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Mathematical models of mechanical systems are developed to assist decision making for
design, dynamic performance, structural interfacing, reliability, etc. Model updating is a
costly and time-consuming task, so it is important to evaluate rigorously the quality of a
model with respect to the decisions which rely upon it. The measure of model usability is
that a model is usable to the extent that decisions based on the model are robust to the
associated uncertainties. The analysis of robustness employs convex models of uncertainty,
which are particularly suited to situations in which prior information about the
uncertainties is severely limited. Several examples of the analysis of model usability for
mechanical decisions are considered, including a simple harmonic oscillator, a simple
non-linear system, and a multidimensional linear frequency response model for predicting
dynamic stability.

7 1998 Academic Press Limited

1. INTRODUCTION

The widespread use of mathematical models to simulate the behaviour of complex
mechanical structures naturally implies the need for some kind of quality control. All
mathematical models are necessarily simplifications of a messier reality and it is important
to study the implications of this approximation if the adequacy of the model for a given
end use is to be judged. Not only must a model be verified and validated against empirical
data, but it must also be evaluated with respect to its end use [1].

The mechanical design process implies the application of a design methodology to a set
of objectives: reliability, ergonomy, minimal manufacturing and maintenance costs, etc.
The designer proceeds through a hierarchy of decisions (dimensioning and materials
selection, tolerance specifications, choosing preventive maintenance schedules, and so on)
whose respective outcomes are intended to insure that these objectives are met. In the end,
one is solely interested in making reliable decisions and the use of mathematical models
is simply a means towards this end. In other words, if the designer decides to modify
property P in order to satisfy conditions C on the basis of a model M, then it is desirable
that, even if the predictions of model M were incorrect in the worst possible way, this
would not affect the outcome of the decision. This paper develops a method for evaluating
the usability of a model which does essentially that, exploiting the concept of robust
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reliability [2, 3]. The degree of usability of a model will be measured by the
robustness-to-uncertainties of decisions based on the model.

Section 2 presents a rigorous generic definition of robust model usability. Illustrative
one-dimensional linear as well as non-linear examples are discussed in Section 3. Section
4 evaluates the degree of usability of a multidimensional frequency response model for
predicting the dynamic stability of a structure.

2. ROBUST MODEL USABILITY

The measure of model usability developed here is: a model is usable to the extent that
decisions based on the model are robust to the associated uncertainties. Usability is a
matter of degree, and usability depends on the intended application of the model. One
model is more usable than another when decisions based on the first model are more robust
than decisions based on the second, and the degree of greater usability is measured by the
degree of greater robustness. Also, as Natke [1] has stressed, the usability of a model
depends on the purpose to which the model is applied, namely, the decisions which are
based on the model. A model may be very useful for one decision but not at all for another.

Three components underlie the robust measure of model usability: (1) a mathematical
model of the system: (2) a decision algorithm; and (3) a model of associated uncertainties.

The model of the system is denoted S(v) and depends on various unknown parameters
and functions, v, which may be stiffnesses, geometrical dimensions, input functions, and
so on. There may also be known parameters in the model as well as design variables.

The decision algorithm ‘operates’ on the model and D[S(v)] takes a value which may
be a number or a linguistic variable. While decision algorithms come in a myriad of forms,
this paper refers to ‘bottom line’ decisions which come, possibly, at the end of a sequence
of prior decisions. These final decisions are often in a linguistic form and establish a
go/no-go status of the system. The decision takes different forms in different applications,
but typically the algorithm establishes whether or not the system, as represented by the
model, satisfies some array of requirements for a given choice of v. For instance, the
algorithm may determine if the maximum dynamic response is less than a critical value,
in which case D[S(v)] takes the value ‘yes’, and otherwise ‘no’. Or, another typical decision
algorithm selects one of a collection of alternative values for particular design variables
in order to satisfy some performance requirements.

The uncertainty of the variables v is represented by a convex model of uncertainty, which
is denoted at present by V(a). A convex model is a family of nested sets, V(a) for ae 0,
which expands as the uncertainty parameter a grows, where a is a non-negative real
number. Convex models of uncertainty have been described extensively elsewhere [3–5],
and are discussed later on.

The robustness of the decision, which we propose as the measure of usability of the
model, is the greatest value of the uncertainty parameter a for which the decision is the
same for all events, in the convex model V(a). Formally, the robustness is often expressed
as follows:

â=sup {a: D[S(v)]= constant, for all v $ V(a)} (1)

In other words, the robustness, â, is the supremum of the set of a-values for which the
decision is constant, and independent of a, for all values of v in V(a). (In the examples,
it is seen that modifications of this form are sometimes useful.) When â is large, then the
decision is stable with respect to the uncertainties. This means that the decision is the same
over a wide range of values for the uncertain variables v. On the other hand, if â is small
then the decision is fragile with respect to the uncertainty: small variation of v can lead
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to a change in the decision. If â is large the decision is robust, insensitive to uncertainties,
and the model can be reliably used for making the decision. If â is small, then the model
cannot be relied upon to yield consistent decisions.

Let us examine further why decision-robustness to uncertainty is a relevant measure of
model usability. Uncertainties may occur in the operating environment of the system, for
example load uncertainties, as well as in the properties of the system itself, such as material
or geometrical uncertainties. In both cases, it is assumed that the uncertainty models are
sufficiently ‘rich’ to encompass a realistic representation of the actual eventualities.
Regarding environmental uncertainty this means that the convex model represents a
realistic range of operational conditions. With regard to system uncertainties, it is assumed
that the uncertainty model includes a realistic model within its domain, even though the
nominal model upon which the decision is based may differ from more realistic models.
Robustness to environmental uncertainty means that the decision is relevant to the full
range of environmental contingencies, which is realistically represented by the uncertainty
model. Robustness to system uncertainty means that the decision which is based on the
nominal model is the same as the decision which would be obtained from a more realistic
model, whose identity is not known but which is contained in the model of system
uncertainty. This is discussed further in example 5.

Sometimes the convex model is centred at a ‘nominal’, ‘typical’ or ‘design-base’ value
v̄ of the uncertain quantity. The convex model is then denoted V(a, v̄), for ae 0,
indicating a family of nested sets which are centred around v̄. The robustness, equation
(1), can then be written as:

â=sup {a: D[S(v)]=D[S(v̄)] for all v $ V(a, v̄)} (2)

Written in this form â can be interpreted as the greatest value of the uncertainty parameter
for which a decision obtained from the design-base value v̄ is the same as the decision
obtained from any other realisation of v in the convex model. If â is large then the
design-base decision is ‘correct’ for any realization over a wide range of deviation from
the nominal system, while if â is small then even minor deviations of the system from its
typical structure can cause an error in the nominal decision.

Concerning desirable magnitudes of â it is clear that ‘big is better’. But what are ‘small’
and ‘large’ values of â? How large is large enough? What increments in â are significant?
This is discussed in some of the examples that follow.

3. ONE-DIMENSIONAL EXAMPLES

3.1.  1:  

Consider an undamped one-dimensional linear oscillator subject to uncertain input:
mẍ(t)+ kx(t)= u(t) starting from zero initial conditions x(0)= ẋ(0)=0. The system
is ‘acceptable’ if the magnitude of the displacement x remains less than the critical value
xcr throughout a duration T. The uncertain input belongs to an ‘energy-bound’ convex
model.

U(a)=6u(t):
1
T g

T

0

u2(t) dtE a27 (3)

The model of the system is the differential oscillator equation, the uncertainty model is
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U(a), and the decision algorithm returns a value of ‘yes’ or ‘no’ depending on whether
or not =x(t) =E xcr for all 0E tET. The decision algorithm is formally expressed:

D(a)=yes if and only if max
u $ U(a)

=x(t) =E xmax for all 0E tET (4)

As described elsewhere [3, 5], Schwarz’s inequality can be employed to establish the least
upper bound of x as u varies on U(a):

x̂(t)=
azt
mv Xg

t

0

sin2 vt dt (5)

zXXcXXv
s(t)

which defines the quantity s(t). Note that s(t) increases monotonically with t. The natural
frequency of the oscillator is v=zk/m.

The greatest value of uncertainty parameter for which the acceptability requirement is
satisfied for all input functions in U(a), is found by equating x̂(T) to the critical value of
displacement and solving for a:

as(T)zT
mv

= xcrc â=
xcr mv

s(T)zT
(6)

This is the robustness of the decision. If â is large then the model is reliably used to decide
whether the system, subject to uncertain input, is acceptable. If â is small then the decision
oscillates as the uncertain input varies over a small range of values. The formal expression
of the robustness in this example is:

â=sup {a: D(a)=yes} (7)

The calibration of the robustness, â, to establish a scale from ‘small’ to ‘large’, can be
approached in various ways. Two methods are discussed in [3] and an additional procedure
is presented here. It is important to recognise that different calibrations may lead to
different interpretations of the robustness. Consequently, calibration must be done with
care, and with a clear view of the application at hand.

The uncertainty parameter has units of force, so âxcr is an energy. One way to calibrate
the robustness is to compare âxcr, thought of as a maximum input energy, against a typical
dynamical energy of the oscillator. For example, the maximum strain energy of
displacement of the oscillator is 1

2 kx2
cr. ‘Large’ values of âxcr are much greater than this

strain energy, while ‘small’ values of âxcr are much less. The dimensionless index of the
robustness is:

âxcr
1
2 kx2

cr
=

2mv

ks(T)zT
(8)

The robustness if ‘small’, ‘moderate’ or ‘large’ if this dimensionless quantity is �1, 11
or �1, respectively.

3.2.  2:  1 ,    

The robust usability â is a function of properties of the system, as expressed by the
model. The question often arises: what changes in the system, and consequently in the
model, would make the decision substantially more reliable? For instance, equation (6)
shows that any increase in k (and hence in v) results in an increase in â. The question
is, how large a stiffness change results in a significant change in robustness?



α2

k2

ˆ

k1

α1ˆ

xcr,1 xcr,2 xcr,3 k3

α3ˆ

α(xcr)ˆ

α(k)ˆ
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This requires subjective calibration of the robustness based on engineering judgement.
Changes in k and â must be linked with some scale which can be interpreted in subjective
or intuitive terms of ‘small’ or ‘large’. The method of ‘consequence severity’ [3] is used here
to calibrate increments of â resulting from increments in k.

Our calibration of â is based on a prior subjective interpretation of the failure threshold,
xcr. The system ‘fails’ if the absolute displacement exceeds the threshold, but it is a matter
of engineering judgement to choose a value for xcr. A large value of xcr defines failure to
occur only with the onset of severe consequences, while a small value of xcr identifies failure
even when only small impact on the system results. Engineering experience with the system
may enable the analyst to assess what magnitudes of deflection correspond to minor or
major consequences for the system. For an antenna deployed in space, for instance,
vibrations of 1.0 mm may be ‘large’ while 0.1 mm may be ‘small’. In contrast, for a
heavy-duty crane, ‘large’ and ‘small’ vibrations may be 1.0 m and 0.1 m respectively. When
this sort of judgement is available, it forms the basis of a subjective calibration of the
robustness, as is now demonstrated.

First of all note that s(T)1zT/2 if T�1/4v. Then, recalling v=zk/m, the
robustness can be written â1z2mkxcr /T. Plotting â versus xcr obtains the straight line
in Fig. 1. xcr,2 is the current threshold value upon which the decision is based and it
represents moderate severity. Two other threshold values are chosen: xcr,1 corresponds to
low severity at the onset of failure, while xcr,3 corresponds to high severity. Plotting â versus
the stiffness leads to the parabolic curve in Fig. 1. The straight curve is plotted for k= k2,
while the parabola is based on xcr = xcr,2.

In comparing these two curves, how large a change in stiffness induces a significant
change in robustness? â2 is the robustness of the decision based on the current model
values, and one wishes to know how large a change in k is needed to change â meaningfully.
At high failure severity (xcr = xcr,3), the robustness is â3. It is reasonable to view â2 and â3

as ‘substantially’ different since they are the acceptable levels of input uncertainty which
correspond to substantially different levels of failure severity. Following the thin line to
the right and down in Fig. 1 leads to the value of stiffness which, with moderate failure
severity (xcr = xcr,2), causes the substantially greater robustness value â3. It is concluded that

Figure 1. Calibrating stiffness and robustness changes in terms of failure-consequence severity.
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the change in stiffness from k2 to k3 results in a significant increase in robustness of the
decision. Elementary manipulations show that k2 and k3 are related as:

k3 = k2 01+
xcr,3 − xcr,2

xcr,2 1
2

(9)

Similarly, â1 is a substantially lower robustness than â2 since xcr,1 and xcr,2 represent low
and moderate severities, respectively. Following the thin line in Fig. 1 leads to the stiffness
value k1 which, at moderate failure severity, generates low robustness â1.

In this manner the model and system changes needed to implement substantial changes
in the usability of the model for robust decisions have been established.

3.3.  3: -  

Joints and other structural components often display complex non-linear elastic
behaviour which is difficult to model accurately. An acceptance test of a joint element can
be based on its mechanical model. An idealised non-linear joint element is considered for
which a decision must be made whether to accept the joint for use, or to reject it, on the
basis of an imperfectly known model of the joint. The usability of the model is analysed
to determine the accuracy to which the model must be verified in order for the decision
to be reliable.

The mechanical model is the following relation between force f and dimensionless strain
x:

f(x)= kx+ s
N

n=0

bn xn (10)

where the strain is constrained to the range =x = R xmax. The uncertainty model is a
spheroidal convex model for the vector b=(b0, . . . , bN )T of polynomial coefficients:

B(a)= {b: bTbE a2} (11)

The decision will be to accept the joint if and only if the force at maximum strain deviates
from the nominal force kxmax by no more than a critical value:

D(b)=yes, if and only if =f(xmax)− kxmax =E ocr (12)

In other words, the non-linearity of the joint has been modeled empirically in equation
(10) with the coefficient vector b whose value may not be precise. The joint is acceptable if
its performance, as predicted by the empirical model, is within ocr of the linear model kx.
The decision is based on the empirical b, and this decision is robust if large error in b does
not jeopardise the correctness of the decision.

Note that the decision is ‘yes’ when a=0. So, the robust usability is the greatest value
of the non-linear uncertainty parameter, a, for which the decision is the same, namely ‘yes’,
for all non-linear models in B(a):

â=sup 6a: b sNn=0

bn xn
max bE ocr for all b $ B(a)7 (13)

To evaluate the usability the maximum of the sum in this expression needs to be
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determined, as b varies on B(a), and then this maximum should be equated to ocr. Define
the function:

g(x)=Xx2(N+1) −1
x2 −1

(14)

The maximum sum is found to be ag(xmax). Equating this to ocr results in the robust
usability:

â=
ocr

g(xmax)
(15)

When â is large, the decision is robust to the non-linear model uncertainty, while if â is
small the decision is fragile so the model usability is low.

What values of â are ‘small’ or ‘large’? Since x is dimensionless, bn, a and â all have
units of force. One reasonable physical calibration of the magnitude of â is to compare
it against the maximum force of the element. This maximum force, based on the largest
acceptable uncertainty model, B(â), is kxmax + âg(xmax). The ratio of â to this maximum
force is:

â

kxmax + ax g(xmax)
=

ocr /g(xmax)
kxmax + ocr

(16)

The robustness is ‘small’, ‘moderate’ or ‘large’ if this quantity is �1, 11 or �1,
respectively.

g2(x)e 1 so equation (15) shows that the usability is less than ocr. In other words, in
order to decide reliably if the joint is acceptable, it is necessary that the model accuracy,
a, be better than the acceptable error of the joint, ocr.

3.4.  4:  3 , J  

Consider J identical elements in a parallel array, each represented by equation (10) with
the same b-vector. If a strain x is imposed on the entire array, each element also will
expand or contract by x. Consequently, the force at the end of the array is Jf(x). Equation
(11) is the uncertainty model for each of the non-linear elements. The decision is to accept
the array of joints if the end force at maximal strain deviates from the nominal force by
no more than ocr :

D(b)=yes, if and only if =Jf(xmax)− Jkxmax =E ocr (17)

For any coefficient vector in B(a), the maximum force of a single element strained to x
is, as before, kx+ ag(x). So, the maximal end force, when the array is strained to xmax,
is J[kxmax + ag(xmax)]. So, the robustness of the decision, with a J-element array, is:

âJ =
ocr

Jg(xmax)
(18)

This indicates that the robust usability decreases monotonically with the number of
elements in the serial array.
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3.5.  5:  3 ,   

Returning to equation (10), represent the non-linear term with an expansion in functions
f0 (x), . . . , fN (x) different from power functions:

f(x)= kx+ s
N

n=0

bn fn (x) (19)

As in example 3, the uncertainty model for the coefficient vector b is equation (11) and
the decision algorithm is equation (12). The robust usability is equation (13) with xn

replaced by fn (x). The robust reliability is now:

âf =
ocr

Xs
N

n=0

f2
n (xmax)

(20)

Can the usability of the f-function model be compared to the polynomial model, whose
robustness is henceforth denoted âx ?

This can be done very easily, if it is assumed that both the polynomial and the f-function
models are sufficiently rich to reproduce the non-linear behaviour of the element
accurately, for some choice of the coefficient vector b in the convex model of size âx or
âf , respectively. The uncertainty is a parameter uncertainty: it is not known which b

reproduces the true behaviour, and the usability of the model is evaluated as the greatest
residual imprecision of b which has no effect on the decision. Given the ‘model-richness’
assumption, the comparison of alternative models is ‘fair’ since both classes of models can
represent accurately the non-linear behaviour and one wishes to know which does so with
the least sensitivity to uncertainty. On the other hand, if the form of the uncertain part
of the model was inherently unable to capture the non-linear contribution, for example
if an insufficiently large expansion order N, was chosen, then this would lead to a structural
uncertainty. If the model class fails to include the true behaviour, insensitivity to
uncertainty (a large value for â) would not imply good model usability. Therefore,
comparing structurally uncertain models is more problematical than comparing
parametrically uncertain models.

Upon the assumption that the uncertainty is only in the parameters, the relative usability
of the polynomial to the f-function model is found by comparing equations (15) and (20):

âx

âf

=csN
n=0 f2

n (xmax)

sN
n=0 x2n

max

(21)

where the denominator is just g(x) before summing the geometric sequence.

4. USABILITY OF A MULTIDIMENSIONAL FREQUENCY RESPONSE MODEL

This section evaluates the robust usability of a multidimensional frequency response
model of a mechanically vibrating structure. First, the three components of the analysis
are outlined: the mathematical model of the system, the uncertainty models, and the
decision algorithm.
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The mathematical model is a frequency-domain relation between the Laplace transform
of the input load vector u and of the response vector y:

y(v)=G(v)u(v) (22)

where G is the modeled flexibility matrix.
Uncertainties are considered in both the input and the model. The uncertainty model

for the inputs is a convex model represented as U(au , ū), where au is the uncertainty
parameter for the input and ū is the nominal input. A typical input uncertainty model is
an ellipsoid-bound convex model:

U(au , ū)= {u: (u− ū)HW(u− ū)E a2
u } (23)

where W is a positive definite real symmetric matrix and H implies hermitian matrix
transposition.

The modeled flexibility matrix G depends on parameters p as well as on frequency, so
G(v, p) is sometimes used. Model uncertainty is expressed in terms of uncertainty in
the parameters by a convex model P(ap , p̄), where ap is the uncertainty parameter for
the model and p̄ is the nominal model. For instance, p̄ might represent the model
obtained by an updating procedure. A typical convex model for parameters is interval
uncertainty:

P(ap , p̄)= {p: =pi − p̄i =E ap p̄i} (24)

The designer or analyst will need to make a plethora of different decisions under various
circumstances. This section considers a situation in which one needs to determine the
spatial stability of the physical system subject to uncertain input, based on output
predictions of a specific mathematical model. The ‘decision’, D, is to accept or reject the
system depending on whether or not the range of the model-predicted response to the
uncertain loads is less or greater than an acceptable threshold, ocr. Formally, the decision
algorithm is:

D(p)=yes, if and only if max
u $ U(au,ū)

>G(v, p)u>E ocr (25)

The robust usability of the model for such a decision is: how large can the model
uncertainty be and still maintain the same decision for all models in the set? Just like
equation (1), the robustness of the decision is the greatest value of ap such that D(p) is
the same for all models in P(ap , p̄):

â=sup {ap : D(p)= constant, for all p $ P(ap , p̄)} (26)

4.1.  6:   

Suppose that the nominal input is zero, so ū=0. In this case, the maximization in
equation (25) becomes an eigenvalue problem. The maximum normed response is:

max
u $ U(au,ū) BG(v, p)uB= au zmax eig [W−1/2GH(v, p)G(v, p)W−1/2] (27)

Let m(p) denote the maximum eigenvalue whose square root appears in this expression.
Suppose that the decision is ‘yes’ and the system is acceptable with the nominal model,

p̄. That is, au zm(p̄)E ocr. According to equation (26), the robustness of the decision is
the greatest value of the model uncertainty parameter ap for which the decision is ‘yes’ for
all models in P(ap , p̄):

â=sup {ap : au zm(p)E ocr for all p $ P(ap , p̄)} (28)
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From equations (24) and (28) it can be seen that the robust usability index, â, like the
model uncertainty parameter ap , is dimensionless and has the meaning of a fractional error
in the model parameters. Suppose it is known that a plausible value for the fractional error
of the model parameter is f. The model is very robust, moderately so, or not at all robust
as a�f, â1 f of â�f, respectively.

4.2.  7: -  

Consider the more complex but realistic situation in which the nominal input, ū,
is different from zero. For notational convenience define V=GH(v, p)G(v, p). Now
one finds:

max
u $ U(au,ū) BG(v, p)uB=z(v+ ū)HV(v+ ū) (29)

where v is the solution of:

[V− lW]v=−Vū (30)

and the unknown multiplier l is chosen so that v satisfies:

vTWv= a2
u (31)

Equations (29)–(31) enable one to implement the decision algorithm for any choice of the
parameter vector p by using relation (25). The robustness is the greatest value of ap such
that the decision is the same for all models in P(ap , ū), as expressed in equation (26).

4.3.  8:     

In some situations a test model Gt has been developed and the engineering decision to
be made is whether to accept or reject the test model on the basis of its fidelity to an
accepted reference model, Gr. The input uncertainty is represented by the convex model
of equation (23) and the uncertainty in the test model is expressed by equation (24). Instead
of equation (25), the decision algorithm is:

D(p)=yes, if and only if max
u $ U(au,ū)

>[Gt(v, p)−Gr(v, p)]u>E ocr (32)

The robust usability of this decision is evaluated from equation (26).
In this example, the test model is a specific realisation, a given numerical flexibility

matrix, denoted Gt. The decision algorithm, equation (32), can be implemented for this Gt

and results in a specific decision: either accept or reject the test model. Suppose one decides
to accept Gt. Is this decision robust or fragile to uncertainty in Gt? It might be that if Gt

were only slightly different it would fail the test in equation (32) and it would be rejected.
In this case, the decision to accept Gt is fragile and should possibly be reversed or at least
re-evaluated. Or, perhaps even models quite different from the specific realization, Gt,
would also be accepted, indicating that the decision is robust and reliable.

4.4.  9:    

Engineering decisions often comprise several component decisions. For example, the
structure may be accepted for use if the maximum deflection in response to uncertain loads
is less than a critical value, based on a test model Gt, and if this test model has sufficient
fidelity to a reference model Gr. In other words, the decision to accept or reject the structure
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Figure 2. Geometry of the model FORK. Numbers indicate nodal points; W, lumped mass; 4, excitation.

is a combination of the decisions in equation (25) and (32). Formally, this composite
decision algorithm is expressed:

D(p)=yes if and only if D1 (p)=yes and D2 (p)=yes (33)

where

D1 (p)=yes, if and only if max
u $ U(au,ū)

>Gt(v, p)u>E ocr,1 (34)

D2 (p)=yes, if and only if max
u $ U(au,ū)

>[Gt(v, p)−Gr(v, p)]u>E ocr,2 (35)

The robust usability is evaluated from equation (26). This binary decision can be
generalised to include an arbitrary number of component decisions connected by logical
operations such as ‘and’, ‘or’ and ‘nor’. One can also construct a more complex hierarchy
of sub-decisions with conditional branches and linguistic qualifiers. In all cases, the
usability of the model is the robustness of the final decision, D.

5. ILLUSTRATIVE NUMERICAL EXAMPLE

This section considers a numerical implementation of example 8. The structure FORK
is a bidimensional clamped-free beam structure, composed of nine Euler beam elements,
six lumped masses, comprising a total of 27 degrees of freedom. The general geometrical
characteristics of the test case are shown in Fig. 2 and detailed description of the nominal
model can be found in [6].

In the context of the present example, the initial FORK model is considered as a
reference model Gr and the robust usability â of this model is evaluated with respect to
parameter uncertainty of a test model Gt, where the loads are also uncertain.

The loads are defined by the non-zero components of the input vector indicated by the
two arrows at node 10 in Fig. 2. The input uncertainty model is defined by equation (23)
with W as the identity matrix and ū=0. The parameter space of the test model, Gt, is
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characterised by a single uncertain scalar coefficient p representing the simultaneous
modification of the quadratic moments of inertia of all nine beams, that is to say:

I= pI� $ R9,1 (36)

The interval uncertainty in p is represented by the convex model P(ap ) defined by:

P(ap )= {p: =p−1=E ap} (37)

The decision algorithm is specified in equation (32), and the robust reliability with respect
to model uncertainty is defined in equation (26).

The maximum which is evaluated by the decision algorithm in equation (32) is the largest
discrepancy between the reference and test models, for all inputs in the load–uncertainty
set U(au ). The solution of this maximisation problem leads to a symmetric eigenvalue
problem of the form:

[DGT(v, p)DG(v, p)− ov I]uv =0 (38)

whose largest eigenvalue corresponds to the maximal absolute response error between the
test model, defined by the specific value of the coefficient p, and the reference model. Let
DG=Gt −Gr, and let o denote the maximum eigenvalue. This optimisation problem is
illustrated by Fig. 3 where the maximum error is plotted as a function of frequency for
p=0.9 and au =1.

The evaluation of the robustness with respect to model uncertainty involves finding
the supremum defined in equation (26): the greatest value of the model-error
uncertainty parameter ap for which the decision is constant. This optimisation problem
is illustrated at a frequency f0 =36 Hz in Fig. 4. In the present case, the intersection
between the maximal absolute error curve and the critical level ocr gives a robust
model usability of âp =0.3. That is, the decision is the same for all test models within
the model-uncertainty set P(ap ) for any ap E 0.3. In other words, the decision is only
moderately robust with respect to uncertainty in the modeled moments of inertia, since
a modeling error of more than 30% in the moments of inertia is liable to cause a
change in the decision.

Figure 3. Maximum error o as a function of frequency for p=0.9.
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Figure 4. Maximum error o as a function of ap .

6. CONCLUSION

Mathematical models are tools for making rational decisions in the design and analysis
of mechanical systems. Not only must a model be verified and validated against empirical
data, but it must also be evaluated with respect to its end use: the decisions which rely
upon the model. The measure of model usability developed here is: a model is usable to
the extent that decisions based on the model are robust to the associated uncertainties.
This can be implemented precisely for a wide spectrum of specific mechanical decision
processes, as has been illustrated in the examples. Convex models have been used to
represent uncertainties both in the operational environment and in the system itself as
represented by the model. A methodology has been developed for evaluating model
usability in terms of engineering decisions, and its application has been demonstrated to
both linear and non-linear mechanical systems. Different approaches to calibrating or
interpreting the model usability have been discussed in subjective terms which are
meaningful for practical engineering judgements.

Decision robustness is a reasonable measure of model usability for two reasons. First,
large decision robustness means that the same decision is obtained over a wide range of
realisations. Decision robustness enhances the analyst’s immunity or insensitivity to
unavoidable uncertainties. Robust decisions are stable with respect to unknown variations.
The second advantage is more subtle, and involves the correctness, not just the stability,
of the decision. If the decision is robust to model uncertainties and if a ‘correct’ model
lies somewhere in the domain of decision robustness, then stability of the decision implies
correctness. This was discussed in Section 2 following equation (1) and again explicitly in
connection with example 5.

In many of the discussed examples, the model usability was evaluated with respect to
model uncertainties, while input uncertainties may also have existed. From this, the
analysis of model usability can be incorporated into model up-dating in the following way.
The robust usability with respect to model uncertainty is evaluated from equation (26),
which shows that the robustness is a function of the ‘centre point’ of the model, p̄, so one
writes â(p̄). Model updating is often an iterative procedure in which one evaluates a
sequence of models according to some performance criterion whose extremum selects
viable models. Often a range of models, p1, p2, . . . , are all nearly equally viable. In this
case, the selection among these models can be done on the basis of their usabilities, â(p1),
â(p2), . . . ; the model with greatest robustness is selected. But the integration of
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usability-analysis in model up-dating can be even more intimate. In iterative model
updating, one frequently uses some criterion such as a gradient of the performance
criterion for proceeding from one iteration to the next. Since one wishes to obtain a model
which has both good performance and high robustness, the gradient of the robustness may
also be ‘folded into’ the iteration procedure.
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