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INFO-GAP APPROACH TO MULTI AGENT

SEARCH UNDER SEVERE UNCERTAINTY
Itay Sisso, Tal Shima, Senior Member, IEEE, and Yakov Ben-Haim

ABSTRACT—A robust satisficing approach based on info-gap
theory is suggested as a solution for a spatial search planning
problem with imprecise probabilistic data. A group of agents are
searching predefined patches of land for stationary targets, given
an a priori probability map of the targets’ locations. This prior
probabilistic information is assumed to be severely uncertain and
may contain large errors. An analysis of a simplified case shows
that in some situations one might prefer a different strategy than
the expected-utility maximizing one, in terms of robustness to
uncertainty. Deterministic numeric results confirm the theoretical
predictions for more complex cases. Finally, stochastic numeric
analysis of robust satisficing solutions on a large group of much
more complex, randomly generated cases, reveals an interesting
behavior of a consolidation of effort in specific cells, and implies
the potential of robust satisficing in more realistic scenarios. As
the robustness to uncertainty comes at the expense of the expected
utility, one must choose its decisions carefully. However, it is
shown that, in various circumstances, one obtains results which
are superior to the expected-utility maximizing strategy in terms
of robustness, while sacrificing almost no expected utility.

Index Terms—Decision-making, Uncertainty, Autonomous
Agents, Cooperative systems, Genetic algorithms.

I. INTRODUCTION

Originated by Bernard Koopman in the U.S. Navy’s anti

submarine warfare operations research group during World

War II, the field of optimal search for targets is constantly

evolving. Some of the different approaches to this problem

nowadays include classical search theory [1], exhaustive ge-

ographical search [2], game theory [3], stochastic modeling

[4] and neural networks [5],[6]. The search may be conducted

by a single agent or a group of multiple agents. Today, when

technological advances enable relatively cheap agents for a

large diversity of applications (e.g., uninhabited aerial vehicles,

or UAVs), the field of cooperative control is gaining more and

more popularity [7], [8], [9]. As the complexity of finding

an optimal solution for multiple cooperating searching agents

rises exponentially with the number of agents, stochastic

solution search methods and decentralized control are often

used in the decision-making process.

In order to conduct an effective mission all relevant informa-

tion must be incorporated into the planning / decision-making

process. In a spatial search mission such information might
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be in the form of an a priori probability map of the targets’

locations. A common method of representing the 2-D spatially

distributed probability is through a cellular decomposition, i.e.,

the search area is divided into cells (usually with equal area)

while each cell contains a probability value (also known as

target occupancy probability) of target existence [1], [5], [10],

[11], [12]. That type of information is usually obtained through

assessments and various possibly noisy intelligence gathering

sensors and therefore prone to severe uncertainties. As a result,

much of the recent literature on cooperative search deals with

different approaches to handling these uncertainties in order to

provide robust search methods. The approaches presented by

Boeva and De Baets [13] considered a delimitation of the prior

probability between 2 bound values. Although simple, this

method assumes further knowledge of the uncertainty. Another

method suggested by Krokhmal et al. [14] uses a set of

scenarios, each comprising a set of different probability values,

and adopts the best decision using the Conditional Value at

Risk (CVaR) method. The CVaR method works by averaging

a percentage of the worst case scenarios and maximizing the

utility for this average value. This method therefore assumes

some probability distribution of the scenarios, data which

is not necessarily available. Given no such information, one

might assume the trivial case of uniform distribution. However,

as Shafer pointed out [15], this might yield misleading results

as in doing so one fails to distinguish between uncertainty, or

lack of knowledge, and equal certainty. Furthermore, adopting

the uniform distribution can lead to logical contradictions, as

discussed by Keynes [16], and Ben-Haim [17]. A different

approach for addressing the uncertainties in the probabilities

is presented by Bertuccelli and How [10] where a Beta

distribution is used as a distribution of the probability value in

each cell. While yielding notable results, one might not expect

to possess such information on the probability distribution in

cases of qualitative assessment. Moreover, this information

would be difficult to obtain relying on past observations when

the exact posterior probability distribution remains unknown.

In this article we examine an info-gap approach to the

decision-making problem of multiple agents search mission

under severe uncertainty in the targets’ locations. A previous

version of this paper is presented in [18] for low and medium

dimension cases. In this paper we further expand the discus-

sion to random-generated large-scale scenarios, thus asserting

the contribution of info-gap in more practical situations. Fur-

thermore, in this paper we describe how genetic algorithms

(GA) were used to solve these large-scale scenarios. Info-gap

decision theory [19] is a method for decision-making under

severe uncertainty which models the uncertainty as a family
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of nested sets. Each set corresponds to a particular degree of

knowledge-deficiency, according to its level of nesting. The

process of choosing the best strategy is usually done by a

robustness analysis. Instead of looking for the expected-utility

maximizing strategy (which is a logical choice if no uncertain-

ties are involved), we look for the robust satisficing strategy.

Notice that we use the term “expected-utility” throughout

this paper as the expected utility assuming the estimates

are true. Robust satisficing strategy, as opposed to the Max-

Min strategy, does not ameliorate worst-case scenarios but

rather satisfices certain critical performance parameters (i.e.,

the demand) while maximizing robustness (i.e., the immunity

to deficient information). While searching for a strategy which

yields the most robustness to uncertainty (given a failure

criterion), one ensures a solution which can “tolerate” the most

knowledge deficiencies and still satisfice the given criterion.

As shown by Ben-Haim [20] for a particular class of problems

(the “proxy theorem”), the use of a robust-satisficing method

such as info-gap ensures the maximization of the probability

of success.

The outline of the paper is as follows: In section II we will

formulate the problem and present a generic system model

along with an uncertainty model to incorporate the lack of

knowledge. In section III we will analytically study a simple

degenerate case (1 agent, 1 target, and 2 distant search cells)

using a more specific system model (which will be presented

along with its assumptions) and show the implications of

using a robust satisficing strategy for the decision-making as

opposed to an expected-utility maximizing strategy. In section

IV we will broaden the discussion to a more complex case of

several distant cells while comparing numerical results (using

a deterministic search method) of three different methods

(expected-utility maximizing vs. local and global robustness

maximizing). In section V we further expand the model to

a more realistic multiple agents search, show how to solve

it using a stochastic search method (GA), and discuss the

behavior of the robust satisficing results, extracted from 500

random scenarios. Finally, we will provide some conclusions

in section VI.

II. PROBLEM FORMULATION

In this section we will mathematically formulate the descrip-

tive system model of a group of agents searching for targets

in an uncertain environment. We will start with a general

model of the problem; continue to the uncertainty model which

incorporates the lack of knowledge in the problem; then the

definition of robustness will be provided; and conclude with

a collection of all the assumptions made along the way.

A. General system model

We will begin with a formulation of the data, the decisions

to be made, and the goal of the mission (the reward/utility

function and the demand).

Let us consider a set C of Nc cells (e.g., patches of land),

each denoted by an index i; and a set X of Nt targets, each

denoted by an index j. The cells are physically detached and

distant from one another. Each cell is attributed with a certain

probability of occupancy by each one of the targets, denoted

as Pi,j . In other words, Pi,j represents the actual a priori

probability that target j is in cell i. Due to its nature, the

assessment of the a priori probability, given as P̃i,j , is prone

to imprecision and uncertainties. We now define P and P̃ as

the actual and estimated probability matrices respectively.

The detection function, Pd(i, τi), expresses the conditional

probability of detecting a given target within cell i after

searching that cell for time τi (whether by a single agent or the

sum of multiple agents search times, given that they satisfy the

assumptions for that detection function, e.g., coordinate their

search regions inside the cell in case of a methodic search),

given that the target is in cell i.
The detection function used in this paper is the random

search formula of Koopman [21]. This detection function

assumes a random search inside each cell, but, as stated by

Stone [12] (p.25) it is also useful as a lower bound on the

effectiveness of a systematic search under most cases of path

placement errors. The detection function is therefore given by

the expression:

Pd(i, τi) = 1 − e
−

wvτi

Ai = 1 − e−aiτi (1)

where w is the sweep width of the sensor, v is the speed of the

agent (constant) and Ai is the area of cell i. For convenience,

we define ai as the exponential convergence rate, ai = wv
Ai

,

which will be used later on.

As the cells are distant from each other, a cell switch time

matrix is considered and denoted as c′. The elements of c′,
c′in,im

, represent the transition time from cell in to cell im
(calculated as the distance between the centers of the 2 cells

divided by v).

The payoff function for the ith cell represents the expected

number of targets detected in that cell after searching it for

time τi and is denoted:

e (i, τi) = Pd (i, τi) ·

Nt
∑

j=1

Pi,j (2)

The search plan, denoted as θ, incorporates all the decision

variables in it. In a task assignment problem these decision

variables may include the cell switch times (at what times

should the agents switch between cells) and to which cells (in

case of a variety of cells). In a path planning problem these

decision variables might include control commands, given to

the agents at constant time intervals. Notice that in a multi-

agent centralized approach, a single θ will consist of a search

plan for each one of the agents. On the other hand, in a

decentralized approach, each agent might hold a separate θ
of itself.

Let us assume, without loss of generality, that the search

process starts at cell number 1. We now formulate θ, the

decision parameter, as follows: We define a search plan for

a single (kth) agent denoted as θk:

θk = {(tk,1, tk,2, ..., tk,Ns
) , (ik,1, ik,2, ..., ik,Ns

)} (3)

where tk,n represents the times at which the agent is assigned

a new search cell and ik,n represents the cell assigned in

time tk,n. Ns represents the number of steps (i.e. new cell
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assignments) in the entire search plan. A search plan for

multiple agents will be formulated as a set of Nu single agent

search plans (Nu being the number of agents):

θ = {θ1 . . . θNu
} (4)

We now define Θ as the set of all the feasible values for

the decision variable (in this case, all possible search plans).

This set might include limitations such as fuel constraints (im-

plemented as the maximum time of a search plan), kinematic

constraints (if the search plan is given as a certain path to

follow), etc. For the discussed case, let us formulate Θ as:

Θ = {θ : tk,n+1 ≥ tk,n ∀ 1 ≤ n ≤ Ns − 1, k ∈ K;

0 ≤ tk,n ≤ T ∀ 1 ≤ n ≤ Ns, k ∈ K;

ik,1...ik,Ns
∈ C ∀ k ∈ K} where K = {1, ..., Nu}

(5)

where T is the upper bound for the total amount of time,

defined by the limited fuel capacity and fuel consumption rate

of the agents. In other words, in an acceptable search plan the

switch times are arranged chronologically for each agent, the

total time is bound to a constraint T , and the cells are within

the set of participating cells - C. In the case of unvisited cells

in a search plan, the cells’ matching switch times will have

the value of T (as switching at the end of the search period

is equivalent to not switching).

Let us now define the overall payoff function representing

the expected number of targets to be found in the entire search

region:

E (θ, P ) =

Nc
∑

i=1

e(i, τi) (6)

where τi is bound to limitations such as fuel constraints and

is the sum of all search times in that cell (by the multiple

agents).

We next define a demand that the overall payoff will be no

less than a certain critical value - Ec (e.g., 0.7 · Nt, in case

we demand to find, on average, 70% of the targets):

E (θ, P ) ≥ Ec (7)

The use of such a parameter in a search mission is practical

for cases such as a tank squadron hunt, where the search

is distributed between a few distant sites such as refueling

facilities, hideouts, and several strategic points (where the

best estimate of the probability distribution could be derived

from past observations of the known duration of each stage

according to the alert state, etc.). A demand (Ec) in that case

could be the number of tanks needed to be destroyed in order

to neutralize the squadron (a criterion used in modern combats,

and is of course significantly lower than the number of tanks

in the squadron).

Ec is a parameter expressing the analyst’s aspirations. The

analyst may have preferences on values of Ec before the

analysis. However, the analysis of robustness to uncertainty

for achieving any specified average number of target-finds (Ec)

may lead the analyst to choose a different value of Ec – either

larger or smaller – than the value initially preferred.

B. Uncertainty model

In order to incorporate the lack of knowledge into the model,

let us consider an info-gap model of uncertainty on the a priori

probability distributions of the targets:

U
(

α, P̃
)

=
{

P :
∣

∣

∣
Pi,j − P̃i,j

∣

∣

∣
≤ αωi,j , (8)

Nc
∑

i=1

Pi,j ≤ 1, Pi,j ≥ 0 ∀ i ∈ C, j ∈ X

}

; α ≥ 0

α is a non-negative number representing the uncertainty hori-

zon and ωi,j is a non-negative uncertainty weighting parameter

intended for cases of unequal degree of (lack of) information

regarding the targets’ whereabouts. Note that this uncertainty

model is suitable for the case where a probability distribution

assessment for each target exists and, for a specific uncertainty

horizon, the relative deviation from the actual distribution is

defined for each cell and target using ωi,j . Of course, the actual

magnitude of deviation of Pi,j from P̃i,j is unknown since the

horizon of uncertainty is unknown. If the assessment Pi,j is

more certain for a specific target j ∈ T in cell i ∈ C, ωi,j

would be chosen as a smaller number. For example, if P̃i,j

is the result of a statistical estimation, the ωi,j could be the

statistical error of this estimate. In case all the information

regarding the probability distribution is equally uncertain then

one might choose ωi,j = 1 ∀ i, j.

Also notice that a constraint is given on the sum of probabil-

ities (Pi,j) as an inequality condition, rather than an equality.

In other words, we “allow” the targets to be out of the entire

search region. If this is not the case, and the targets are known

for certain to be somewhere in the search region, an equality

condition should be imposed. Although at first glance it might

seem like a minor adjustment, such a modification of the

constraints radically changes the uncertainty model and might

yield different recommendations of the robust maximizing

strategy (which is acceptable, considering the fact that it

holds more information on the situation). Such a choice of

constraints would greatly complicate the calculation method

and is not considered in this paper.

This approach to the data uncertainty determines that the

amount of uncertainty affects each cell individually (relatively

to ωi,j), and is therefore of a rather local manner. One might

think of different ways to express the uncertainty in the a

priori data. Another approach which will be examined in this

article is a global robustness approach in which the uncertainty

horizon, α, determines the maximal sum of data errors. The

uncertainty model formulation using the global robustness

approach is therefore:

U
(

α, P̃
)

=

{

P :

Nc
∑

i=1

∣

∣

∣

∣

∣

Pi,j − P̃i,j

ωi,j

∣

∣

∣

∣

∣

≤ α, (9)

Nc
∑

i=1

Pi,j ≤ 1, Pi,j ≥ 0 ∀ i ∈ C, j ∈ X

}

; α ≥ 0

Notice that ωi,j is now dividing

∣

∣

∣
Pi,j − P̃i,j

∣

∣

∣
so each cell and

target might contribute in a different way (by their level of

knowledge) to the overall uncertainty. ωi,j is therefore non-

zero too (in case of an absolutely definite value of a certain
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P̃i,j (i.e., wi,j = 0) this specific P̃i,j should be removed

from the uncertainty model). This type of uncertainty might

be useful when considering a scenario in which a certain

source divides a certain amount of total research effort between

the cells (in an unknown manner) while obtaining the prior

probability distribution - P̃ , so that decreasing the likelihood

of an error in one of the cells would increase the likelihood

of an error in the others.

C. Robustness

An important parameter in the field of decision under severe

uncertainty is the robustness. In order to minimize the effect

of uncertainty on the result, one might choose the strategy

which maximizes the robustness to uncertainty. The robustness

to uncertainty in info-gap theory is defined as the maximum

uncertainty horizon for which no failure is possible (given the

failure criterion - Ec). Let us formulate the robustness of a

search plan θ given a failure criterion Ec:

α̂ (θ, Ec) = max

{

α :

[

min
P∈U(α,P̃)

E (θ, P )

]

≥ Ec

}

(10)

Note that α̂ is the least upper bound of a set of α values.

When this set is empty, then we define α̂ = 0.

In order to choose the best search plan under uncertainties

in the a priori probabilities one might aspire to maximize the

robustness of the search plan, as defined above. The robust

maximizing search plan, denoted as θ̂ is then formulated as:

θ̂ = arg max
θ∈Θ

α̂ (θ,Ec) (11)

The complexity of solving equation 11 is dependent on the

system model. It is possible to have multiple solutions for

equations 11 and 10.

We now have a general mathematical formulation of the

problem at hand including a model which incorporates uncer-

tainties in the preliminary data and a method of choosing the

best decision.

III. ANALYTICAL INVESTIGATION OF A LOW ORDER

PROBLEM

In this section we will demonstrate the use of info-gap deci-

sion theory on a low order degenerate case of the problem of

agents search. We will specify the system model furthermore

using the definitions from section II. For simplicity, only the

local uncertainty model will be examined.

A. Specific system model

Let us consider a simplified low dimensional case of 1 agent

searching in 2 cells, distant from one another, for a single

target. Fuel constraint limits the search time to T . The search

is performed randomly in each cell and a decision has to be

made regarding the time of switch to the second cell.

The search plan decision is therefore reduced to choosing

t, the time of switch to cell number 2, which is limited by the

fuel constraint:

θ = {t} Θ = {t : 0 ≤ t ≤ T} (12)

The switch time matrix, c′, in this case is reduced to a single

parameter, c, which represents the travel time from cell 1 to

cell 2 and vise versa.

B. Maximum robustness strategy

Let us now mathematically analyze the maximum robust-

ness strategy of choosing the best decision in the degenerate

1-agent 2-cells case. Later on a maximum expected-utility

strategy will be presented and a comparison will be made

between the two.

In order to find the decision which maximizes the robustness

to uncertainty, α̂, we must first find an expression for the

robustness of a decision (in this simplified case t, the time

of switch between the cells) as a function of the demand (Ec,

the critical expected utility).

Let us start by finding an explicit presentation of the utility

function E as a function of the decision θ (or simply t in

this case) and the state P . For the case of 1 target the payoff

function can be simply derived from equations 2, 1, and 6 as:

E (θ, P ) = P1 ·
(

1 − e−
wv

A1
t
)

+P2 ·
(

1 − e−
wv

A2
max{T−t−c,0}

)

(13)

where P1 and P2 are defined as the actual probabilities of the

target being in cell number 1 and 2 respectively.

Let us assume for simplification that the uncertainty weight-

ing parameters ω1,1 and ω2,1 both equal to 1 (the relative

uncertainty in the two cells is identical). Using the local

uncertainty model presented in equation 8 and the payoff

function in equation 13 we derive the following equation:

min
P∈U(α,P̃)

E (θ, P ) = max
{

P̃1 − α, 0
}

·
(

1 − e−
wv

A1
t
)

+ max
{

P̃2 − α, 0
}

·
(

1 − e−
wv

A2
max{T−t−c,0}

)

(14)

This function is monotonically decreasing with α, therefore,

the robustness α̂ (the maximal α that satisfices the requirement

in equation 10) can be extracted through the solution for α̂ of:

Ec =max
{

P̃1 − α̂, 0
}

·
(

1 − e−
wv

A1
t
)

(15)

+ max
{

P̃2 − α̂, 0
}

·
(

1 − e−
wv

A2
max{T−t−c,0}

)

The robustness function can be explicitly formulated as:

α̂ =







F , 0 ≤ F ≤ P̃min

P̃max − Ec

Pd(1,τ1)
, P̃min ≤ F ≤ P̃max

0 , else

(16)

where:

F =
Ẽ − Ec

Pd (1, τ1) + Pd (2, τ2)
(17)

P̃min = min
{

P̃1, P̃2

}

; P̃max = max
{

P̃1, P̃2

}

(18)

τ1 = t; τ2 = max {T − t − c, 0} (19)

Ẽ = E
(

θ, P̃
)

= P̃1 · Pd (1, τ1) + P̃2 · Pd (2, τ2) (20)

F cannot be greater than both P̃1 and P̃2.

Notice that α̂ = 0 for every Ec ≥ Ẽ. In other words,

when the demand is larger (or equal) to the expected utility,
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the robustness is 0. This is a logical statement considering

the robustness definition from subsection II-C - the maximum

uncertainty horizon for which no failure is possible. When

the expected utility is below the demand even an uncertainty

horizon of 0 will allow failure.

Note that the slope of α̂ vs. Ec is always negative.

This negative slope is the mathematical manifestation of the

robustness-demand tradeoff. As the demand gets higher one

can naturally assure less immunity to uncertainty and the

robustness therefore decreases.

C. Curve crossing example

In this subsection we will show and explain the interesting

phenomenon of crossing robustness curves. When robustness

curves (α̂(t, Ec) vs. Ec) for two different choices of t cross

each other one concludes that the best decision (between

these two values of t) depends on the value of Ec that one

requires. When one of these curves is the one of the expected-

utility maximizing decision one might say that, depending on

Ec, there is a more robust decision than the expected-utility

maximizing one.

Figure 1 shows robustness curves for different values of the

decision variable, t, in a specific example (a = 1, c = 1, T =
3.5, P1 = 0.65, and P2 = 0.35). The striped and dotted lines

show the robustness curves for t = T and t = 0 respectively,

while the solid line shows the robustness curve of the decision

for optimal expected utility (t = t∗). Notice the crossing of the

striped and solid curves around Ec = 0.41. While the decision

t = t∗ (solid) maximizes the expected utility, a choice of t = T
(striped) will yield more robustness for Ec < 0.41.

Notice that the value of Ec at α̂ = 0 for every curve is the

expected utility of the decision, as evident from equation 15.

One may logically understand that fact as for a demand which

equals the expected utility there is no room for error, as the

smallest negative deviation from the given data will result in a

failure (as it will lower the reward beneath the demand), and

therefore α̂ = 0. The decision of t = T therefore yields less

expected utility than t = t∗ (as expected).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α

E
c

t=0
t=T

t=t
*

Fig. 1. Curve crossing- α̂(t, Ec) vs. Ec for different values of t (a = 1,
c = 1, T = 3.5, P1 = 0.65, and P2 = 0.35)

The piecewise linear form of the graph can be intuitively

explained as follows: As the uncertainty horizon increases (the

α axis in Figure 1), the minimal Pi value in this uncertainty

horizon decreases linearly (due to the chosen uncertainty

model described in eq. 8), and with it the expected utility (and

hence the demand this solution can fulfill - Ec). The change

in the linear slope (i.e., the kink in the solid line) is caused

due to the “depletion” of Pi in one of the cells (in this case -

cell 2), as from this point on, as the uncertainty horizon keeps

on increasing, only P1 decreases (as P2 = 0).

A detailed analysis in [18] shows that for the case of 2

cells, 1 agent and 1 target problem, a robustness curve of a

different decision will always cross the robustness curve of

t = t∗ when P̃1 6= P̃2, and t∗ 6= T (while P̃1 > P̃2) or t∗ 6= 0
(while P̃2 > P̃1).

IV. DETERMINISTIC NUMERICAL INVESTIGATION OF A

MEDIUM ORDER PROBLEM

After mathematically analyzing the behavior of the optimal

decision in terms of maximum robustness and maximum

expected utility in a low order case, let us now generalize and

analyze a multi-dimensional case by increasing the number

of cells in the problem. The decision to be made now is the

switching time between cells and the cells to switch to, under

a fuel constraint which again limits the search time of each

agent to T . Due to its mathematical complexity, this case will

be inspected through a numerical analysis using a deterministic

search method of finding the optimal solution.

Unlike in section III, in this section both the local and global

robustness approaches (see subsection II-B on page 3) will be

examined and compared.

A. Solution method

In order to remove any doubts regarding the optimality of

the results, the numeric investigation in this section will be

performed using a deterministic search algorithm. Where in

the infamous traveling salesman problem (TSP) one is required

to find only a sequence of cells to be visited, in our problem

one is required to find a sequence and a duration of staying in

each cell. As the problem at hand is clearly more complex than

TSP, it is clearly of a NP-hard complexity. This fact limits the

dimensionality of the problem to a relatively small number, in

order to be solved in a reasonable time, and hence the medium

order type of problem in this section.

In order to obtain a numerical result of the chosen strate-

gies (robust maximizing and expected-utility maximizing) we

discretize the time (t) dimension using a certain resolution,

i.e., the cell switch times can only get specific equally spaced

values. The resolution of this discretization greatly affects the

calculation time of the solution.

The nature of this problem does not allow using common

tree-search methods, such as A∗ and Dijkstra. A branch and

bound method was considered, however, it requires an efficient

upper bound calculation method, in order to work efficiently

and reduce the number of branches in the search tree of the

problem, which was yet to be found. The search for solution

is therefore done by a brute force approach of checking all the

possible search plans (after discarding the ones in which a new

cell is assigned before reaching the next one) and choosing the

one with the most robustness or expected utility. Due to the

great number of cases this process is very time consuming. The

number of cells is therefore kept low as well as the number of

time steps, and, as mentioned before, the problem is limited

to a single agent search.
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B. Example

We will consider a problem of four equally spaced search

cells arranged in the corners of two adjacent equilateral

triangles, each with an edge length of 0.2. In one of these cells

resides a single target. We would like to find a search strategy

for a single agent searching these cells. The best estimate

for the occupancy probability distribution for this target is:

P̃ = {0.45, 0.05, 0.15, 0.35}.

For simplicity, we will assume ωi,1 = 1 ∀ i ∈ C (the amount

of uncertainty is even in all the cells). Let us now examine

the best strategy chosen by the expected-utility maximizing

approach and the robustness maximizing approach. After run-

ning the program for a search time (T ) value of 2, detection

function exponential convergence rate (a, or wv
A

) of 2, and

expected utility demand (Ec) of 0.4 (at a time resolution of

0.025, or 80 time steps) the following results were obtained:

1) Largest expected utility result: The largest expected

utility was achieved by a search plan which divided the search

time between the two “high probability” cells (1 and 4). The

search times in the selected strategy (calculated with a time

resolution of 0.025) are- τ1 = 0.975, τ4 = 0.825, τ2 = τ3 = 0
(which, along with the 0.2 transition time from cell 1 to cell 4,

adds to the total T = 2). Notice that the higher probability cell

(1) got more search time allocated to it. The expected utility

of this strategy (the probability of finding the target given the

prior probability distribution and the described search time

allocation) is 0.67.

2) Largest global robustness result: As mentioned in sub-

section II-B, the robustness calculation method is divided into

two approaches - global (eq. 9) and local (eq. 8). Let us

compare these two approaches for the case at hand. In the

globally robust maximizing (at Ec = 0.4) search plan, the

search effort is distributed differently between the cells. As

presented in Figure 2, the search effort is now distributed

between 3 cells (1, 3, and 4), while cells 1 and 4 are allocated

an identical search time (τ1 = τ4 = 0.65), and cell 3 is

allocated less time (τ3 = 0.3, which, along with the 2 passes

which take 0.4 time units in total, adds up to T = 2). Two

possible ways of this time allocation are shown in the figure.

Notice that these two options, although different from the

perspective of the control system of the agent, are identical

in terms of time allocation (τ ), and are therefore treated as

one in the following analysis. Figure 3 shows a comparison

of the robustness (calculated in the global method) vs. Ec for

the global robustness maximizing strategy (at Ec = 0.4) and

the expected-utility maximizing one. The expected utility of

this strategy is 0.64.

Fig. 2. Global robustness maximizing strategy (at Ec = 0.4) results for the

case of P̃ = {0.45, 0.05, 0.15, 0.35}, T = 2, a = 2

Let us now compare the two different strategies (the

expected-utility maximizing and robustness maximizing strate-

gies). As can be seen in Figure 3, when looking at the

robustness curves of these two strategies as a function of Ec

the two curves cross at about Ec = 0.53. Therefore, while

striving to maximize the global robustness to uncertainty in

the probability distribution, and for an Ec value of less than

0.53, one would prefer a choice of the 2nd strategy (the one

which maximizes the robustness at Ec = 0.4) over the 1st one

despite the fact that the latter yields greater expected utility

(as can be seen by the Ec value of the two curves at α̂ = 0).
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Fig. 3. Global robustness vs. Ec of robust maximizing strategy (at Ec = 0.4)

and expected-utility maximizing strategy for P̃ = {0.45, 0.05, 0.15, 0.35},
T = 2, a = 2

The robustness difference between the two strategies is not

very significant for the given case. The expected utility change

is very minor too. For a drop of 0.03 in the expected utility

(4.5%, from 0.67 to 0.64, as can be seen in the crossing of

the x axis) one gains 0.08 in global robustness for Ec = 0.2
(14.5%, from 0.55 to 0.63). In other words, the prior estimation

of probability, P̃ , can error (in total) in 0.08 more when using

the strategy presented in subsection IV-B2 than when using

the one presented in subsection IV-B1, and still satisfice the

0.2 utility demand (while decreasing the probability of finding

the target given no data errors, by only 0.03).

3) Largest local robustness result: As can be seen in Figure

4, the local robustness (at Ec = 0.4) maximizing strategy

is the same as the expected-utility maximizing strategy. As

we will see in the next subsection, a change in one or more

of the problem’s variables might change this situation and

lead to cases where the local robustness method is more

robust (locally speaking) than the expected-utility maximizing

strategy. One might notice, by comparing Figure 3 and 4, that

the values of the local robustness are lower than those of the

global one. This fact is clear as the local robustness refers

to a maximal error in each one of the cells while the global

approach refers to the sum of errors in all the cells together.

C. Demand effect

Let us now examine the behavior of the robust maximizing

solution in comparison to the expected-utility maximizing one,

while changing the value of the demand - Ec. Due to severe

complexity issues involved in the global robustness model for a

large number of cells, we will only analyze the local robustness

model. Figure 5 shows the change in the search time allocated

for each cell, in both the local robust maximizing strategy and

expected-utility maximizing strategy, with the change in Ec



7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

E
c

L
o
c
a
l 
ro

b
u
s
tn

e
s
s

max α

max E

Fig. 4. Local robustness vs. Ec of robust maximizing strategy (at Ec = 0.4)

and expected-utility maximizing strategy for P̃ = {0.45, 0.05, 0.15, 0.35},
T = 2, a = 2. The two robustness curves merge to one in this case

(top subfigure), as well as the change in the local robustness

(middle subfigure) and expected utility (bottom subfigure) of

both solutions. The thick lines represent the robust maximizing

solution while the thin lines represent the expected-utility

maximizing one.

Notice that, unlike Figures 3 and 4, in Figure 5 each point

in Ec represents a different solution in the robust maximizing

lines (the one maximizing the robustness for that Ec value).

One can see the robust maximizing lines in Figure 5 as the

maximum of a collection of many robustness curves, such as

the ones presented in Figures 3 and 4 for a specific Ec (0.4).

Looking at the search time allocation graph (top subfigure)

it is evident, as expected, that the maximum expected utility

solution is unaffected by the change of Ec.
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Fig. 5. Cell search time allocation (top), local robustness (middle), and
expected utility (bottom) vs. Ec, of local robustness maximizing strategy (at
each Ec) (thick lines) and expected-utility maximizing strategy (thin lines),

for P̃ = {0.4, 0.35, 0.1, 0.15}, T = 3, a = 1.4

It is evident that for the very low values of Ec (around

0.05) the local robustness maximizing solution substantially

differs from the expected-utility maximizing one. This results

in a significant decrease in the expected utility of the robust

maximizing solution, while yielding only an insignificant

increase in robustness. A mission planner must take into

account these possible scenarios and ask oneself - how much

is this demand (Ec) more important than higher values of

expected utility? If, for example, an expected utility lower

than the demand would be considered a failure while a higher

one be considered as sheer success, and no extra benefit is

gained from a higher value of expected utility - then one

should implement the robust maximizing strategy. However,

this situation is unreasonable in many cases, such as the tank

search scenario described earlier. If one benefits more from

an expected utility higher than the demand (as expected in the

example), then this fact should be incorporated in the analysis.

In such cases, the robustness to the demand should be weighted

along with the robustness to higher values of demands and the

expected utility of the strategy (through a strategies robustness

curve comparison). Keep in mind that, while increasing the

expected utility seems to be desirable, it always comes at the

expense of decreased robustness to uncertainty in the prior

data (in this case, the occupancy probability distribution).

V. STOCHASTIC NUMERICAL INVESTIGATION OF A HIGH

ORDER PROBLEM

In the last two sections, we demonstrated an analytical and

a numerical analysis of one-dimensional and medium-order

multi-dimensional case studies of an agent search mission

with uncertainty on the prior information. Let us now perform

an analysis of a more realistic higher-order multi-dimensional

case. Deterministic solving methods, such as the one presented

in the previous section, are inappropriate in such cases due to

the very high complexity level. We therefore suggest a GA as

a stochastic search method. Being a heuristic search method,

GAs allow one to find adequate (although usually sub-optimal)

solutions to complex problems in reasonable time. Although

one cannot assure the optimality of the solutions using a

stochastic search algorithm, a sufficiently long evolution of

the solutions (depending on the fitness convergence rate) can

usually assure very good solutions.

We will now briefly describe the GA modeling used in

this work. For convenience, the chosen chromosome structure,

which incorporates the cell visit order and times, is in the form

of 2 vectors for each agent, consisting of the chronological

visit order in one (a series of cell numbers), and the time to

perform each visit in the other. A few limitations are applied

to qualify as a legitimate chromosome. As the first vector in

the sub-chromosome of each agent represent the chronological

visit order, the second vector must be sorted as increasing

time values (between 0 and T ). The time spacing between

each two cell visits must be large enough to include the

travel time between the cells (stored in the travel time matrix

- c). Furthermore, to speed up the convergence process, no

repetition to a formerly visited cell (by the same agent) is

allowed (as that would be a waste of time on travels between

cells). Another limit forced in the generation of new (or new

parts) of chromosomes is that the next cell to visit is usually

chosen from a reduced number of optional cells in the vicinity

of the current one. In the performed runs, the optional next

cells for each step are the 5 closest ones (out of 15 cells in
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general). This “neighborhood choosing” method is used in the

generation of each new step (in the initialization, crossover,

and mutation processes) with a predefined probability (0.9 in

our case), rather than always, to allow diversity (when it is

not used, the next cell is chosen randomly from all the other

cells). Figure 6 shows an example of a chromosome of a 2-

agents 10-cell task-assignment problem. Again, the starting

condition, consisting of the first cell of each agent, are stored

in a separate vector. Notice that the last few steps in every

sub-chromosome are done at time t = T . This is a method for

not including some of the cells in a certain agent’s mission.

Fig. 6. Chromosome structure example for a 2 agents, 10 cells problem
(T = 3)

Due to all the special limitations on the chromosome’s

structure, a simple crossover operation is not applicable in this

case. Since the problem has some resemblance to the well-

known traveling-salesman problem (TSP), some GA encod-

ing methods for TSP have been considered. However, these

methods assume TSP conditions which are not true in this

case, such as the necessity to visit each city exactly once.

Moreover, these methods fall short of addressing the time

dedicated to searching each cell. As a result, no crossover

operator is encoded in the GA code for this model in the sense

of combining 2 solutions to create 2 new ones, but rather a

random slicing of solutions, while the rest of the solution is

completed randomly step by step using the “optional close

cells” rule. The times are set randomly in a rising order. A

special module then processes the solutions to fix illegal cases

(i.e., cells visited more than once, and insufficient time gaps).

Let us compare the results of the GA using the two

fitness calculation methods - the expected utility and the local

robustness. We now consider a problem of a single target,

searched for in 15 disconnected equally sized search cells,

randomly placed in a 2000x2000[m] area, by 3 identical

searching agents. The a-priori probability distribution (P̃ ) is

also randomly distributed. Again, for simplicity, we assume

ωi,1 = 1∀i ∈ C (the amount of uncertainty is even in all

the cells). In all the calculated scenarios, the final time is:

T = 3[min], the speed of the agents: v = 100[m/s], the

sensor’s sweep width: w = 20[m], and the area of each

cell: Ai = 60, 000[m2] ∀ i ∈ C (which makes the detection

function convergence rate: a = vw
A

= 2
[

1
min

]

). The shown

results were taken for each run as the best of 3 runs, each one

with a population size of 100, evolved for 200 generations.

As can be seen in Figure 7, when examining the progression

of the mean maximum fitness (calculated from 50 random

scenarios), or MMF, with the generations, the three types

of fitness (expected utility (solid), robustness at Ec = 0.5
(dashed), and robustness at Ec = 0.1 (dotted)) all seem to be

well converged after 200 generations. Computationally-wise,

the robust-satisficing strategy is harder to calculate, however,

it is not by an order of magnitude. While the calculation of

the expected utility maximizing solution, using the GA, took

around 20 seconds (on an average PC), the calculation of the

robustness maximizing one took around 75 seconds.
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Fig. 7. The MMF divided by the MMF value at the last generation to
compare the convergence of the three fitness types after 200 generations

We will begin analyzing a single scenario, and continue

with some average results obtained from a group of randomly

generated scenarios. The random variables are the locations of

the cells, and the initial probability distribution.

A. Example

The following results were obtained using the GA for a

specific case. Figure 8 shows the evolved courses of 3 different

fitness types: expected utility (left), robustness for Ec = 0.5,

and robustness for Ec = 0.1.
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Fig. 8. From left to right - the expected-utility maximizing, the robustness
maximizing at Ec = 0.5, and the robustness maximizing at Ec = 0.1
courses, calculated by the GA for the same scenario. The black squares

represent the locations of the cells and their sizes – the P̃i value. The circles
represent the time invested by each agent (different color for each one) in
each cell. The starting cell for each agent is marked with an X inside the
circle and the transitions between the cells by the crushed lines.

Looking at these graphs, one might see a distinct difference

between them: as Ec is lowered (remember that maximizing

the expected utility stands for the highest Ec), fewer cells

are visited and the search effort is invested mainly more and

more in the higher probability cells (those with a relatively

high value of P̃i). This search-effort allocation behavior makes

sense considering the local uncertainty model used in the

robustness calculation, given in equation 8. As Ec decreases,

the robustness increases, allowing the worst-case probability

under the uncertainty horizon, to be zero in more cells. This

fact leads to the strategy of allocating more time to the higher

probability cells, which will still yield some utility in relatively

large uncertainty situations. For a very small Ec value, the
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strategy of visiting only the very high prior-probability cells

could withstand a great deal of uncertainty, as these will still

“hold” enough probability to satisfice the requirement.

Let us now look at the robustness curves (robustness vs.

Ec) for the three strategies presented in Figure 8. Figure 9

shows the three robustness curves of the expected-utility max-

imizing, robustness maximizing at Ec = 0.5, and robustness

maximizing at Ec = 0.1 curves.

First, let us compare the strategy of maximizing the robust-

ness at Ec = 0.5 (dashed), and the strategy of maximizing

the robustness at Ec = 0.1 (dotted). Notice that while using

the latter, the resulting robustness at Ec = 0.1 is higher,

but merely by 1%. However, the former strategy enjoys a

very clear advantage in the robustness at higher Ec values.

Moreover, remembering that the robustness curve’s crossing

of the Ec axis represents the course’s expected utility, notice

that the course which maximizes the robustness at Ec = 0.5
(dashed) has a much larger expected utility (about 50% more!)

than that of the one maximizing the robustness at Ec = 0.1
(dotted). Therefore, in a realistic situation (such as the tank

search example), it is hard to imagine a decision maker who

would prefer the strategy which maximizes the robustness at

Ec = 0.1 over the strategy which maximizes the robustness at

Ec = 0.5, even if the failure criterion is Ec = 0.1.

Let us now compare the expected-utility maximizing strat-

egy (solid) to the robustness maximizing at Ec = 0.5 strategy

(dashed). The maximum expected utility (0.782) is only a frac-

tion of a percent higher than that of the robustness maximizing

at Ec = 0.5 strategy (0.78). However, the robustness gain

from the robustness maximizing at Ec = 0.5 strategy is quite

significant (as much as 20% gain at Ec = 0.53!).
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Fig. 9. The robustness curves of the expected-utility maximizing (solid line),
robustness maximizing at Ec = 0.1 (dotted line), and robustness maximizing
at Ec = 0.5 (dashed line) solutions (the scenario from Figure 8).

B. Analyzing average results

In order to understand the general behavior of these solu-

tions, an analysis of 500 randomly generated scenarios was

made. Figure 10 shows the robustness (at Ec = 0.5) and

expected utility gain histograms. The upper frame shows the

robustness of the robust-maximizing (RM) solution divided

by the robustness of the expected utility maximizing (EUM)

solution. The lower frame shows the expected utility of the

EUM solution divided by the expected utility of the RM

solution. The dashed line in the upper frame shows an average

5.3% gain in robustness of the RM strategy over the EUM
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Fig. 10. The robustness (at Ec = 0.5)) gain histogram (top) and the
expected-utility gain histogram (bottom), along with a fitted (multiplied)
normal distribution PDFs (solid lines), calculated from 500 random scenarios.

strategy. The standard deviation is 0.055. A t test would

strongly reject the hypothesis that the true mean of this distri-

bution is 1 (implying no difference between RM and EUM),

against the hypothesis that the mean is 1.053 (p < 0.001).

The lower frame shows that this robust gain entails no loss

in expected utility, since the ratio of the expected utilities

of the two strategies is essentially one. Notice in the upper

histogram that 14% of the cases are below 1, meaning that the

expected utility maximizing strategy yielded more robustness

than the robustness maximizing strategy 14% of the time. This

is perfectly normal due to the stochastic nature of the GA. The

histogram clearly shows that these 14% are the tail of the PDF,

and the mean is significantly larger than 1. For the expected

utility gain the number of cases below 1 is more than 40%,

and the average gain is 0.4%.

Let us now examine the observation regarding the number of

visited cells, which was decreasing as Ec was lowered, as can

be seen in Figure 8. Figure 11 shows the average number of

visited cells (by all three agents, calculated from 50 randomly

generated scenarios) using the robustness maximizing strategy

at each Ec value (dashed), and using the expected-utility max-

imizing one (solid). The expected-utility maximizing strategy

is independent of Ec and the solid line is therefore constant.

It can be seen clearly that the average number of visited cells

increases with Ec, and that the average number of visited cells

by the expected-utility maximizing strategy is higher.
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Fig. 11. Average number of visited cells using expected-utility maximizing
strategy (solid) and robust maximizing strategy (dashed) at each Ec
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VI. CONCLUSIONS

An analytical investigation of a simplified 2-cell case was

performed. It is shown that in some cases robustness curves

cross, which means that, depending on the demand, one might

prefer a robust satisficing strategy which is different from an

expected-utility maximizing one. Numerical results obtained

by a deterministic search method confirm this for more

complex 4-cell cases. The effects of different parameters of

the problem on the resulting solution, including two different

uncertainty models (local and global), were studied. Later on,

a large-scale problem was solved using a stochastic numeric

method (GA) after dealing with some encoding issues for

the chosen system model. A study of 50 random scenarios

revealed a typical consolidation of effort behavior (in high

initial-probability cells) of the robust maximizing solutions,

which becomes more distinct as the value of Ec is lowered.

The behavior was explained using the local uncertainty model

which was in use.

Similar to the Pareto principal, and the No Free Lunch

principal in optimization, the increase in robustness comes

at the expense of the expected utility. While the equilibrium

point must be chosen by the mission planner, it is shown

that, in various circumstances, one obtains results which

are superior to the expected-utility maximizing strategy (in

terms of robustness at a broad range of Ec values), while

sacrificing almost no expected utility. In light of these results,

the recommended strategy is robust-satisficing: satisfice the

expected utility and maximize the robustness.

The presented method of decision-making might be useful

in various scenarios, as it incorporates different types of

data, such as a critical expected utility value, and uncertainty

weighting parameters, reflecting different quality of informa-

tion for different search cells and targets. That said, it is

important to implement it on problems in which such data

exists. When the prior data is known to be very reliable, one

might rightfully choose to maximize the expected utility.
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