸
η0

(74)

which defines the quantities η0, η1 and η2. The performance-optimal model defined in eq.(64), which
minimizes the mean-squared error, is:

q∗ =
η1
η0

(75)

Now we introduce uncertainty in the model. The model which is being estimated is linear
in the ‘time’ or ‘sequence’ index i: fi = iq. How robust is the performance of our estimator, to
modification of the structure of this model? That is, how much can the model err in its basic
structure, without jeopardizing its predictive power?

Suppose that the linear model of eq.(72) errs by lacking a quadratic term:

ϕi = iq + i2u (76)

where the value of u is unknown. The uncertainty in the quadratic model is represented by an
interval-bound info-gap model, which is the following unbounded family of nested intervals:

U(α, iq) =
{
ϕi = iq + i2u : |u| ≤ α

}
, α ≥ 0 (77)
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The robustness of nominal model fi(q), with performance-aspiration rc, is the greatest value of
the horizon of uncertainty α at which the mean-squared error of the prediction is no greater than rc
for any model in U(α, iq):

α̂(q, rc) = max

{
α : max

|u|≤α
R[Y, Fu(q)] ≤ rc

}
(78)

The mean-squared error of a model with non-linear term i2u is:

R[Y, Fu(q)] =
1

N

N∑
i=1

(iq + i2u− yi)
2 (79)

=
1

N

N∑
i=1

(iq − yi)
2

︸ ︷︷ ︸
ξ2

+ 2u
1

N

N∑
i=1

i2(iq − yi)︸ ︷︷ ︸
ξ1

+ u2
1

N

N∑
i=1

i4︸ ︷︷ ︸
ξ0

(80)

which defines ξ0, ξ1 and ξ2.
Some manipulations show that the maximum mean-squared error, for all quadratic models ϕi up

to horizon of uncertainty α, is:

max
|u|≤α

R[Y, Fu(q)] = ξ2 + 2α|ξ1|+ α2ξ0 (81)

Referring to eq.(78), the robustness to an unknown quadratic non-linearity i2u, of the linear model
fi(q), is the greatest value of α at which this maximum error is no greater than rc.

First we note that the robustness is zero if rc is small:

α̂(q, rc) = 0, rc ≤ ξ2 (82)

This is because, if rc ≤ ξ2, then maxR in eq.(81) exceeds rc for any positive value of α. One
implication of eq.(82) is that some non-linear models have prediction errors in excess of ξ2. If it is
required that the fidelity between model and measurement be as good as or better than ξ2, then no
modelling errors of the quadratic type represented by the info-gap model of eq.(77) can be tolerated.
Recall that ξ2 is the mean-squared error of the nominal linear predictor, fi(q). Eq.(82) means that
there is no robustness to model-uncertainty, if the performance-aspiration rc is stricter or more
exacting than the performance of the nominal, linear model.

For rc ≥ ξ2, the robustness is obtained by equating the righthand side of eq.(81) to rc and solving
for α, resulting in:

α̂(q, rc) =
|ξ1|
ξ0

(
−1 +

√
1 +

ξ0(rc − ξ2)

ξ21

)
, ξ2 ≤ rc (83)
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q∗
q′ > q∗
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-
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0 Model parameter, q
q∗ q̂c

Figure 7: Robustness vs. prediction-
aspiration, eq.(83). q fixed.

Figure 8: Robustness vs. model parame-
ter, eq.(83). rc fixed.

20



Relation (83) is plotted in fig. 7 for synthetic data2 yi and for two values of the model parameter q.
The figure shows the robustness to model-uncertainty, α̂(q, rc), against the aspiration for prediction
error, rc. The robustness increases as greater error is tolerated. Two curves are shown, one for the
optimal linear model, q∗ = 2.50 in eq.(75), whose mean-squared error r∗c = R[Y, F (q∗)] = 4.82 is the
lowest obtainable with any linear model. The other model, q′ = 2.60, has a greater mean-squared
error r′c = R[Y, F (q′)] = 4.94, so r′c > r∗c . However, the best performance (the smallest rc-value) with
each of these models, q′ and q∗, has no robustness to model-uncertainty: 0 = α̂(q∗, r∗c) = α̂(q′, r′c).

More importantly, the robustness curves cross at a higher value of rc (corresponding to lower
aspiration for prediction-fidelity), as seen in fig. 7. If prediction-error r◦c = 5.14 is tolerable, then
the sub-optimal model q′ is more robust than, and hence preferable over, the mean-squared optimal
model q∗, at the same performance-aspiration. In other words, since 0 = α̂(q∗, r∗c ), the analyst
recognizes that performance as good as r∗c is not reliable or feasible with the optimal linear model
q∗, and some larger rc value (representing poorer fidelity between model and measurement) must be
accepted; the analyst is motivated to “move up” along the q∗-robustness curve. If r◦c is an acceptable
level of fidelity, then the sub-optimal model q′ achieves this performance with greater robustness
than the optimal model q∗. In particular, α̂(q′, r◦c) = 0.021 which is small but still twice as large as
α̂(q∗, r◦c ) = 0.011. In this case, ‘good’ (that is, q′) is preferable to ‘best’ (q∗).

We see the robustness-preference for a sub-optimal model explicitly in fig. 8, which shows the
robustness versus the linear model parameter q, for fixed aspiration rc = 5.5 (which is larger than
the rc-values in fig. 7, so q∗ has positive robustness). The least-squares optimal parameter, q∗ =
2.50, minimizes the mean-squared error R[Y, F (q)], while the robust-optimal parameter, q̂c = 2.65,
maximizes the robustness function α̂(q, rc). q∗ has lower robustness than q̂c, at the same level of
model-data fidelity, rc. Specifically, α̂(q∗, rc) = 0.033 is substantially less than α̂(q̂c, rc) = 0.045.
The mean-squared error of q̂c is R[Y, F (q̂c)] = 5.09 which is only modestly worse than the least-
squares optimum of R[Y, F (q∗)] = 4.82. In short, the performance-sub-optimal model q̂c has only
moderately poorer fidelity to the data than the least-squares optimal model q∗, while the robustness
to model-uncertainty of q̂c is appreciably greater than the robustness of q∗.

In summary, we have established the following conclusions from this example.
First, the performance-optimal model, fi(q

∗), has no immunity to error in the basic structure of
the model. The model fi(q

∗), which minimizes the mean-squared discrepancy between measurement
and prediction, has zero robustness to modelling errors at its nominal prediction-fidelity, r∗c .

Second, this is actually true of any model, fi(q
′). The value of its mean-squared error is r′c which,

as in fig. 7, has zero robustness.
Third, the robustness curves of alternative linear models can cross, as in fig. 7. This shows that

a sub-optimal model such as fi(q
′) can be more robust to model-uncertainty than the mean-squared

optimal model fi(q
∗), when these models are compared at the same aspiration for fidelity between

model and measurement, r◦c in the figure.
Fourth, the model q̂c which maximizes the robustness can be substantially more robust than the

optimal model q∗ which minimizes the least-squared error function, as shown in fig. 8. This robustness
curve is evaluated at a fixed value of the performance-satisficing parameter rc.

5 Hybrid Uncertainty: Info-gap Supervision
of a Probabilistic Decision

5.1 Info-gap Robustness as a Decision-monitor

In sections 2 and 3 we considered the reliability of technological systems. We now consider the
reliability of a decision algorithm itself. Many decisions are based on probabilistic considerations. A

2N = 5 and y1, . . . , y5 = 1.4, 2.6, 5.6, 8.6, 15.9.
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foremost class of examples entails acceptance tests based on the evaluation of a probability of failure.
Paradigmatically, a go/no-go decision hinges on whether the probability of failure is below or above
a critical threshold:

Pf(p)
go
<>

no-go
Pc (84)

where p is a probability density function (PDF) from which the probability of failure, Pf(p), is
evaluated.

This is a valid and meaningful decision procedure when the PDF is well known and when the
probability of failure can be assessed with accurate system models. However, a decision algorithm
such as eq.(84) will be unreliable if the PDF is uncertain (which will often be the case especially
regarding the extreme tails of the distribution) and if the critical probability of failure Pc is small
(which is typically the case with critical components). When the PDF is imprecisely known, the
reliability of the probabilistic decision can be assessed by using the info-gap robustness function.

Let p̃ be the best estimate of the PDF, which is recognized to be wrong to some unknown extent.
For sake of argument let us suppose that, with p̃, the probability of failure is acceptably small:

Pf(p̃) ≤ Pc (85)

That is, the nominal PDF implies ‘all systems go’. However, since p̃ is suspect, we would like to
know how immune this decision is to imperfection of the PDF.

Let U(α, p̃), α ≥ 0, be an info-gap model for the uncertain variation of the actual PDF with
respect to the nominal, best estimate, p̃. (We’ll encounter an example shortly). The robustness, to
uncertainty in the PDF, of decision algorithm eq.(84), is the greatest horizon of uncertainty up to
which all PDFs lead to the same decision:

α̂(Pc) = max

{
α : max

p∈U(α,p̃)
Pf(p) ≤ Pc

}
(86)

α̂(Pc) is the greatest horizon of uncertainty in the PDF, up to which all densities p in U(α, p̃) yield
the same decision as p̃. If α̂(Pc) is large, then the decision based on p̃ is immune to uncertainty in the
PDF and hence reliable. Alternatively, if α̂(Pc) is small, then decision based on p̃ is of questionable
validity. We see that the robustness function α̂(Pc) is a decision-evaluator: it supports the higher-
level judgment (how reliable is the probabilistic algorithm?) which hovers over and supervises the
ground-level go/no-go decision.

If the inequality in eq.(85) were reversed and p̃ implied ‘no-go’, then we would modify eq.(86) to:

α̂(Pc) = max

{
α : min

p∈U(α,p̃)
Pf(p) ≥ Pc

}
(87)

The meaning of the robustness function as a decision-monitor would remain unchanged. α̂(Pc) is
still the greatest horizon of uncertainty up to which the decision remains constant.

We can formulate the robustness slightly differently as the greatest horizon of uncertainty at which
the probability of failure does not dither more than πc:

α̂(πc) = max

{
α : max

p∈U(α,p̃)
|Pf(p)− Pf(p̃)| ≤ πc

}
(88)

Other variations are also possible [5], but we now proceed to a simple example of the use of the
info-gap robustness function in the supervision of a probabilistic decision with an uncertain PDF.
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5.2 Non-linear Spring

Consider a spring with the following non-linear relationship between displacement x and force f :

f = k1x+ k2x
2 (89)

The spring fails if the magnitude of the displacement exceeds xc, and we require the probability of
failure not to exceed Pc.

The loading force f is non-negative but uncertain, and the best available PDF is a uniform density:

p̃(f) =

{
1/F if 0 ≤ f ≤ F

0 if F ≤ f
(90)

where the value of F is known. However, it is recognized that forces greater than F may occur.
The probability of such excursions, though small, is unknown, as is the distribution of this high-tail
probability. That is, the true PDF, shown schematically in fig. 9, is:

p(f) =

{
constant if 0 ≤ f ≤ F

variable if F ≤ f
(91)

-

6

p(f)

f
0 F

Figure 9: Uncertain probability density function of the load, eq.(91).

The first question we must consider is how to model the uncertainty in the pdf of the force f .
What we do know is that f is non-negative, that p(f) is constant for 0 ≤ f ≤ F , and the value of
F . What we do not know is the actual constant value of p(f) for 0 ≤ f ≤ F and the behavior of
p(f) for f > F . We face an info-gap.

Let P denote the set of all non-negative and normalized PDFs on the interval [0, ∞). Whatever
form p(f) takes, it must belong to P. An info-gap uncertainty model which captures the information
as well as the info-gaps about the PDF is:

U(α, p̃) =
{
p(f) : p(f) ∈ P;

∫ ∞

F
p(f) df ≤ α;

p(f) =
1

F

(
1−

∫ ∞

F
p(f) df

)
, 0 ≤ f ≤ F

}
, α ≥ 0 (92)

The first line of eq.(92) states that p(f) is a normalized PDF whose tail above F has weight no
greater than α. The second line asserts that p(f) is constant over the interval [0, F ] and the weight
in this interval is the complement of the weight on the tail.

The spring fails if x exceeds the critical displacement xc. This occurs if the force f exceeds the
critical load fc which is:

fc = k1xc + k2x
2
c (93)

With PDF p(f), the probability of failure is:

Pf(p) = Prob(f ≥ fc|p) (94)
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We require that the failure probability not exceed the critical probability threshold:

Pf(p) ≤ Pc (95)

The robustness of the determination of this threshold-exceedence, based on the nominal PDF p̃, is
α̂(Pc) given by eq.(86). The value of this robustness depends on the values of F and fc. After some
algebra one finds:

α̂(Pc) =


0 if fc ≤ (1− Pc)F

1− 1− Pc

fc/F
if (1− Pc)F < fc ≤ F

Pc if F < fc

(96)

The first line of eq.(96) arises when the critical force, fc, is small enough so that Pf(p) can exceed
Pc even when the nominal PDF, p̃, is correct. The third line arises when fc is so large that only
the tail could account for failure. The second line covers the intermediate case. α̂(Pc) is plotted
schematically in fig. 10.

-
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α̂(Pc)

Pc

Critical force, fc
(1−Pc)F F

Robustness

0

Figure 10: Robustness vs. critical force, eq.(96).

As we explained in section 5.1, the value of the robustness α̂(Pc) indicates whether the go/no-go
threshold decision, based on the best-available PDF p̃, is reliable or not. A large robustness implies
that the decision is insensitive to uncertainty in the PDF, while a small value of α̂(Pc) means that
the decision can err as a result of small error in p̃. From eq.(96) and fig. 10 we see that the greatest
value which α̂(Pc) can take is Pc itself, the critical threshold value of failure probability. In fact α̂(Pc)
may be much less, depending on the critical force fc. From eq.(86) we learn that α̂(Pc) and α have
the same units. The first line of eq.(92) indicates that α is a probability: the statistical weight of the
upper tail. Consequently, α̂(Pc) is the greatest tolerable statistical weight of the unmodelled upper
tail of p(f). α̂(Pc) must be ‘large’ in order to warrant the go/no-go decision; the judgment whether
α̂(Pc) is ‘small’ or ‘large’ depends on a judgment of how wrong p̃(f) could be. As the tolerable
probability of failure, Pc, becomes smaller, the tolerance against probability “leakage” into the upper
tail becomes lower as well. α̂(Pc) establishes a quantitative connection between the critical force
fc, the nominally maximum force F , the critical probability Pc, and the reliability of the go/no-go
decision.

An additional use of the robustness function is in choosing technical modfications of the system
itself which enhance the reliability of the go/no-go decision in the face of load uncertainty. Exam-
ination of eq.(96) reveals that α̂(Pc) is improved by increasing fc (if fc < F ). Let us consider the
choice of the two stiffness coefficients, k1 and k2. From eq.(93) we note that:

∂fc
∂k1

= xc > 0 (97)

∂fc
∂k2

= x2c > 0 (98)
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Thus fc is increased, and thereby α̂(Pc) is improved, by increasing either k1 or k2 or both. Eq.(96)
quantifies the robustness-enhancement from a design change in k1 or k2.

Eq.(94) implies that increasing fc causes a reduction in the probability of failure, Pf(p), regardless
of how the load is distributed. Thus, a change in the system which reduces the probability of
failure, also makes the prediction of the failure-probability more reliable. There is a sympathy
between system reliability and prediction reliability. This is in fact not just a favorable quirk
of this particular example. It is evident from the definition of robustness in eq.(86) that any system
modification which decreases Pf(p) will likewise increase (or at least not decrease) the robustness
α̂(Pc).

6 Why ‘Good’ is Preferable to ‘Best’

The examples in sections 2–4 illustrated the general proposition that optimization of performance is
associated with minimization of immunity to uncertainty. This led to the conclusion that performance
should be satisficed — made adequate but not optimal — and that robustness should be optimized.
In the present section we put this conflict between performance and robustness on a rigorous footing.

6.1 The Basic Lemma

The designer must choose values for a range of variables. These variables may represent materials,
geometrical dimensions, devices or components, design concepts, operational choices such as ‘go’ or
‘no-go’, etc. Some of these variables are expressible numerically, some linguistically. We will represent
the collection of the designer’s decisions by the decision vector q.

In contrast to q, which is under the designer’s control, the designer faces uncontrollable uncertain-
ties of many sorts. These may be uncertain material coefficients, unknown and unmodelled properties
such as non-linearities in the design-base models, unknown external loads or ambient conditions, un-
certain tails of a probability distribution, and so on. The uncertainties are all represented as vectors
or functions (which may be vector-valued). We represent the uncertain quantities by the uncertain
vector u. The uncertainties associated with u are represented by an info-gap model U(α, ũ), α ≥ 0.
The centerpoint of the info-gap model is the known vector ũ, which is the nominal value of the
uncertain quantity u.

Info-gap models are suitable for representing ignorance of u for both practical and fundamental
reasons. Practically, probability models defined on multi-dimensional function spaces tend to be
cumbersome and informationally intensive. More fundamentally, info-gap models entail no measure
functions, while measure-theoretic representation of ignorance can lead to contradictions [7, chap. 4].

Many design specifications can be expressed as a collection of inequalities on scalar valued func-
tions. For instance, the mechanical deflection must not exceed a given value, while each of the 3
lowest natural frequencies must be no greater than various thresholds. For a design choice q, and
for a specific realization of the uncertainty u, the performance of the system is expressed by the
real-valued performance functions Ri(q, u), i = 1, . . . , N , where the design specification is the
following set of inequalities:

Ri(q, u) ≤ rc,i for all i = 1, . . . , N (99)

The rc,i are called critical thresholds, which are represented collectively by the vector rc. These
thresholds may be chosen either small or large, to express either demanding or moderate aspirations,
respectively.

Definition 1 A performance function Ri(q, u) is upper unsatiated at design q if its maximum,
up to horizon of uncertainty α, increases strictly as α increases:

α < α′ =⇒ max
u∈U(α,ũ)

Ri(q, u) < max
u∈U(α′,ũ)

Ri(q, u) (100)
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Upper unsatiation is a type of monotonicity: the maximum of the performance function strictly
increases as the horizon of uncertainty increases. This monotonicity in α does not imply monotonicity
of R(q, u) in either q or u. Upper satiation results from the nesting of the sets in the info-gap model
U(α, ũ).

By definition, the robustness of design q, with performance requirements rc, is the greatest horizon
of uncertainty at which all the performance functions satisfy their critical thresholds:

α̂(q, rc) = max

{
α : max

u∈U(α,ũ)
Ri(q, u) ≤ rc,i, for all i = 1, . . . , N

}
(101)

We now assert the following basic lemma. (Proofs appear in section 6.4.)

Lemma 1 Given:
◦ An info-gap model U(α, ũ), α ≥ 0.
◦ Performance functions Ri(q, u), i = 1, . . . , N , which are all upper unsatiated at q .
◦ Critical thresholds equalling the performance functions evaluated at the center-point of the info-

gap model:
rc,i = Ri(q, ũ), i = 1, . . . , N (102)

Then the robustness-to-uncertainty of design q vanishes:

α̂(q, rc) = 0 (103)

ũ is the centerpoint of the info-gap model: the known, nominal, ‘best-estimate’ of the uncertainties
accompanying the problem. If ũ precisely represents the values of these auxiliary variables, then the
performance aspirations in eq.(102) will be achieved by decision q. However, eq.(103) asserts that this
level of performance has no immunity to unknown variations in the data and models upon which this
decision is based. Any unmodelled factors, such as the higher-order terms in eq.(76), jeopardize the
performance level vouched for in eq.(102). Probabilistically one would say that things can be worse
than the expected outcome. However our assertion is stronger, since we are considering not only
random uncertainties, but rather the info-gaps in the entire epistemic infrastructure of the decision,
which may include info-gaps in model-structures and probability densities.

This result is particularly significant when we consider performance-optimization, to which we
now turn.

6.2 Optimal-Performance vs. Optimal Robustness: The Theorem

We are particularly interested in the application of lemma 1 to optimal-performance design. The
lemma will show that a design which optimizes the performance will have zero robustness to un-
certainty. This means that high aspirations for performance are infeasible in the sense that these
aspirations can fail to materialize due to infinitesimal deviations of the uncertain vector from its nom-
inal value. It is true that failure to achieve an ultimate aspiration may entail only a slight reduction
below optimal performance. Nonetheless, the gist of the theorem is that zenithal performance can not
be relied upon to occur; a design specification corresponding to an extreme level of performance has
no robustness to uncertainty. The designer can not “sign-off” on a performance-optimizing specifica-
tion; at most one can hope that the short-fall will not be greatly below the maximum performance.

Let Q represent the set of available designs from which the designer must choose a design q. Let
ũ denote the nominal, typical, or design-base value of the uncertain vector u. What is an optimal-
performance design, from the allowed set Q, and with respect to the design-base value ũ?

If there is only one design specification, so N = 1 in eq.(99), then an optimal-performance design
q∗ minimizes the performance function:

R(q∗, ũ) = min
q∈Q

R(q, ũ) (104)
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If there are multiple design specifications (N > 1) then such a minimum may not hold simul-
taneously for all the performance functions. One natural extension of eq.(104) employs the idea of
Pareto efficiency. Pareto efficiency is a ‘short blanket’ concept: if you pull up your bed covers to
warm your nose, then your toes will get cold. A design q∗ is Pareto efficient if any other design q′

which improves (reduces) one of the performance functions, detracts from (increases) another:

If: Ri(q
′, ũ) < Ri(q

∗, ũ) for some i (105)

Then: Rj(q
′, ũ) > Rj(q

∗, ũ) for some j ̸= i (106)

A Pareto efficient design does not have to be unique, so let us denote the set of all Pareto efficient
designs by Q∗. For the case of a single design specification, let Q∗ denote all the designs which
minimize the performance function, as in eq.(104).

The following theorem, which is derived directly from lemma 1, asserts that any design which
is performance-optimal (eq.(104)) or Pareto efficient (eqs.(105) and (106)) has no robustness to
uncertain deviation from the design-base value ũ.

Theorem 1 Given:
◦ A set of Pareto efficient or performance-optimal designs Q∗, with respect to the design-base

value ũ.
◦ An info-gap model U(α, ũ), α ≥ 0, whose center-point is the nominal or design-base value ũ.
◦ Performance functions Ri(q

∗, u), i = 1, . . . , N , which are all upper unsatiated at some q∗ ∈ Q∗.
◦ Critical thresholds equalling the performance functions evaluated at the center-point of the info-

gap model and at this q∗:
rc,i = Ri(q

∗, ũ), i = 1, . . . , N (107)

Then the robustness-to-uncertainty of this performance-optimal design q∗ vanishes:

α̂(q∗, rc) = 0 (108)

Theorem 1 is really just a special case of lemma 1. We know from lemma 1 that whenever the
critical thresholds, rc,i, are chosen at the nominal values of the performance-functions, Ri(q, ũ), and
when that nominal value, ũ, is the center-point of the info-gap model, U(α, ũ), then any design has
zero robustness. Theorem 1 just specializes this to the case where q is Pareto-efficient or performance-
optimal.

We can understand the special significance of this result in the following way. The functions
Ri(q

∗, ũ) represent the designer’s best available representation of how design q∗ will perform. Ri(q
∗, ũ)

is based on the best available models, and ũ is the best estimate of all residual (and possibly recal-
citrant) uncertain factors or terms. We know from lemma 1 that any performance-optimal design
which we choose will have zero robustness to the vagaries of those residual uncertainties. However,
the lesson to learn is not to choose the design whose performance is optimal; theorem 1 makes ex-
plicit that this design also can not be depended upon to fulfil our expectations. To state it harshly,
choosing the performance-optimum is just wishful thinking, unless we are convinced that no uncer-
tainties lurk behind our models. The lesson to learn, if we seek a design whose performance can
be reliably known in advance, is to move off the surface of Pareto-efficient or performance-optimal
solutions. For example, referring again to fig. 2, we must move off the optimal-performance curve to
a point Q or R. We can evaluate the robustness of these sub-optimal designs with the robustness
function, and we can choose the design to satisfice the performance and to maximize the robustness.

6.3 Information-gap Models of Uncertainty

We have used info-gap models throughout this paper. In this section we present a succint formal
definition, in preparation for the proof of lemma 1 in section 6.4.
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An info-gap model of uncertainty is a family of nested sets; eqs.(14), (41), (77) and (92) are
examples. An info-gap model entails no measure functions (probability densities or membership
functions). Instead, the limited knowledge about the uncertain entity is invested in the structure of
the nested sets of events.

Mathematically, an info-gap model is a set-valued function. Let S be the space whose elements
represent uncertain events. S may be a vector space or a function space. Let ℜ denote the set of
non-negative real numbers. An info-gap model U(α, u) is a function from ℜ × S into the class of
subsets of S. That is, each ordered pair (α, u), where α ≥ 0 and u ∈ S, is mapped to a set U(α, u)
which is a subset of S.

Two axioms are central to the definition of info-gap models of uncertainty:
Axiom 1: Nesting. An info-gap model is a family of nested sets:

α ≤ α′ =⇒ U(α, u) ⊆ U(α′, u) (109)

We have already encountered this property of info-gap models in eqs.(9), (37) and (67) where
we noted that this inclusion means that the uncertainty sets U(α, u) become more inclusive as the
‘uncertainty parameter’ α becomes larger. Relation (109) means that α is an horizon of uncer-
tainty. At any particular value of α, the corresponding uncertainty set defines the range of variation
at that horizon of uncertainty. The value of α is unknown, so the family of nested sets is typically
unbounded, and there is no ‘worst case’.

All info-gap models of uncertainty share an additional fundamental property.
Axiom 2: Contraction. The info-gap set, at zero horizon of uncertainty, contains only the center-
point:

U(0, u) = {u} (110)

For instance, the info-gap model in eq.(14) is a family of nested intervals, and the center-point is
the nominal load, ϕ̃, which is the only element of U(0, ϕ̃) and which belongs to the intervals at all
positive values of α.

Combining axioms 1 and 2 we see that u belongs to the zero-horizon set, U(0, u), and to all ‘larger’
sets in the family.

Additional axioms are often used to define more specific structural features of the info-gap model,
such as linear [2, 4] or non-linear [3] expansion of the sets as the horizon of uncertainty grows. We
will not need these more specific axioms. Info-gap models of uncertainty are discussed extensively
elsewhere [1, 4].

6.4 Proofs

Proof of lemma 1. By the contraction axiom of info-gap models, eq.(110), and from the choice of
the value of rc,i:

max
u∈U(0,ũ)

Ri(q, u) = rc,i (111)

Hence 0 belongs to the set of α-values in eq.(101) whose least upper bound equals the robustness, so:

α̂(q, rc) ≥ 0 (112)

Now consider a positive horizon of uncertainty: α > 0. Since Ri(q, rc) is upper unsatiated at q:

max
u∈U(0,ũ)

Ri(q, u) < max
u∈U(α,ũ)

Ri(q, u) (113)

Together with eq.(111), this implies that this positive value of α does not belong to the set of α-values
in eq.(101). Hence:

α > α̂(q, rc) (114)

Combining relations (112) and (114) completes the proof.
Proof of theorem 1. Special case of lemma 1.
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7 Conclusion: An Historical Perspective

We have focussed on the epistemic limitations — information gaps — which confront a designer in
the search for reliable performance. The central idea has been that the functional performance of a
system must be traded-off against the immunity of that system to info-gaps in the models and data
underlying the system’s design. A system which is designed for maximal performance will have no
immunity to errors in the models and data underlying the design. Robustness can be obtained only
by reducing performance-aspirations.

Our discussion is motivated by the recognition that the designer’s understanding of the relevant
processes is deficient, that the models representing those processes lack pertinent components, and
that the available data are incomplete and inaccurate. This very broad conception of uncertainty
— including model structure as well as more conventional data “noise” — has received extensive
attention in some areas of engineering, most notably in robust control [9]. This scope of uncertainty
is, however, a substantial deviation from the tradition of probabilistic analysis which dominates much
contemporary thinking.

Least-squares estimation is a central paradigm of traditional uncertainty analysis. The least-
squares method was developed around 1800, independently by Gauss (1794–5) and Legendre (1805–
8), for estimation of celestial orbits [6, 10]. Newtonian mechanics, applied to the heavenly bodies, had
established irrevocably that celestial orbits are elliptical, as Kepler had concluded experimentally.
However, the data were noisy so it was necessary to extract the precise ellipse which was hidden
under the noisy measurements. The data were corrupted, while the model — elliptical orbits —
was unchallenged. Least-squares estimation obtained deep theoretical grounding with the proof of
the central limit theorem by Laplace (1812), which established the least-squares estimate as the
maximum-likelihood estimate of a normal distribution. The least-squares idea continues to play a
major role in modern uncertainty analysis in such prevalent and powerful tools as Kalman filtering,
Luenberger estimation [8] and the Taguchi method [11].

What is characteristic of the least-squares method is the localization of uncertainty exclusively on
data which are exogenous to the model of the underlying process. The model is unblemished (New-
tonian truth in the case of celestial orbits); only the measurements are corrupted. But the innovative
designer, using new materials and exploiting newly discovered physical phenomena, stretches models
and data to the limits of their validity. The designer faces a serious info-gap between partial, some-
times tentative, insights which guide much high-paced modern design, and solid complete knowledge.
The present work is part of the growing trend to widen the range of uncertainty analysis to include
the analyst’s imperfect conceptions and representations. For all our sapience, we are after all only
human!
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