
Robust Satisficing Voting
Why are uncertain voters biased towards sincerity?

Lior Davidovitch ∗ Yakov Ben-Haim †

September 28, 2010

Abstract

The modern theory of voting usually regards voters as expected utility
maximizers. This implies that voters define subjective probabilities and utili-
ties for different outcomes of the elections. In real life, these probabilities and
utilities are often highly uncertain, so a robust choice, immune to erroneous
assumptions, may be preferred. We show that a voter aiming to satisfice his
expected utility, rather than maximize it, may present a bias for sincere vot-
ing, as opposed to strategic voting. This may explain previous results which
show that strategic voting is not as prevalent as would be expected if all voters
were expected utility maximizers.

1 Introduction

The modern theory of voting usually regards voters as rational in the sense of
expected utility maximization (McKelvey and Ordeshook 1972). This model is
subject to criticism arising from paradoxes such as those of Ellsberg and Allais.
Furthermore, this model does not explain why cases of non-sincere voting (in the
sense defined by Farquharson 1969 and to be discussed subsequently) are rare,
even when voters are expected to benefit from such voting patterns (Herzberg and
Wilson 1988; Eckel and Holt 1989; Blais and Nadeau 1996). We will define an
alternative model, in which voters aim to satisfice the expected utility rather than
maximize it. We will show that this model suggests a bias against non-sincere
voting.
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A major focus of voting theory research, from the very cradle of this science,
was on the prevention of paradoxical election results (for instance, when the Con-
dorcet loser is elected by the majority of voters), and to prevent voters from insin-
cere misrepresentation of their preferences (Black 1963; Saari 2001a). A seminal
result, Arrow’s theorem of impossibility (Arrow 1950), proves that paradoxical re-
sults may be an inherent property of any process of social choice, and elections are
no different (Saari 2001b).

Arrow (1950), as well as other researchers (see Black, 1963), assumed the de-
cision process receives the a priori preferences of the voters as its input. That is,
the decision process is based on preferences of the voters between the different
alternatives, without considering the likelihood of different outcomes of the de-
cision process. Farquharson (1969) defined this kind of voting as sincere, while
acknowledging that both the decision process (or agenda) and the voting may be
manipulated by sophisticated participants. He coined the term sophisticated voter,
which referred to voters who vote not according to their a priori preferences among
the candidates, but in the way that will yield the most favorable possible result. The
term strategic voting was later used to define voting which does not reflect a pri-
ori preferences. That is, strategic voting occurs when a voter benefits from voting
“insincerely” based on some global criterion. Although neither Arrow (1950) nor
Farquharson (1969) considered probabilistic settings (Arrow considered determin-
istic settings, while Farquharson considered dominance of alternatives), expected
utility is often used as such a criterion.

The possibility of insincere (strategic) voting was familiar long before the 20th
century, and was widely regarded as unwanted. Charles Dodgson, for example, said
that “... it is better for elections to be decided according to the wish of the majority
than of those who happen to have most skill in the game...” (Black 1963: 233).
However, the Gibbard-Satterthwaite theorem (Gibbard 1973; Satterthwaite 1975)
proves that for most social decision procedures there is a constellation in which
some voter may profit from voting insincerely. In fact, the only decision system
immune to strategic voting is a dictatorship. See Taylor (2005) for a comprehensive
review of the manipulation of voting systems.

Although both issues, paradoxical results and the possibility of strategic voting,
have proved to be impossible to resolve, the debate over the “best” voting procedure
continues even today. In this debate, both normative, empirical, and theoretical
arguments are used to advocate one of the old classics, such as the Borda count
(Saari 2001b), or a newer procedure, such as approval voting (Brams 2008).

Strategic voting is more than a theoretical concept, relevant only in extreme
and rare situations. There are ample examples of strategic voting in recent history.
Chen and Yang (2002) give examples of strategic voting in open primaries in Tai-
wan and in the United States. Abramson et al. (2004) suggest that in the Israeli
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election for Prime Minister in 1999, one of the candidates withdrew because of
the expected strategic voting of his supporters. Johnson et al. (2005) concluded
that the Chief Justice in the United States Supreme Court votes strategically, since
his seniority allows him to assign the judge who will write the majority decision,
assuming that he is part of the majority.

Strategic voting depends on knowledge of other voters’ strategies (see also
Chopra et al. 2004). This knowledge is not reliably available in most real life deci-
sion situations. The standard method for modeling this uncertainty is probabilistic.
Voting games are often compared to game-theory games with incomplete infor-
mation (Harsanyi 1967), or global games (Carlsson and van Damme 1993; Morris
and Shin 2001). In the case of games of incomplete information, there is (proba-
bilistic) uncertainty regarding the utilities of the other players and their available
strategies, where the probability distributions are known to the players. Global
games broaden this concept, by stating that the entire game (including the player’s
utilities) are chosen randomly from a known set of possible games.

But what is the extent of strategic voting? Research has shown that strategic
(non-sincere) voting is not that prevalent. Herzberg and Wilson (1988) conducted
an experiment in committee voting procedure where only 20%-40% of the voters
displayed a strategic, non-sincere, behavior, while all voters would have benefited
from such behaviour. Following their own experiment in committee voting, Eckel
and Holt (1989) concluded that strategic voting will become prevalent only with
experience, that is, when the procedure is repeated and the preferences of the other
voters becomes clear.

Blais and Nadeau (1996) analyzed the results of the Canadian elections in 1988,
which were ternary (tripartite) by nature. They discovered that only 6% of the
voters voted strategically, while 20% of the population had the chance to. This
contradicts the conjecture of Duverger’s law, which states that “the simple majority,
single ballot system favors the two-party system” (Riker 1982). In other words, in
order not to waste their votes, supporters of third (or smaller) parties would prefer
to vote for one of the larger parties. Blais (2004) suggested that the low incidence
of strategic voting is due to high intensity of preference (the most preferred party
is significantly preferred to the second-best party) and a bias in the third party’s
estimated chances of winning. We will suggest a different explanation to these low
percentages, which will be based on info-gap decision theory (Ben-Haim 2006).

We will show that if the voters aim to satisfice their expected utility, rather than
optimize it, then there is a bias towards sincere voting. That is, voters who attempt
to satisfice the outcome will be more similar to sincere voters than voters who
attempt to optimize. The motivation for satisficing (rather than optimizing) de-
rives from the great uncertainty associated with estimates of the voters’ subjective
probabilities and utilities. We will demonstrate the irrevocable trade-off between
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robustness to this uncertainty on the one hand, and expected utility on the other. A
decision which attempts to maximize the expected utility is a decision with zero
robustness to uncertainty in the subjective probabilities. A decision which satis-
fices the expected utility has positive robustness. Satisficing strategies are biased
towards sincere voting as opposed to strategic voting.

The paper is organized as follows. Section 2 briefly describes how info-gap
theory is used to robustly satisfice a requirement. Section 3 proves that robust-
satisficing voting is biased towards sincere voting for ternary elections under plu-
rality voting. Section 4 generalizes this result. A concluding discussion appears in
Section 5. Mathematical details appear in appendices.

2 Info-Gap Theory: Précis

Decision making is often viewed as choosing a decision q from a set Q of pos-
sible decisions, that will maximize some reward function R(q). However, more
often than not, the reward function must take into account various things which
are unknown to the decision maker. These unknowns may be the value of some
parameter, or even the functional relation between the decision q and the reward
R(q) (the model itself), or a set of parameters or functions. We will refer to these
parameters and models as the state of the world. We will denote the reward func-
tion as R(q, u), where u is the state of the world and U the set of possible states
of the world. We may have a best estimate ũ of the state of the world, but our
uncertainty around the true state of the world is non-probabilistic. In many cases,
it is also unbounded.

Info-gap models are used to quantify non-probabilistic “true” (Knightian) un-
certainty (Ben-Haim 2006). An info-gap model is an unbounded family of nested
sets, U(α, ũ). At any level of uncertainty α, the set U(α, ũ) contains possible re-
alizations of u. As the horizon of uncertainty α gets larger, the sets become more
inclusive. The info-gap model expresses the decision maker’s beliefs about uncer-
tain variation of u around ũ.

Info-gap models obey two axioms:

Contraction: U(0, ũ) = {ũ} (1)

Nesting: α < α′ implies U(α, ũ) ⊆ U(α′, ũ) (2)

The contraction axiom asserts that ũ is the only possibility when there is no uncer-
tainty (α = 0). The nesting axiom asserts that the range of possible realizations
increases as the level of uncertainty increases. The value of α is unknown, meaning
that there is no known worst case.
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Suppose the decision maker does not only wish the reward to be as high as
possible, but has some notion of a critical value rc. This means that a reward higher
than rc would be appreciated, but a reward smaller than rc cannot be tolerated.

The robustness function α̂(q, rc) is the greatest horizon of uncertainty α at
which reward no smaller than rc is guaranteed:

α̂(q, rc) = max
{

α :
(

min
u∈U(α,ũ)

R(q, u)
)

≥ rc

}
(3)

The robustness can be evaluated even though there is no known worst case.
Furthermore, the robustness function generates preferences on the decisions, q:
a decision which is more robust for achieving aspiration rc is preferred over a
decision which is less robust. Robust-satisficing decision making maximizes the
robustness and satisfices the reward at the value rc, without specifying a limit on
the level of uncertainty:

q̂ = arg max
q∈Q

α̂(q, rc) (4)

where Q is the set of available decisions.
It can readily be shown that there is an inherent trade-off between robustness

and performance (Ben-Haim 2006). Since robustness is the immunity to failure, the
robustness decreases as the performance requirement rc becomes more demanding.
Another immediate result is that the robustness of the optimal result—the maximal
reward under our best estimate ũ—has zero robustness, meaning that a slight devi-
ation from our estimate ũ may prevent us from meeting the requirement rc.

3 Robust Satisficing for Three-Candidate Plurality Vot-
ing

3.1 Strategic Voting vs. Robust-Satisficing Voting

Rational voting, in the sense defined by McKelvey and Ordeshook (1972), un-
der plurality elections (without runoff) is based on expected marginal utility. This
model takes into account the marginal utility of influencing the outcomes of the
elections, and the probability of influencing the outcomes in different contexts.
The rational voter maximizes the expected marginal utility, and may vote for an al-
ternative with individual utility (as opposed to expected utility) which is lower than
the utility of some other alternative, i.e., strategically. The “sincere” voter votes for
the option whose utility is maximal, without considering the expected outcome of
the election as a whole. In this section we will discuss three propositions which
suggest why strategic—as opposed to sincere—voting is less common than might
be expected.
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We will denote the utility for some voter from the winning of candidate i by
ui. The voter has some subjective probability that candidates i and j would be
tied, and that her vote would decide the winner of the election. We will denote this
subjective probability by pij . Then the expected marginal utility for the voter from
voting for candidate i is:

Ui =
∑
j �=i

pijΔij (5)

where Δij = ui − uj (Myerson and Weber 1993). Note that if we do not de-
mand

∑
i

∑
j �=i pij = 1, then the voter does not assume that he will necessarily

cast the decisive vote. Also, notice that the above model neglects the probability
of three-way (or more) ties. This is since we assume, after McKelvey and Or-
deshook (1972), that the probabilities for ties between three or more candidates are
negligible.

If the voter is an expected utility maximizer, then he will vote for the candidate
for which the expected marginal utility, Ui, is maximal. Assume that the voter’s
sincere preferences are ux > uy > uz and so Δxy,Δxz,Δyz > 0. An expected
utility maximizing voter would vote strategically—that is, unlike the sincere vote
(which is for x)—only if the expected marginal utility from voting for x is lower
than the expected marginal utility from voting for y, namely, only if Ux < Uy. In
other words, such a voter will vote strategically for y if and only if:

pxyΔxy + pxzΔxz < −pxyΔxy + pyzΔyz (6)

Notice that:

Uz = −pxzΔxz − pyzΔyz ≤ 0 ≤ pxyΔxy + pxzΔxz = Ux (7)

so voting for z is never an option.
The probabilities pij are subjective, but they are also based on noisy signals the

voter receives from her environment: polls, commentary, friends’ opinions, and
so on. These probabilities are therefore highly uncertain. We will describe this
uncertainty through an info-gap model:

U(α, p̃) =

⎧⎨⎩p : ∀i �= j ,

∣∣∣∣pij − p̃ij

p̃ij

∣∣∣∣ ≤ α , pij ≥ 0 ,
∑
j �=i

pij ≤ 1

⎫⎬⎭ , α ≥ 0

(8)
Here, p̃ij represents the voter’s subjective probabilities, which are her best estimate
of the “actual” probabilities. Since pij and pkl represent disjoint events, the sum
of their probabilities is at most 1 but need not equal 1. Notice that

∑
i�=j p̃ij is

the subjective probability of the voter casting the decisive vote, and it is actually
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reasonable to assume that
∑

i�=j p̃ij � 1. We shall discuss uncertainties in the
utilities from the candidates later on.

Assume, without loss of generality, that the sincere preference of the voter is
ux > uy > uz . Based on the info-gap model of eq. (8), we may now define robust-
ness functions for the two voting alternatives, x and y. The robustness function
α̂(x, uc) is the greatest horizon of uncertainty in the probabilities, at which the ex-
pected marginal utility of voting for x is no less than the critical utility uc. The
formal definition for this robustness function is:

α̂(x, uc) = max
{

α :
(

min
p∈U(α,p̃)

Ux

)
≥ uc

}
(9)

α̂(y, uc) is similarly defined with respect to voting for y: the greatest horizon of
uncertainty in the probabilities, at which the expected marginal utility of voting for
y is no less than the critical utility uc. The formal definition for this robustness
function is:

α̂(y, uc) = max
{

α :
(

min
p∈U(α,p̃)

Uy

)
≥ uc

}
(10)

It is possible to give an explicit functional form for these robustness functions
assuming that p̃xy < 1

2 , which is entirely reasonable since
∑

i�=j p̃ij � 1 (see
Appendix A):

α̂(x, uc) =

⎧⎪⎨⎪⎩
∞ , if uc ≤ 0

1 − uc
p̃xyΔxy + p̃xzΔxz

, if 0 < uc ≤ p̃xyΔxy + p̃xzΔxz

0 , if uc > p̃xyΔxy + p̃xzΔxz

(11)

α̂(y, uc) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞ , if uc ≤ −Δxy

−p̃xyΔxy − uc

p̃xyΔxy
, if − Δxy < uc ≤ −2p̃xyΔxy

−p̃xyΔxy + p̃yzΔyz − uc

p̃xyΔxy + p̃yzΔyz
, if − 2p̃xyΔxy < uc ≤ −p̃xyΔxy + p̃yzΔyz

0 , if uc > −p̃xyΔxy + p̃xzΔxz

(12)

A robust-satisficing voter would vote for the candidate with the higher robust-
ness. In other words, a robust-satisficing voter would vote strategically only if
α̂(y, uc) > α̂(x, uc).

3.2 Robust-Satisficing Voting and the Bias Towards Sincerity

We will now prove that robust-satisficing voting is biased towards sincere vot-
ing. That is, robust-satisficing voters will tend to vote strategically less than ex-
pected utility maximizing voters. Whenever an expected utility maximizing voter
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would have voted sincerely, a robust-satisficing voter will also vote sincerely. How-
ever, when an expected utility maximizing voter would have voted strategically for
the second-best alternative (due to its higher estimated expected utility), a robust-
satisficing voter may still vote sincerely.

Recall that an expected utility maximizing voter will vote for candidate x if
Ux > Uy and Ux > Uz .

Proposition 1 Robust-satisficing voting in a three-candidate plurality election is
biased towards sincere voting.
Given that the sincere preference of a voter is ux > uy > uz and the uncertainty
is defined by the info-gap model of eq. (8), if the expected utility maximizing vote
is for x, then the robust-satisficing vote is also for x, and if the expected utility
maximizing vote is for y, then there exists a range of critical values uc for which
the robust-satisficing vote is for x.

Proposition 1 asserts that uncertainty in the probabilities, when it induces the
robust-satisficing strategy, results in a bias for sincere voting as against strategic
voting.

Our second proposition generalizes the above result for a situation where both
subjective probabilities and utilities are uncertain. Uncertainty in the utilities may
arise when the candidates are unclear on some controversial issue, or if voters are
uncertain of candidates’ ability (or will) to implement their pronounced agenda.
Even if the candidates are both clear and trustworthy, it is difficult to assign an
accurate numerical utility to each of the candidates.

First, we have to define an appropriate info-gap model. The following info-gap
model corresponds to the case where the both subjective probabilities and utilities
of the candidates are uncertain:

U ′(α, p̃, Δ̃) =

⎧⎨⎩p,Δ : ∀i �= j ,

∣∣∣pij−p̃ij

p̃ij

∣∣∣ ≤ α , pij ≥ 0 ,
∑

j �=i pij ≤ 1∣∣∣Δij−Δ̃ij

Δ̃ij

∣∣∣ ≤ hα , Δxy + Δyz = Δxz

⎫⎬⎭ , α ≥ 0

(13)
where h > 0 is a calibration factor, allowing for “different degrees of uncertainty”
between probabilities and utilities. Notice that we do not demand Δij ≥ 0, since
it may turn out that the “true” order of preference as implied by Δ (the actual
utilities) differs from the estimated order of preference as implied byΔ̃.

We can now define robustness functions as in eqs. (9)-(10) based on this info-
gap model rather than on eq. (8).

Proposition 2 Robust-satisficing voting in a three-candidate plurality election is
biased towards sincere voting when the uncertainty revolves around both the sub-
jective probabilities and the utilities of the candidates.
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Given that the estimated sincere preference of a voter is ũx > ũy > ũz , the voter’s
uncertainty is defined by the info-gap model of eq. (13), and the voter will only
consider positive critical utility values, if the expected utility maximizing vote is
for x, then the robust-satisficing vote is also for x, and if the expected utility max-
imizing vote is for y, then there exists a range of critical values uc for which the
robust-satisficing vote is for x.

We have demonstrated that, compared to the expected utility maximizing voter,
a robust-satisficing voter is biased towards sincere voting. This bias is consistent
with the results of Blais and Nadeau (1996), and might also be able to explain the
results of Hertzberg and Wilson (1988) and Eckel and Holt (1989).

However, the above results refer only to ternary elections under plurality vot-
ing. In the following section we will show that these results apply to many other
constellations.

4 Robust-Satisficing Voting Bias: Generalizing the Results

4.1 Plurality Voting with n Candidates

Assume there are n candidates, i1, . . . , in, where ui1 > · · · > uin . Using the
notations of the previous section, the expected utility from voting for candidate i
is:

Ui =
∑
j �=i

pijΔij (14)

For the sake of simplicity, we will focus on uncertainty surrounding the sub-
jective uncertainties, p̃ij . The info-gap model is therefore:

U(α, p̃) =

⎧⎨⎩p : ∀i �= j ,

∣∣∣∣pij − p̃ij

p̃ij

∣∣∣∣ ≤ α , pij ≥ 0 ,
∑
j �=i

pij ≤ 1

⎫⎬⎭ , α ≥ 0

(15)
We will also assume that

∑
j �=i p̃ij � 1.

It is now possible to prove that robust-satisficing voting is biased towards sin-
cere voting.

Proposition 3 Robust-satisficing voting in an n-candidate plurality election is bi-
ased towards sincere voting.
Given that the sincere preference of a voter is ui1 > · · · > uin and the uncertainty
is defined by the info-gap model of eq. (15), if the expected utility maximizing vote
is for i1, then the robust-satisficing vote is also for i1, and if the expected utility
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maximizing vote is for j �= i1, then there exists a range of critical values uc for
which the robust-satisficing vote is for i1.

Proposition 3 proves a bias towards the most preferable candidate. However, it
does not guarantee a “total” bias. That is, a robust-satisficing voter is not necessar-
ily biased towards preferring candidate i2 over candidate i3.

Total bias can be achieved by a stricter set of assumptions. Assume that for
every candidate there is a subjective probability q̃i, where the subjective probability
of casting the decisive vote between i and j is p̃ij = q̃iq̃j . We will denote this
assumption as independence of subjective probabilities

Notice that the above restriction applies only to p̃, not to the info-gap model.
Therefore, we may still use the info-gap model of eq. (15).

Proposition 4 Robust-satisficing voting in an n-candidate plurality election is to-
tally biased towards sincere voting.
Given that the sincere preference of a voter is ui1 > · · · > uin , the uncertainty is
defined by the info-gap model of eq. (15) and there is independence of subjective
probabilities, if ui > uj and Ũi ≥ Ũj , then α̂(i, uc) ≥ α̂(j, uc) for uc ≥ 0, and
if ui < uj and Ũi ≥ Ũj > 0, then there exists a non-negative range of critical
values uc for which α̂(i, uc) ≤ α̂(j, uc).

4.2 Different Voting Systems

The results of Propositions 3-4 have direct implications on voting systems other
than plurality voting. We will discuss here two such systems, the Borda count
(Saari 2001b) and approval voting (Brams 2008). We will not develop an explicit
form for either the expected utilities or the robustness functions under these voting
systems, as the derivation is both straightforward and lengthy.

Under the Borda count, each voter assigns n points to its most preferred can-
didate, n − 1 points to his second favorite candidate, and so on. In order to prove
bias towards sincerity, we must first be able to tell which vote is more sincere.

Let b1, . . . , bn denote the score given by the voter to candidates i1, . . . , in. Let
c1, . . . , cn be another possible score for this voter, where:

cj =

⎧⎨⎩
bj , if j �= k, l
bk , if j = l
bl , if j = k

(16)

where k �= l. We will say that b is more sincere than c if uik > uil and bk > ck.
That is, if b gives higher score to the more favorable candidate. The following
corollary predicts bias towards sincerity for robust-satisficing voting under the
Borda count.
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Corollary 5 Robust-satisficing voting under Borda count is totally biased towards
sincere voting.
Given score b, which is more sincere than score c, the uncertainty is defined by the
info-gap model of eq. (15) and that there is independence of subjective probabili-
ties, if score b has higher expected utility than score c, then the robust-satisficing
vote is also b, and if score c has higher expected utility than score b, then there
exists a range of critical values uc for which the robust-satisficing vote is b.

Notice that we proved total bias under the assumption of independence of sub-
jective probabilities. Without this assumption we can only prove bias towards giv-
ing the voter’s most preferred candidate the maximal n points.

Under approval voting each voter assigns to each candidate either a single point
(1, or “approve”) or zero points (0, or “do not approve”). Similarly to the Borda
count, we will denote a vote by b1, . . . , bn. There are several possible sincere
votes. A vote is considered strategic if bk = 0 (candidate ik not approved), bl =
1 (candidate il approved) and uik > uil . The following corollary predicts bias
towards sincerity for robust-satisficing voting under approval voting.

Corollary 6 Robust-satisficing voting under approval voting is biased towards
sincere voting.
Given that the uncertainty is defined by the info-gap model of eq. (15), if c is a
strategic vote, then there exists a sincere vote b such that:

• if vote b has higher expected utility than vote c, then the robust-satisficing
vote is also b,

• and if vote c has higher expected utility than vote b, then there exists a range
of critical values uc for which the robust-satisficing vote is b.

We have shown that robust-satisficing is biased towards sincerity for voting
systems other than plurality voting. The lines of proofs may applied to yet other
voting systems.

It is worth noting that while we have shown that both Borda count and approval
voting are biased toward sincerity voting under robust-satisficing voting, they are
not necessarily equally biased. It is possible that one of the systems would be
“more biased” than the other. For instance, consider the point of preference re-
versal, the highest critical value for which a robust-satisficing voter would vote
sincerely when an expected utility maximizer would have voted strategically (see
Figure 1b). If the point of preference reversal tends to be closer to the nominal
expected utility (Ũ ) for one of the voting systems we may conclude that it is more
biased towards sincerity.

11



Borda count and approval voting are quite different in their amenability to ma-
nipulation, although there is no consensus over which is more likely to induce
sincere voting (see, for instance, Saari 2001b and Brams 2008). We have shown
that both these systems also are biased towards sincerity. This does not mean that
voters will necessarily vote sincerely, nor that they will behave the same when
faced with Borda or approval voting systems. What we claim is that a voter who
is sensitive to uncertainty and who therefore seeks a decision which is robust to
uncertainty, will be inclined towards sincerity in both of these systems, depending
on the voter’s critical value. The empirical question is, In what situations are vot-
ers sufficiently uncertainty-averse to adopt a robust-satisficing strategy, even when
manipulation is an option? Since Borda count and approval voting tend to be used
in small settings such as committees, empirical studies in the laboratory could pos-
sibly provide meaningful insight.

5 Conclusion

Elections are always conducted in an uncertain environment. A voter cannot know
the preferences of all other voters, nor can he know how these preferences will
be aggregated into a vote. It is customary to assume that the voter forms utilities
and subjective probabilities, based on the available data, of different outcomes of
the elections. Based on these utilities and probabilities, the voter decides whether
to vote at all, and if so, which alternative will yield the highest expected utility.
However, the utilities and probabilities are prone to severe uncertainties, as the
process of forming an estimate based on polls, commentaries, and so on, is far
from exact. In this uncertain situation, a voter may prefer to satisfice his or her
expected utility, rather than to maximize it.

In this paper we have defined the concept of robust-satisficing voting, which
is distinguished from expected utility maximizing voting. We examined the con-
sequences of robust-satisficing voting, compared to expected utility maximizing
voting, under plurality voting with three candidates and no run-off. We have also
studied n-candidate elections under plurality voting, as well as Borda-count and
approval-vote systems.

We have shown that robust-satisficing voting under plurality elections is ex-
pected to be biased towards the sincere alternative, compared to expected utility
maximizing voting. This result is coherent with empirical results, which show that
strategic voting is not prevalent, even when Duverger’s law predicts that it will be.

This paper suggests several directions for further investigation. Robust-satisficing
has been invoked to explain the equity premium puzzle (Ben-Haim 2006) and the
home-bias paradox (Ben-Haim and Jeske 2003) in financial economics. Robust-
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satisficing also provides a conceptual basis for understanding the foraging be-
havior of animals (Carmel and Ben-Haim 2005). These situations are charac-
terized by competition for economic or physical survival under uncertainty. In
all cases, the motivation for the robust-satisficing strategy is its survival-value.
Survival does not require maximal utility; adequate outcomes (even when sub-
optimal) are, by definition, sufficient. Choosing a policy that achieves adequate
utility at the greatest horizon of uncertainty, the robust-satisficing agent enhances
the chances of survival. The current paper explored the hypothesis that voters em-
ploy robust-satisficing rather than utility maximization. What are the implications
of the survival-advantage of robust-satisficing for the process of social choice? As
uncertainty increases, does the motivation for robust-satisficing become stronger,
resulting in more sincere decisions? How should voting mechanisms be designed
when robust-satisficing is used? What voting mechanisms encourage or discourage
robust-satisficing behavior?

A Explicit Functional Form for Robustness Functions

In this appendix we will derive the explicit functional form for robustness functions
under n-candidate plurality elections. The robustness functions of eq. (11)-(12) are
a special case of these functions.

Consider the robustness function under the info-gap model defined in eq. (15):

α̂(i, uc) = max
{

α :
(

min
p∈U(α,p̃)

Ui

)
≥ uc

}
(17)

We will denote by i 	 j the preference of candidate i over candidate j (i.e., ui >
uj). When α ≤ 1, the inner minimum of eq. (17) is:

min
p∈U(α,p̃)

Ui =
∑
j �=i

min
p∈U(α,p̃)

pijΔij

=
∑
j≺i

min
p∈U(α,p̃)

pijΔij +
∑
j�i

min
p∈U ′(α,p̃)

pijΔij

=
∑
j≺i

((1 − α)p̃ij)Δij +
∑
j�i

((1 + α)p̃ij)Δij

= Ũi − α

⎛⎝∑
j≺i

p̃ijΔij −
∑
j�i

p̃ijΔij

⎞⎠ (18)

We will define the following (monotonic) function of α:

μi(α) = min
p∈U(α,p̃)

Ui (19)
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Eq. (17) implies that α̂(i, uc) = μ−1
i (uc). Combining eqs. (17)-(19) yields:

α̂(i, uc) =

{
Ũi−uc∑

j≺i p̃ijΔij−
∑

j�i p̃ijΔij
, if uc < Ũi

0 , if uc ≥ Ũi

(20)

Notice that the equation holds only for α̂(i, uc) ≤ 1. However, this is always the
case when uc ≥ 0.

B Proofs of Propositions

Proof of Proposition 1: Consider eqs. (11)-(12). Notice that for uc ≤ 0 we
have that α̂(x, uc) = ∞. This means that for non-positive critical expected utility
x is the most robust decision (or, if α̂(y, uc) = ∞, at least as robust). Therefore,
we shall focus on positive critical expected utilities.

For uc = 0, we have

α̂(y, 0) =
−p̃xyΔxy + p̃yzΔyz

p̃xyΔxy + p̃yzΔyz
< 1 (21)

When uc approaches 0, we have

lim
uc→0+

α̂(x, uc) = 1 (22)

This implies that even when Ũx < Ũy, that is, when there is an incentive for
strategic voting, there is a range of values of the critical expected utility for which a
robust-satisficing voter would prefer to vote sincerely. On the other hand, from the
linear nature of the robustness functions over the positive critical expected utilities,
when the expected utility maximizing voting is sincere (non-strategic), a robust-
satisficing voter will always prefer the sincere voting. This notion is illustrated in
Figure 1.
Proof of Proposition 2: Recall that the robustness of a decision under the info-
gap model U ′(α, Δ̃), defined by eq. (13), is:

α̂′(i, uc) = max

{
α :

(
min

p,Δ∈U ′(α,p̃,Δ̃)
Ui

)
≥ uc

}
(23)

First, we will claim that if a utility maximizing voter would have voted sin-
cerely, so will a robust-satisficing voter.
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Let αmax = max
{
1, 1

h

}
. Then from eq. (5) and eq. (13), when α ≤ αmax:

min
p∈U ′(α,p̃,Δ̃)

Ui =
∑
j �=i

min
p∈U ′(α,p̃,Δ̃)

pijΔij

=
∑
j≺i

min
p∈U ′(α,p̃,Δ̃)

pijΔij +
∑
j�i

min
p∈U ′(α,p̃,Δ̃)

pijΔij

=
∑
j≺i

((1 − α)p̃ij)
(
(1 − hα)Δ̃ij

)
+

∑
j�i

((1 + α)p̃ij)
(
(1 + hα)Δ̃ij

)
=

∑
j≺i

((1 − (1 + h)α)p̃ij) Δ̃ij +
∑
j�i

((1 + (1 + h)α)p̃ij) Δ̃ij + hα2
∑
j �=i

p̃ijΔ̃ij

= min
p∈U((1+h)α,p̃)

Ui + hα2Ũi (24)

From Proposition 1 if follows that if the utility maximizing vote is x, then for
any uc ≥ 0 it holds that α̂(x, uc) ≥ α̂(y, uc). This implies that for any (1+ h)α ≥
0,

min
p∈U((1+h)α,p̃)

Ux ≥ min
p∈U((1+h)α,p̃)

Uy (25)

Since Ũx ≥ Ũy (the utility maximizing vote is x), we have:

min
p,Δ∈U ′(α,p̃,Δ̃)

Ux ≥ min
p,Δ∈U(α,p̃,Δ̃)

Uy (26)

and thus α̂′(x, uc) ≥ α̂′(y, uc).
Now, assume that Ũy > Ũx. From eq. (24) it follows that:

min
p∈U ′(αmax,p̃,Δ̃)

Ux = 0 > min
p∈U ′(αmax ,p̃,Δ̃)

Uy (27)

Therefore, α̂′(x, 0) = αmax > α̂′(y, 0). But since Ũy > Ũx, then α̂′(x,Ux) = 0 <
α̂′(y, Ux). This means that there is a reversal of preference, like the one described
in Figure 1b. Thus, for some (positive) values of uc, the robust-satisficing vote is
x, although the utility maximizing vote is y.
Proof of Proposition 3: Consider eq. (20). Notice that

∑
j�i1

p̃i1jΔi1j = 0,
while for any i �= i1,

∑
j�i1

p̃i1jΔi1j ≤ 0. Therefore:

α̂(i1, 0) =
Ũi1∑

j≺i1
p̃i1jΔi1j −

∑
j�i1

p̃i1jΔi1j
=

∑
j≺i1

p̃i1jΔi1j +
∑

j�i1
p̃i1jΔi1j∑

j≺i1
p̃i1jΔi1j −

∑
j�i1

p̃i1jΔi1j
= 1

(28)
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while for any i �= i1:

α̂(i, 0) =
Ũi∑

j≺i p̃ijΔij −
∑

j�i p̃ijΔij
=

∑
j≺i p̃ijΔij +

∑
j�i p̃ijΔij∑

j≺i p̃ijΔij −
∑

j�i p̃ijΔij
≤ 1

(29)
Thus, α̂(i1, 0) ≥ α̂(i, 0) for any i.

Since α̂(i, uc) is linear in uc, if Ũi1 ≥ Ũi then for any uc ≥ 0 it holds that
α̂(i1, uc) ≥ α̂(i, uc) (recall that α̂(i1, Ũi1) = α̂(i, Ũi) = 0). This is the situation
described in Figure 1a.

However, if Ũi1 < Ũi then there is a reversal of preference, as described in
Figure 1b. This means that a robust-satisficing voter may vote for i1 although the
utility maximizing vote is i �= i1.

Lemma 7 Bias towards sincerity is a transitive property.
Given three candidates a 	 b 	 c, Ũa, Ũb, Ũc > 0, and the robustness functions of
the candidates are linear in uc, if when comparing a and b there is a bias towards
a, and when comparing b and c there is a bias towards b, then when comparing a
and c there is a bias towards a.

Proof of Lemma 7: If Ũa > Ũb, then for any uc ≥ 0 it holds that α̂(a, uc) ≥
α̂(b, uc). If Ũa < Ũb, then there exists uc ≥ 0 for which α̂(a, uc) ≥ α̂(b, uc). As
demonstrated by Figure 1, both cases imply α̂(a, 0) ≥ α̂(b, 0). Similarly, we may
conclude that α̂(b, 0) ≥ α̂(c, 0), and therefore α̂(a, 0) ≥ α̂(c, 0).

From Figure 1 it is apparent that if α̂(a, 0) ≥ α̂(c, 0) then a bias towards
sincerity exists.
Proof of Proposition 4: Instead of proving the proposition for any i and j, we
will prove that the proposition holds for ik and il, where i1 	 . . . ik 	 il 	 . . . in.
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Consider eq. (20). For ik and il it can be rephrased as follows:

α̂(ik, 0) =
Ũik∑

j≺ik
p̃ikjΔikj −

∑
j�ik

p̃ikjΔikj

=

∑
j≺il

p̃ikjΔikj + p̃ikilΔikil +
∑

j�ik
p̃ikjΔikj∑

j≺il
p̃ikjΔikj + p̃ikilΔikil −

∑
j�ik

p̃ikjΔikj

=

ξ1︷ ︸︸ ︷∑
j≺il

q̃jΔikj +q̃ilΔikil −

ξ2︷ ︸︸ ︷⎛⎝−
∑
j�ik

q̃jΔikj

⎞⎠
∑

j≺il
q̃jΔikj + q̃ilΔikil +

(
−∑

j�ik
q̃jΔikj

)
=

ξ1 + q̃ilΔikil − ξ2

ξ1 + q̃ilΔikil + ξ2
(30)

α̂(il, 0) =
Ũil∑

j≺il
p̃iljΔilj −

∑
j�il

p̃iljΔilj

=

∑
j≺il

p̃ilj (Δikj − Δikil) − p̃ilikΔikil +
∑

j�ik
p̃ilj (Δikj − Δikil)∑

j≺il
p̃ilj (Δikj − Δikil) + p̃ilikΔikil −

∑
j�ik

p̃ilj (Δikj − Δikil)

=

∑
j≺il

q̃jΔikj −
ξ3︷ ︸︸ ︷∑

j≺il

q̃j Δikil − q̃ikΔikil −
(
−∑

j�ik
q̃jΔikj

)
−

ξ4︷ ︸︸ ︷∑
j�ik

q̃j Δikil∑
j≺il

q̃jΔikj −
∑

j≺il
q̃jΔikil + q̃ikΔikil +

(
−∑

j�ik
q̃jΔikj

)
+

∑
j�ik

q̃jΔikil

=
ξ1 − (ξ3 + q̃ik + ξ4)Δikil − ξ2

ξ1 + (−ξ3 + q̃ik + ξ4)Δikil + ξ2
(31)

Notice that all the arguments within the functions, that is ξ1, . . . , ξ4, q̃ik , q̃il ,Δikil ,
are non-negative.

In the proof of Proposition 3 we have seen that α̂(i1, 0) ≥ α̂(i, 0) for any i.
Could it be that α̂(ik, 0) ≤ α̂(il, 0)? Using eqs (30)-(31), this is equivalent to:

ξ1 + q̃ilΔikil − ξ2

ξ1 + q̃ilΔikil + ξ2
≤ ξ1 − (ξ3 + q̃ik + ξ4) Δikil − ξ2

ξ1 + (−ξ3 + q̃ik + ξ4)Δikil + ξ2
(32)

From eq. (20) it is apparent that both denominators are positive. Thus, the inequal-
ity implies:

0 ≤ ξ1 ≤ −ξ2ξ3 + q̃il q̃ikΔikil + q̃ilΔikilξ4

ξ4 + q̃ik

(33)
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This is only possible when q̃ik = q̃il = 0, which implies Ũik = Ũil = α̂(ik, uc) =
α̂(il, uc) = 0 for any uc > 0, making both ik and il irrelevant for both utility
maximizing and robust-satisficing voters.

We have seen that if both ik and il are legitimate possibilities, then α̂(ik, 0) ≥
α̂(il, 0). This implies, as shown previously, that when Ũik > Ũil we will have
α̂(ik, uc) ≥ α̂(il, uc) for any uc ≥ 0, while if Ũik < Ũil there exists a reversal
of preferences. This reversal of preferences constitutes a bias towards the more
sincere vote, ik.
Proof of Corollary 5: If b is more sincere than c, then b can be reached from
c by a series of steps in which a single point is “reallocated” from candidate il to
candidate ik, where ik 	 il. Although the intermediate scoring is not a valid Borda
scoring, it is still possible to show that in each such step there is bias towards the
more sincere score.

When examining two scores, different in a single point, we treat this case as
equivalent to plurality voting: the voter has to decide to whom will the “excess”
vote go. Since this case is equivalent to plurality voting Proposition 4 applies, and
hence there is a bias towards the more sincere score, in which the excess vote is
given to the more preferred candidate.
Proof of Corollary 6: Assume without loss of generality that i1 	 · · · 	 in.
Let k be the minimal value such that ck = 0, and let l be the maximal value such
that cl = 1. Since c is a strategic vote we have k < l.

We will define d as follows:

dj =

⎧⎨⎩
cj , if j �= k, l
0 , if j = l
1 , if j = k

(34)

Notice that d is “more sincere” than c, and that after a finite number of such steps
it is possible to reach a sincere vote b. We will show that between c and d, under
robust-satisficing voting there is a bias towards d.

Let Ac denote the set of approved candidates under vote c. That is, ci = 1 if
and only if i ∈ Ac. We will define Ad similarly, and let A = Ac ∩ Ad.

Now assume that we have already decided whether or not to approve all of the
candidates, except for candidates ik and il. That is, we haven’t decided whether we
prefer c or d. We can treat this final choice as a plurality voting, when we choose
between candidates ik and il. In this plurality voting, the expected utility from
voting to candidate i ∈ {ik, il} is:

Ui =
∑

j �=i,j /∈A

pijΔij (35)
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This is equivalent to a plurality voting between {i1, . . . , in} \ A. Proposition 3
implies that in this case there is a bias towards candidate ik, which is the most
preferred candidate. Thus, between vote c and vote d there is a bias towards d.
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Figure 1: Robustness Curves for the Two Voting Alternatives. Figure 1a illustrates
a case where the expected utility maximizing voting is sincere. In this case, the
robust-satisficing voting is also sincere. Figure 1b illustrates a case where the ex-
pected utility maximizing voting is strategic (differs from the sincere voting). In
this case, a robust-satisficing voter may vote similarly to a sincere voter.
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