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Abstract

The sparsity and complexity of information in many technological situations has led to the de-
velopment of new methods for quantifying uncertain evidence, and new schemes of inference from
uncertain data. This paper deals with set-models of information-gap uncertainty which employ geo-
metrical rather than measure-theoretic tools, and which are radically different from both probability
and fuzzy-logic possibility models. The first goal of this paper is the construction of an axiomatic
basis for info-gap models of uncertainty. The result is completely different from Kolmogorov’s axiom-
atization of probability. Once we establish an axiomatically distinct framework for uncertainty, we
arrive at a new possibility for inference and decision from uncertain evidence. The development of an
inference scheme from info-gap models of uncertainty is the second goal of this paper. This inference
scheme is illustrated with two examples: a logical riddle and a mechanical engineering design decision.

Keywords. Uncertainty modelling, axioms of uncertainty, inference with uncertainty, information-
gap models, convex models.

1 Introduction

The problem of inference and decision with uncertain evidence has engaged the attention of innumer-
able mathematicians, philosophers and scientists, and the variety of approaches is great enough to
boggle the most stout-hearted professional. Within this diversity, however, an irrevocable connection
between inference and probability has been made by many thinkers, and in a way which experience
in technological inference leads me to regard as surprising.

Keynes asserts:

Part of our knowledge we obtain direct; and part by argument. The Theory of Probability
is concerned with that part which we obtain by argument, and it treats of the different
degrees in which the results so obtained are conclusive or inconclusive. . . .

The method of this treatise has been to regard subjective probability as fundamental and
to treat all other relevant conceptions as derivative from this. [20, pp.3, 281–282]

Among Carnap’s “basic conceptions” is the contention that

all inductive reasoning, in the wide sense of nondeductive or nondemonstrative reasoning,
is reasoning in terms of probability [15, p.v].

It would be a mistake to view these brief almost slogan-styled statements as comprehensive
reflections of these men’s positions. However, they are characteristic of a prevalent attitude which
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views probability as the only means of handling uncertainty. This attitude fails to account for an
inference procedure which is important in engineering. The aim of the present paper is to develop
the foundations of a very non-probabilistic theory of uncertainty and to demonstrate, through both
example and analysis, how uncertain evidence is exploited in drawing inferences and making decisions.
The set-models of information-gap uncertainty whose axiomatization is presented here are in use in
many areas of technology. (A non-technical discussion may be found in [3].) The purpose of this study
is, first to clarify the fundamental structure of info-gap models of uncertainty and their relationship
to more classical probabilistic uncertainty models and second, to develop a non-probabilistic inference
scheme for uncertain evidence.

The spirit of this paper is well expressed by Kyburg’s premonition that there are

a number of uncertainty formalisms. . . . They can all be reflected as special cases of the
approach of taking probabilities to be determined by sets of probability functions defined
on an algebra of statements. . . . But, it might be the case that some novel procedure
could be used in a decision theory that is based on some non-probabilistic measure of
uncertainty. [24, p.189]

One main theme of a previous article, [3], was that the rigors of technological necessity have
led to the emergence of new methods for quantifying and exploiting uncertain information. By
far the most well known is possibility theory based on fuzzy logic [16], which is extensively used
in electro-mechanical control and decision systems. Possibility theory, while axiomatically distinct
from probability [14, 18], is nonetheless similar to the extent that it quantifies uncertainties with
non-negative real functions (membership functions rather than probability densities).

This paper deals with models of uncertainty which employ geometrical rather than measure-
theoretic tools, and which are greatly different from both probability and possibility models. None
of the traditional interpretations of probability — Laplace’s enumeration of basic events, subjective
preferences, frequency of recurrence — provide an explanation of info-gap models. And what is
more important, the axiomatic basis of info-gap models is completely different from Kolmogorov’s
axiomatization of probability. Constructing an axiomatic basis of info-gap models of uncertainty is
the first goal of this paper.

I can agree with Carnap’s assertion after one modification: all inductive reasoning, in the wide
sense of nondeductive or nondemonstrative reasoning, is reasoning in terms of uncertainty. Once
we establish an axiomatically distinct framework for uncertainty, we arrive at new possibilities for
inference and decision with uncertain evidence. The development of an inference scheme from info-
gap models of uncertainty is the second goal of this paper.

In section 2 we very briefly describe several info-gap models of uncertainty which are typical in
engineering applications. In section 3 we develop an axiomatic basis for info-gap models of uncertainty
and derive a number of immediate consequences. Proofs of the theorems are collected in the appendix.
Discussion is deferred until later in the paper. In sections 4 and 5 we discuss two examples of inference
and decision problems with info-gap models of uncertainty. Finally, in section 6, we discuss some
general questions.

2 Info-Gap Models of Uncertainty In Engineering

Convex info-gap models of uncertainty have been described elsewhere, both technically [2, 6, 13, 17]
and non-technically [3]. In this section I will be very brief, and provide just a minimal intuitive
framework from which to continue. I will describe three typical engineering scenarios which are
incompletely described by the available information. The type of uncertainty one often faces in
technological design and analysis can be described as a gap between what is known and what is not
known. The quantification of this disparity leads to the info-gap model of uncertainty.
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Geometrical imperfections. A thin-walled cylindrical shell, like the outer casing of a missile, is
designed to have a particular nominal shape. Let u(z, θ) represent the nominal radius of the cylinder
at height z and azimuthal angle θ. The shell is manufactured to conform to this shape to within a
radial tolerance, α. Any shell coming off the construction line has an uncertain shape, deviating in
some form from the nominal shape. U(α, u) is the set of all shapes f(z, θ) which are consistent with
the design to within tolerance α:

U(α, u) = {f(z, θ) : |f(z, θ)− u(z, θ)| ≤ α} , α ≥ 0 (1)

U(α, u) is an info-gap model for the uncertainty in the shape of actual shells. Since the tolerance α
is variable, U(α, u) is in fact a family of nested sets: α < β implies that U(α, u) ⊂ U(β, u).

Spectral characterization of shape. In many situations the geometrical imperfections of a
solid structure are characterized in terms of their waviness [22, 25, 26]. That is, shape defects are
defined in terms of the amplitude and spatial wavelength of the shape-components which make them
up. Shallow depressions have low spatial-frequency components, while sharp dents have both low and
high spatial-frequencies. Fourier analysis is the standard tool for this representation, which leads to
specifying a shape in terms of a vector of Fourier coefficients, where each coefficient is the amplitude
of contribution of a particular spatial wavelength to the total shape. The typical or nominal shape
has the discrete Fourier spectrum u, while the discrete spectrum f of an actual shape deviates from
u. The most common info-gap model of uncertainty describes this deviation as a ‘cloud’ of vectors
comprising an ellipsoid [29]. The info-gap model which results is:

U(α, u) =
{
f : (f − u)TW (f − u) ≤ α2

}
, α ≥ 0 (2)

where T implies matrix transposition and W is a known, real, symmetric, positive-definite matrix
specifying the shape of the ellipsoid. α determines the size of the ellipsoid, which is unknown, so
again U(α, u) is a family of nested sets.

Seismic ground motion. An earthquake applies time-varying forces to buildings, bridges, and
so on. Let u(t) represent the temporal profile of force variation of a typical earthquake. Actual
earthquakes of similar magnitude and character will deviate from the typical profile. The following
info-gap model of uncertainty characterizes the range of unknown variation of the force profile in
terms of the “energy of deviation” of an actual seismic event from the typical profile:

U(α, u) =
{
f(t) :

∫ ∞

0
[f(t)− u(t)]2 dt ≤ α2

}
, α ≥ 0 (3)

In all three cases, eqs.(1)–(3), α is a non-negative “uncertainty parameter” whose magnitude
determines the range of uncertain variation, and u is a “center point” around which the set U(α, u)
expands and contracts like a balloon as α grows and shrinks. The uncertainty parameter α is often
unknown, so the info-gap model U(α, u) is a family of nested sets. Each set has been formulated as
the collection of all elements consistent with a given body of initial data. Quite often the set turns
out to be convex, as in the three examples here, even though convexity is not assumed to begin
with. Because of the analytical importance and practical prevalence of the property of convexity of
info-gap models of uncertainty, we refer to these models as convex models of uncertainty.

3 An Axiomatization

In this section we present an axiomatic formulation of info-gap models and derive several theorems.
The most important results are the “non-representation” theorems — 5 and 6 — which show that
info-gap models cannot be represented in terms of Kolmogorov probability.

R is the set of the non-negative real numbers and D is a subset of a Banach space S. We will
define R, D and S in this way throughout the paper. Information-gap models of uncertainty are
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formally represented as maps, U(α, u), from R × D into the power set1 of S. Thus U(α, u) is a
set-valued function, ascribing a subset of S to each point (α, u) in R × D. For reasons which are
evident from the examples of section 2, we refer to α as the uncertainty parameter and to u as the
center point of the map. We will say that U(α, u) is “centered” at u and has “size” or “uncertainty”
α. The particular maps we are interested in are called info-gap models of uncertainty and have the
following four properties:

Axiom 1 Nesting. The info-gap model U(α, u) is nested: α ≤ β implies that

U(α, u) ⊆ U(β, u) (4)

Axiom 2 Contraction. The info-gap model U(0, 0) is a singleton set containing its center point:

U(0, 0) = {0} (5)

Axiom 3 Translation. Info-gap models translate linearly:

U(α, u) = U(α, 0) + u (6)

where U + u means that u is added to each element of U .

Axiom 4 Linear expansion. Info-gap models centered at the origin expand linearly from the
origin:

U(β, 0) = β

α
U(α, 0), for all α, β > 0 (7)

where βU means that β multiplies each element of U .

As examples of info-gap models, we note that all the convex models discussed in section 2 obey
the axioms of info-gap models.

The first axiom — nesting — imposes the property of ‘clustering’ which is characteristic of
information-gap uncertainty. Axioms 2–4 specify info-gap models with particular structural proper-
ties. Some of the results we will prove depend only upon axiom 1, and we will refer to a map which
obeys the first axiom as an uncertainty map or simply as a U-map.

We now develop some properties of U-maps and info-gap models. All proofs appear in the
appendix.

Lemma 1 The class of U-maps is closed under translation. That is, if U(α, u) is a U-map and
v ∈ S, then U(α, u) + v is a U-map.

Lemma 2 Info-gap models of size zero are singleton sets:

U(0, u) = {u} (8)

Lemma 3 Info-gap models expand and translate with respect to their center points:

U(β, v) = β

α
[U(α, u)− u] + v, for all α, β ̸= 0 (9)

1We will denote the power set of a set A by P(A).
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A single-valued transformation2 T between two Banach spaces, S and V , is applied to a U-map U
from R×D into P(S), by applying the transformation to each element in the range of U . It is evident
that the nesting property of U-maps is preserved. That is, since U(α, u) is nested, we conclude that
α ≤ β implies:

T [U(α, u)] ⊆ T [U(β, u)] (10)

This is important in the treatment of dynamic systems subject to uncertainty. If the input set,
which drives the system, is a U-map, then the set of responses is also a U-map, where we identify
the transformation T as the input-output relation of the system. Similarly, if the properties of the
system, such as its physical parameters, are uncertain and represented by a U-map, then again the
response set is a U-map, where T is the transformation between the physical properties and the
response, for fixed input. It is noted that these conclusions do not require the transformation T to
be linear or even continuous.

The analogous statement for info-gap models is much weaker, and refers only to linear transfor-
mations.

Theorem 1 Let U(α, u) be an info-gap model, mapping from R×D into the power set of S, where
D ⊆ S. Let T be a linear transformation between Banach spaces S and V . Then T [U(α, u)] is an
info-gap model from R× T (D) to the power set of V .

For any subset U of the Banach space S, the complement of U with respect to S is denoted Uc.
The complement of an info-gap model is not necessarily an info-gap model. This will be important
in discussing the Kolmogorov axiomatization of probability.

Theorem 2 Let U(α, u) be an info-gap model, mapping from R×D into P(S). Let h(·) be a function3

from R onto R. Define the map V(α, u) = Uc(h(α), u). V(α, u) is not an info-gap model.

Lemma 4 Let U(α, u) be an info-gap model, mapping from R×D into P(S). If U(α, u) is a convex
set for some particular (α, u), α ̸= 0, then it is a convex set for all (β, y) ∈ R×D.

For any subsets U and V of S, their sum U + V is defined as the set of all pair-wise sums of
elements of U and V. Let ∥·∥ denote the norm of the Banach space S. For two sets U and V in S, the
Hausdorff metric is h(U , V) = max (maxu∈U minv∈V ∥u− v∥, maxv∈V minu∈U ∥u− v∥). Convergence
of sets is meant in terms of the Hausdorff metric. The following result is closely related to [1].

Theorem 3 Let U1(α, u) be a U-map and define the sequence of sets:

Un(α, u) =
1

n!

U1(α, u) + · · ·+ U1(α, u)︸ ︷︷ ︸
n! times

 , n = 1, 2, . . . (11)

Un(α, u) is a U-map for each n and the sequence converges to the convex hull of U1(α, u).

Theorem 3 is important in suggesting a connection between convexity and uncertainty. We will
return to this in section 6. Theorem 3 holds for info-gap models as well, as shown by the following
result.

Theorem 4 Let U1(α, u) be an info-gap model and define the sequence of sets in eq.(11). Un(α, u)
is an info-gap model for each n and the sequence converges to the convex hull of U1(α, u).

2That is, for each u ∈ S, T (u) takes a single value in V .
3That is, h(α) takes a single value for each α ∈ R.
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We now consider some properties of combinations of several distinct U-maps, U , V, W, . . . , all
defined on the same set of real numbers R and Banach space S. For instance these different U-maps
may be differently-shaped ellipsoidal convex models, or they may be various types of energy-bound
convex models. The following elementary result is presented without proof.

Lemma 5 For any two U-maps, U(α, u) and V(α, v) from R×D into the power set of S, their union
and intersection are each maps from R×D ×D into P(S) defined as:

W(α, u, v) = U(α, u) ∪ V(α, v) (12)

X (α, u, v) = U(α, u) ∩ V(α, v) (13)

W(α, u, v) and X (α, u, v) obey axiom 1, that is, they are nested: α ≤ β implies that W(α, u, v) ⊆
W(β, u, v) and X (α, u, v) ⊆ X (β, u, v).

This can obviously be extended to the case of multiple unions and intersections.
Lemma 5 states that the class of U-maps and their unions and intersections all have the property

of nesting, axiom 1. The unions and intersections of U-maps are not themselves actually U-maps
because their domains of definition are more complicated.

Lemma 5 can be specialized to info-gap models in the following way.

Lemma 6 For any two info-gap models with the same center point, U(α, u) and V(α, u) from R×D
into the power set of S, their union and intersection are each info-gap models from R×D into P(S)
defined as:

W(α, u) = U(α, u) ∪ V(α, u) (14)

X (α, u) = U(α, u) ∩ V(α, u) (15)

The following “non-representation” theorem will be important in discussing the Kolmogorov
axiomatization of probability in section 6. We first require a definition.

Definition 1 A U-map from R×D into P(S) is dispersed if, for any α ∈ R and any positive integer
n, there exist points u1, . . . , un contained in D such that:

U(α, ui) ∩ U(α, uj) = ∅, for all i ̸= j (16)

We note that all the convex models of section 2 are dispersed, as well as many others. However,
non-dispersed convex models do arise in some problems of robust stability and control of dynamical
systems.4

Theorem 5 Let U(α, u) be a dispersed U-map from R×D into P(S). Let E be a field of sets belonging
to S and containing all the sets in the range of U(α, u). Let there be a probability function P (·)
(consistent with the Kolmogorov axioms) defined on E such that, for each set U(α, u), its probability
is a function only of α: P [U(α, u)] = h(α). Then h(α) = 0 for all α ∈ R.

Since the uncertainty parameter α of a U-map represents the “size” of the sets it is sometimes
asserted that α is related to a probability. What theorem 5 is saying, roughly, is that if a dispersed
U-map is embedded into a probability field, then neither α nor any non-negative function of α can,
alone, “meaningfully” represent the probability of the U-map sets. We will discuss this further in
section 6.

We can obtain an even stronger result with a slightly stronger restriction on the U-map. We
first need definition 2. A ball of radius r and centered at point u in the Banach space S is the set
B(r, u) = {f : ∥f − u∥ ≤ r}, where ∥ · ∥ is the norm in the space S.

4I am indebted to Prof. Vladimir Kharitonov for bringing examples of non-dispersed convex models to my attention
[21].
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Definition 2 A U-map from R×D into P(S) is unbounded if, for any ball B(r, u), there is a finite
value of the uncertainty parameter α such that B(r, u) ⊂ U(α, u).

Let us note that the property of unboundedness implies, in addition to the unlimited expansiveness
of the U-map, that it also has “interior” points and is not only a surface for example. The convex
models of section 2 are all unbounded as well as dispersed.

Theorem 6 Let U(α, u) be a dispersed and unbounded U-map from R × D into P(S). Let E be a
field of sets belonging to S and containing all the sets in the range of U(α, u). There is no probability
function P (·) (consistent with the Kolmogorov axioms) defined on E such that, for each set U(α, u),
its probability is a function only of α: P [U(α, u)] = h(α).

4 Robust Inference: The 3-Box Riddle

In this section we show how an info-gap model is used to generate a decision rule based on severely de-
ficient information. We will show that the structure of the decision rule is different from probabilistic
inference.

In the 3-box riddle we will be presented with uncertain evidence and then confronted with a choice:
either ‘do nothing’ or ‘take an action’. The inference scheme by which we choose the correct option
based on the evidence will be formulated as a severe test of the hypothesis, H0, that a particular
probability exceeds 1/2, against the alternative hypothesis H1 that H0 is false.

We will have incomplete probabilistic information, so that we are unable to use a maximum
likelihood or a bayesian argument. This imperfect information will be presented to us as an info-gap
model. We will develop the idea of robust inference [9], which is closely related to the idea of robust
reliability [5, 6, 7].

4.1 3-Box Riddle

One traditional probabilistic formulation of the three-box riddle is the following. We know that a
prize has been placed in one of three closed boxes. We know the probabilities, pn, that the nth box
holds the prize,5 for n = 1, 2, 3. We are asked to choose a box, and if our choice is correct, we win
the prize. For convenience, let us call the box we choose C. At least one of the two remaining boxes
is, of course, empty. This remaining empty box we will call E. We will refer to the third box as
T . Now the Master of Ceremonies (MC), who knows both our choice and the correct box, opens E,
shows us that it is empty, and gives us the option of changing our choice from C to T . The question
is: do we have any rational basis for revising our choice?

We will consider a modification of this traditional formulation, in which the probabilistic infor-
mation is uncertain. We are initially given the probability model p = (p1, p2, p3) with p1 ≥ p2 ≥ p3,
so our initial choice is box number 1, C = 1. After the MC opens box E he informs us that the initial
probability model may be incorrect, and that the correct probability distribution is constrained to
the set:

U(α, p) =
{
(p1, p2) : (p1 − p1)

2 + (p2 − p2)
2 ≤ α2

}
(17)

but he does not tell us the value of α. (The value of p3 is determined from p1 and p2 by normalization.)
If α is very small then the initial probability model is nearly correct. The uncertainty in the initial
model rises as α increases. α is the uncertainty parameter of this info-gap model which is centered at
(p1, p2). We do not know the value of α, so U(α, p) should be thought of as a family of sets: U(α, p)
for α ≥ 0. A specific value of α generates a specific set, which is another way of saying that U(α, p)
is a set-valued function of α, like all info-gap models.

5These probabilities are usually assumed to be equal, based on a ‘principle of indifference’. We consider a more
general formulation in which the probabilities may take any values.

7



There is uncertainty as to the correct probability model, both because we lack the correct value
of α and because, unless α = 0, there is an infinity of probability models in the set U(α, p). The
bayesians would proceed to construct a prior probability of α and of the elements of each set U(α, p),
and thus reduce the problem to one involving ordinary random variables. Another approach would
be to construct lower and upper probabilities for possible events. We will take a different approach,
based on what we will call the robustness of the decision, and motivated by the structure of info-gap
models of uncertainty.

4.2 Robustness of the Decision

The initial probabilities are ranked as p1 ≥ p2 ≥ p3, so the initial decision is C = 1. In the classical
probabilistic analysis of the 3-box riddle (with known prior probabilities) one finds that it is rational,
in a maximum-likelihood sense, to change our bet from C to T if and only if p1 < 1/2. How robust
is this decision? By how much can the probabilistic model vary and still keep the nominal decision
correct? We will refer to the robustness or the robust reliability of the decision as: the greatest6

value of α for which the decision would be the same if it were based on any probability model in the
set U(α, p). Formally, we can express the robustness of the decision as the supremum of the set of
α-values for which the decision is constant:

α̂ = sup {α : Decision = constant, for all p ∈ U(α, p)} (18)

The decision whether or not to switch the bet from C to T will not be the same for all models in
U(α, p) if U(α, p) contains a value of p1 equal to 1/2. Eq.(17) implies that the range of p1 values in
U(α, p) is:

p1 − α ≤ p1 ≤ p1 + α (19)

So, the least value of the uncertainty parameter α for which the decision is not the same for all
models in U(α, p) satisfies either p1−α = 1/2 or p1+α = 1/2. This is the robustness of the decision:

α̂ =

∣∣∣∣p1 − 1

2

∣∣∣∣ (20)

For any lesser value of α the decision based on p1 is the same as the decision based on any other value
of p1 in U(α, p). If α ≤ α̂ then the decision based on p is the same regardless of which probability
model in U(α, p) actually occurs. If α̂ if large, then the decision based on p will be correct even if
the correct distribution deviates greatly from p.

The robustness of the decision is small or zero when p1 is near or equal to 1/2: even small
deviation of the nominal from the actual model could result in an erroneous decision. On the other
hand, when p1 is very different from 1/2 then the actual model could vary by quite a bit without
altering the validity of the decision concerning revision of the bet.

4.3 The Inference as a Severe Test

The decision whether or not to change the bet from box C to box T can be viewed as a choice
between two hypotheses:

H0 : p1 > 1/2 (21)

H1 : p1 ≤ 1/2 (22)

H0 asserts that box 1 (which is chosen initially as box C) contains the prize with a probability in
excess of 1/2, while H1 asserts the opposite. If H0 is true then the maximum likelihood argument

6Actually, by “greatest” we mean “least upper bound”.
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leads to keeping the bet on C, while if H1 is true one changes the bet to T in order to maximize the
chances of winning. These are mutually exclusive and jointly comprehensive: only one can be true;
at least one must be true. Consequently, it is sufficient to test (accept or reject) only one of them.

We are subjecting H0 to a severe test if an erroneous inference concerning the truth of H0 can
result only under extraordinary circumstances. Mayo has developed an account of scientific inference
based on learning from error and severe tests of hypotheses which, while employing probabilistic
thinking, is quite distinct from the classical approach of assigning a posterior probability to an
hypothesis. Mayo suggests the following “underlying thesis”: [28, p.445]:

It is learned that an error is absent to the extent that a procedure of inquiry with a high
probability of detecting the error if and only if it is present nevertheless detects no error.

If we have sufficient probabilistic information we would severely test H0 by requiring the prob-
ability of failing to detect an error in H0 to be exceedingly small. This is precisely the approach
underlying classical statistical testing of hypotheses. If we do not have the requisite probabilistic
information we can nonetheless proceed with a small modification of the probabilistic severe-test
idea. Changing only a few words in Mayo’s formulation we have:

It is learned that an error is absent to the extent that a procedure of inquiry with high
robustness for detecting the error if and only if it is present nevertheless detects no error.

The robust implementation of the severe test is:

Accept H0 if p1 > 1/2 and if the robustness α̂ is large.

We accept H0 if p1 (the unknown true value) could deviate by a large margin from p1 (the nominal
value given as evidence) without altering the validity of H0. This test would fail to detect an error
in H0 only in the ‘extraordinary’ circumstance that p1 is ‘extraordinarily far’ from correct, since a
large value of α̂ means that even large error in p1 does not jeopardize the truth of the decision based
on H0.

The question now is, what does ‘large’ mean? How large a value of α̂ is large enough to vindicate
H0 in the severe test? We somehow know what ‘high probability’ means in Mayo’s formulation, or
at least we believe that in any given application the protagonists will be able to decide to their own
satisfaction how probable is probable enough: 0.9, 0.999, 0.99999, etc. They will use their judgement
tempered by experience to decide what magnitude of probability is acceptable and what is not.

Similarly, one can calibrate α̂ by relating its values to quantities whose acceptability or unac-
ceptability is known from experience. This is not necessarily a simple judgement to make, nor can
it be done in only one unique fashion with one unique answer. In chap. 9 of [6] I discuss two alter-
native approaches, one based on evaluating the severity of the decision consequences, the other on
comparing differing degrees of initial uncertainty.

In the present example one can calibrate α̂ in the following simple manner. First let us define
the quantity:

αmax = max {p1, 1− p1} (23)

Referring to eq.(17) or (19) one sees that, if α ≥ αmax then U(α, p) in fact does not constrain the
value of p1 at all since p1, being a probability, must lie in the interval from zero to one. αmax is in
this sense an upper limit of meaningful values of the uncertainty parameter.

Now let us consider two extreme situations: (1) α̂ = 0 and (2) α̂ > αmax. The first case
corresponds to complete fragility of the decision: the slightest deviation of p1 from p1 entails the
possibility of an error in the decision based on p1. The second case represents complete robustness:
no deviation of p1 from p1 can jeopardize our conclusion based on p1. The range of α-values from 0
to αmax provides an intuitive or qualitative scale for calibration of the robustness. In any particular
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application we are given the value of p1 and we calculate the robustness α̂ from eq.(20). If α̂ is much
nearer to zero than to αmax we consider the decision as ‘fragile’ rather than ‘robust’, while if α̂ is
much closer to αmax than to zero our judgement is the reverse. Our answer to the question ‘How
large an α̂ is large enough’ is: α̂ near αmax is ‘large’; α̂ near zero is ‘small’. We are now in a position
which is fairly analogous to where the probabilistic argument puts us when we say: a probability of
no-failure near unity is ‘large’, while a probability of no-failure near zero is ‘small’.

4.4 Discussion

The ‘evidence’ upon which our decision is based is the nominal or initial probability distribution,
p = (p1, p2, p3). In addition, we know that these probabilities are uncertain, and that their available
variations are constrained by the info-gap model U(α, p), eq.(17). This uncertainty model represents
the uncertainty in the probabilistic evidence in the sense of an information gap. U(α, p) expresses the
gap between the explicit evidence which we have, (p1, p2, p3), and the other possibilities which may
in fact occur. Alternatively, we can view the non-probabilistic uncertainty expressed by U(α, p) as a
geometrical expression of how the available alternatives cluster around the evidence. Our evidence
is (p1, p2, p3), and U(α, p) tells us how the actual probabilities can arrange themselves around
this nominal value. Both of these interpretations are non-probabilistic. Both hinge on α as an
uncertainty parameter which orders the nesting of the sets in the info-gap model U(α, p), α ≥ 0.
Both interpretations are consistent with the axioms of section 3.

Now we consider the relation between the robust inference scheme and bayesian decision theory
as well as statistical hypothesis testing.

In the bayesian approach to multi-hypothesis decision-making one combines the evidence with
prior probabilities of the hypotheses and with probabilities of the evidence conditioned on the hy-
potheses. This data base is used either to minimize a cost function or to calculate conditional
probabilities of the hypotheses based on the evidence.

Non-bayesian statistical hypothesis testing avoids the use of prior probabilities and uses the
probabilities of the evidence conditioned on each hypothesis. When testing binary hypotheses, one
uses the level of significance — the probability, conditioned on the null hypothesis, of obtaining a
result more extreme than the evidence — to severely test the null hypothesis in Mayo’s probabilistic
sense. This is extended in more complex hypothesis tests by means of the Neyman-Pearson lemma
and related results concerning the power of a test.

In the robust inference scheme for binary hypotheses, the robustness is a function of the evidence
which indicates how large a change in the evidence is needed to cause the alternative hypothesis
to be preferred over the null hypothesis. More precisely, the robustness is the greatest value of the
uncertainty parameter for which the decision is the same for all possible evidence in the info-gap
model.

While non-bayesian statistical hypothesis testing jettisons the prior probabilities which the bayesians
rely upon, the robust inference scheme abandons the conditional probabilities as well. However, the
robust inference scheme remains structurally somewhat similar to statistical testing, once we replace
the level of significance by the robustness, α̂. In statistical testing of binary hypotheses, H0 is ac-
cepted if the level of significance is large, indicating that the evidence is neither extreme nor unusual
with respect to H0 and that a vast amount of more extreme evidence could have been obtained which
would also be compatible with H0. In robust inference, H0 is accepted if the robustness, α̂, is large,
indicating that a vast amount of other evidence might have been obtained which is also consistent
with H0 and that only an extraordinarily large change in the evidence would alter the decision.

Further discussion of the relation between robust inference and statistical hypothesis testing,
specifically in the context of sequential tests, is found in [11].

There is an additional parallel between Mayo’s severe test procedure and the robust severe test.
Mayo emphasizes inference as a process of learning from error, as a sequence of tests of the exper-
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imental procedures, of the working hypotheses, of the underlying models and assumptions. Mayo
emphasizes evaluating the details of the method, rather than obtaining a posterior probability that
a given final conclusion is true. This is characteristic of robust severe testing as well, as illustrated
in detail by the seismic example discussed in section 5.

The “non-representation” theorems, 5 and 6, would seem to preclude an attempt to formulate
the robust decision, based on the uncertainty parameter of an info-gap model, as a special case of
statistical inference.

5 Robust Reliability: A Seismic Example

In this section we will consider a mechanical engineering design decision based on evidence, part of
which is uncertain and represented by an info-gap model of uncertainty. The purpose is to illustrate
the design procedure in which a decision based on uncertain data is made by a variation of the
robust inference scheme described in section 4. The example will be tremendously simplified in
order to succinctly exhibit the main lines of reasoning. The reader is asked to bear with me in my
approximations, and to accept that the gist of the analysis is realistic.

One of the grand and hoary problems of structural engineering is to construct a building which
won’t collapse, come what may. Hammurabi imposed terrible penalties upon a builder whose handi-
work falls down [6, p.215] and the attitude has remained that structural collapse, even under severe
conditions, is unacceptable. Nevertheless, the 1995 earthquake in Los Angeles demonstrated that
even four millenia after Hammurabi we are far from proficient. We will illustrate a design analysis
for seismic reliability both because this is an important area of research in engineering and because
the consequences of the decision are quite significant. We will show that the design is an inference
based on uncertain evidence.

We perform the reliability analysis in section 5.1 and then describe the design procedure in
section 5.2.

5.1 Reliability Analysis

Buildings fail during earthquakes due to the swaying induced by the ground motion. The stiffer the
building, the lower is the amplitude of the sway, so in our simple analysis we will assume that ‘stiffer
is safer’.7 The question is: how stiff should we make the building? That depends on the magnitude
and nature of the seismic event, which is uncertain.

The engineering analysis of reliability entails three components: (1) a model of the system, (2)
a model of the uncertainties, and (3) a criterion for failure. After outlining these components we
will define exactly what is meant, here, by reliability, and then consider the design analysis as an
inference problem in the next subsection.

System model. The building will be modelled as a one-dimensional undamped linear harmonic
oscillator. That is, the displacement of the building with respect to the ground is represented by the
following differential equation:

mẍ(t) + kx(t) = f(t) (24)

where the dots imply differentiation with respect to time t, m is the mass of the structure and k is
its stiffness. The force exerted on the structure by the seismic motion of the earth is f(t). The initial
conditions are x(0) = ẋ(0) = 0, meaning that the building is at equilibrium and motionless when the
earthquake begins. The solution of eq.(24) is:

xf (t) =
1

mω

∫ t

0
f(τ) sinω(t− τ) dτ (25)

7This is the most glaring technical simplification which I will make, since I am ignoring the possibilities of passively
damping and actively dissipating the seismic energy [30]. However, even if these considerations were included, the
structure of the argument would remain formally the same, though it would become substantially more complex.
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where ω =
√
k/m is the ‘natural’ or ‘resonant’ frequency of vibration of the building.

Uncertainty model. The uncertainty in the seismic load, f(t), is represented by the info-gap
model of uncertainty U(α, u) in eq.(3). U(α, u) is the set of seismic load functions, f(t), whose “energy
of deviation” from the function u(t) does not exceed α2. The function u(t) is the known ‘nominal’
or ‘anticipated’ or ‘design-base’ seismic load. α is the uncertainty parameter, whose magnitude
determines the disparity between u(t) and what can really occur. When α is small, all seismic events
are essentially the same as u(t); as α grows, the gap between what is known, the typical result u(t),
and the possible unknown future outcome, f(t), grows as well. We assume that we know the nominal
load function, u(t). However we definitely do not know a specific value for the uncertainty parameter,
α, which can take any non-negative value. In other words, the uncertainty in the seismic load is not
represented by a specific set, but rather by the family of nested sets U(α, u) where u is known but
α ≥ 0. As we know from section 2, U(α, u) is a convex info-gap model with uncertainty parameter α
and center point u(t).

Failure criterion. The building will fail if and only if its displacement with respect to the
ground exceeds a known critical value:

|x(t)| ≥ xcr (26)

The stiffness of the structure is expressed by the coefficient k in eq.(24), and this is the parameter
whose value must be chosen by the designer to assure that the building is reliable. Given a proposed
design (a value of k) we cannot determine whether or not the structure will fail because we do not
know f(t) (the earthquake motion) and hence we cannot calculate xf (t). The uncertainty in f(t)
prevents us from directly applying failure criterion (26) to test whether or not k is acceptable. We
cannot even perform a “worst-case” analysis, seeking the most damaging load function, since the
uncertainty parameter α is also unknown, and the family of sets, U(α, u) for α ≥ 0, contains loads
of unbounded severity. What are we to do in order to design a reliable structure?

To rely on something means “to have confidence based on experience” [32]. Traditionally (over
the past forty years or so) engineers have quantified this intuitive lexical definition of reliability in
terms of probability: the reliability of something is the probability that it will not fail. Classical
reliability theory is thus based on the mathematical theory of probability, and depends on knowledge
of probability density functions of the uncertain quantities. However, in the present situation we
cannot apply this quantification of reliability because our information is much too scanty to verify a
probabilistic model. The info-gap model tells us how the unknown seismic loads cluster and expand
with increasing uncertainty, but it tells us nothing about their likelihoods. (For comparison of
probabilistic and info-gap models of uncertainty in seismic applications see [12]; in mechanical shell
buckling see [25, 26].)

The idea of robustness or immunity to uncertainty provides us with an alternative quantification
of reliability which, on the one hand is satisfactorily close to the intuitive idea of reliability and,
on the other hand can be implemented with the available information. We will say the building is
reliable if it will not fail even in the presence of great uncertainty. Conversely, an unreliable structure
can fail even with small uncertainty. In other words, a reliable system is robust or immune to
uncertainty, while unreliability means fragility or vulnerability to deviation from nominal conditions.
This concept of reliability is (not unexpectedly) well suited to implementation with info-gap models.
This non-probabilistic theory of reliability is developed in [4, 5, 6, 7].

For fixed uncertainty parameter α, the ‘response set’ is the collection of all values taken by xf (t)
as f(t) varies over the input set U(α, u):

X (α, xu) = {x(t) : x(t) = xf (t), for all f(t) ∈ U(α, u)} (27)

The input/output relation for the system of eq.(24) is linear so, in light of theorem 1, the response
set X (α, xu) is an info-gap model. Consequently, X (α, xu) is nested with respect to α. The robust
reliability is the greatest value of α for which X (α, xu) does not include the critical value for failure,
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xcr. Formally, the robustness is:

α̂ = sup {α : X (α, xu) ∩ {xcr} = ∅} (28)

(We are assuming that the structure will not fail with the nominal load, so that |xu| < xcr.)
With a modest effort (which the reader will be spared) one finds the following expression for the

robustness:
α̂(t) =

mω

σ(t)
[xcr − |xu(t)|] (29)

where we have defined σ(t) =
√∫ t

0 sin
2 ωtdt. The robust reliability depends on the design parameter

k which appears in ω, xu and σ, it depends on the nominal response xu, on the critical value for
failure xcr, and on the time t. The robust reliability α̂, eq.(28), exploits the nested structure of
the info-gap model X (α, xu), which is centered at the nominal response xu, in order to determine
the unique least upper bound of uncertainty-parameter values for which the structure satisfies the
no-failure condition. The critical features of X (α, xu) are nesting and centering; that X (α, xu) is also
convex and expands linearly makes the analytical evaluation of α̂ fairly easy (also in more complex
and realistic formulations [10]).

5.2 Design Decision as a Robust Inference

The designer wants to choose the stiffness coefficient k so that the structure is very robust with
respect to the earthquake load. He wants a stiffness which will enable the building even to resist
earthquakes which are widely different from the nominal design-base load u(t). That is, k should
be chosen so that α̂ is large.8 We can understand this design procedure as a robust inference in the
sense of section 4.3, as we now explain.

Formally what the designer is doing is making a binary decision between two hypotheses:

H0 : The structure will not fail. (30)

H1 : The structure will fail. (31)

The designer must use the reliability analysis to severely test H0. The evidence upon which the
reliability analysis rests is the numerical data and physical understanding of the system and its
environment: the dynamic model eq.(24), the uncertainty model (3), and the failure criterion (26).
An error is absent in H0 to the extent that the reliability analysis has determined that the structure is
robust to uncertainty in the seismic load. It may be that some extraordinary seismic event could cause
collapse of the building. However, if α̂ is large then eq.(28) assures us that the given structure will
survive every earthquake within a large set centered at the design-base earthquake. In other words,
if α̂ is large, then we can claim that we have sought in vain for a fatal earthquake by a procedure
which will detect this fatality if and only if it is present unless it is extraordinarily different from the
nominal.

6 Discussion

Are info-gap models probabilistic models in disguise? We will discuss a number of differences
between the Kolmogorov axiomatization [23] and the properties of info-gap models of uncertainty.

(1) Both probability and info-gap models represent “events” as subsets of a universal set, E,
but here the similarity ends. In Kolmogorov’s axiomatization no constraint is placed on E, and the

8The calibration of α̂ on a qualitative scale from ‘small’ to ‘large’ is an important technical problem which is,
however, not relevant to our discussion of the designer’s decision as a robust inference. We discussed this in section 4.
See also [6, chap.9].
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axioms begin by requiring the relevant class of subsets to be a field. In info-gap models we begin by
requiring E to be a Banach space (which we have denoted by S) but the class of subsets of interest do
not form a field. Indeed, the ‘chronology’ of the two axiom systems is different. Kolmogorov defines
the underlying event space: a field of subsets which, by definition, is closed under intersection, union
and difference of sets. Upon this field is then defined the probability function with its properties. In
info-gap models the underlying set has the structure of a Banach space (complete, normed, linear
space), but then a function is immediately postulated which, according to its properties, determines
the class of relevant sets.

It is easy to see that the collection of sets defined by the range of an info-gap model need not
form a field. Consider for instance the info-gap model of eq.(2), whose range is made up of ellipsoids.
Unions and intersections of ellipsoids are not ellipsoids, so this class of sets is not a field.

The ‘field’ requirement of probability is a fundamental aspect of the structure of the event space. It
is postulated that when events A and B can occur then other related events, their union, intersection
and difference, also exist in the universe of possibilities and their probabilities are related to the
probabilities of A and B in certain specific ways. Not so in info-gap models, which ‘organize’ the
universe of possibilities differently. Theorem 2 shows that the family of sets defined by an info-gap
model is not closed under complementation. For example, in the info-gap model of eq.(2) every
element in S can ‘occur’, since it belongs to an infinity of info-gap models, for sufficiently large
size parameters α. But the relation between one event and others does not have the ‘field’ logic of
conjunction and disjunction, but rather the ‘cluster’ logic of expansion.

(2) The uncertainty parameter α of an info-gap model is a “size” parameter in the sense that
the sets U(α, u) “grow” with α. Therefore it is sometimes felt that α is just a probability measure
in disguise. α itself varies over the non-negative real numbers so it does not obey the normalization
requirement, but some people have suggested that this can be corrected by a suitable re-scaling of α.
The fundamental question is whether α can be calibrated to have the disjoint additivity property of
probability functions. We must consider whether the additivity (or nonadditivity) of α is ‘essential’
or ‘inessential’ in the sense discussed by Luce et al [27, pp.18–20]. α is essentially nonadditive if
every re-scaling of α is nonadditive.

There is no doubt that one can define a probability function P on the range of an info-gap
model or of a U-map, though to satisfy the field requirement of probability one needs to extend the
collection of sets, upon which P is defined, to include unions, intersections and differences. However,
theorem 5 states that any such probability function, if its restriction to U(α, u) is only a re-scaling
of α, will give zero probability to all the sets in the range of the U-map (if the U-map is dispersed).
In other words, α cannot be meaningfully calibrated as the probability of a U-map; α is ‘essentially’
nonadditive. If the U-map is both dispersed and unbounded then theorem 6 is an even stronger
result: no probability function exists at all which, on the range of the U-map, depends only on the
uncertainty parameter.

From these results it is clear that α is not simply probability dressed in another garb.
Do info-gap models of uncertainty really treat uncertainty? “The concept of indetermi-

nacy” wrote Suppes and Zanotti “is a concept for those who hold that not all sources of error, lack
of certain knowlege, etc., are to be covered by a probability distribution, but may be expressed in
other ways . . . ” [31, p.434]. Those authors proceed to study random relations and upper and lower
probabilities. Info-gap models are an additional alternative.

Once we accept probability as an axiomatized mathematical theory we are recognizing that math-
ematical probability is not a fundamental physical or psychological phenomenon. What is funda-
mental, and what motivates mathematical probability, is the panoply of phenomena of uncertainty,
indeterminacy, doubt and inaccuracy in all their myriad forms which confront us in our daily, and
not so daily, lives.

The situation is similar to the relation between physical space and the various mathematical
geometries which describe spatial attributes. The intuitive reasonableness of Euclid’s postulates
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does not preclude alternative mathematical geometries which also have ‘reasonable’ interpretations.
A century ago Riemann showed that modification of Euclid’s ‘parallel’ postulate need not lead to
logical inconsistency. What is more, in this century some of the non-euclidean geometries have found
their place in general relativity and cosmology. A closely analogous situation is found in the various
‘possibility’ theories [16] in which the additivity axiom of probability is modified in various ways.
Logical consistency is retained, as well as interpretations of the resulting theories in ways which
correspond quite acceptably to various intuitive ideas of uncertainty.

Info-gap models of uncertainty are based on axioms which are much further from Kolmogorov’s
probability than are the fuzzy-logic possibility theories. Do info-gap models deal with uncertainty?
The examples of sections 4 and 5, as well as many others from a range of engineering fields, seem to
me to suggest an incontrovertible ‘yes’. One could define uncertainty as only what is treated prob-
abilistically. However, that would be a rather arbitrary and narrow definition. The experience of a
large populace of men and women testifies to the utility of these logically independent methodolo-
gies for quantifying, interpreting and exploiting uncertain evidence. Much technological experience
strongly indicates the need for a plurality of axiomatically distinct tools for handling uncertainty.

Robust severe inference. We have formulated inference schemes, based on robust severe tests,
in the examples of sections 4 and 5. Why can one accept an inference based on a robust severe test?
What is the intuition which makes such an inference plausible?

Specific examples of inference schemes tend to have distinctive personalities which can mask the
underlying procedure so, before addressing this problem, I will re-iterate the main features of robust
severe inference.

1. To make a robust severe inference about the truth of an hypothesis H0, means to accept or
reject H0, against a competing hypothesis H1, by subjecting it to a robust severe test, which
we defined in section 4.3.

2. The implementation of a robust severe test in connection with info-gap models of uncertainty
is based on the evaluation of a robustness α̂ which quite often, and in both our examples, is
the greatest value of the uncertainty parameter subject to some constraint involving info-gap
models. The constraint is derived from the specific formulation of the problem. (See eqs.(18)
and eq.(28) as well as [8]). The robustness can be succinctly expressed as:

α̂ = sup {α : Constraint on U(α, u)} (32)

3. H0 passes the robust severe test if α̂ is “large”.

4. The calibration of α̂ from “small” to “large” can be done in a variety of ways, which we have
discussed only briefly. See section 4.3 and [6, chap.9].

One justification for accepting a robust inference is a prior belief in the continuity of cause and
effect: distant effects come from distant causes, while small changes in the cause produce small
changes in the effects. This is a pebble-splash idea: if you see a ripple, a pebble must have hit the
water nearby. The calibration of what is ‘nearby’ is provided by the robustness. A robust severe
test accepts an hypothesis (the ‘cause’) if it is insensitive to large variation of the evidence (the
‘effect’). A robust severe test calibrates the ‘distance’ of evidence: even evidence quite different from
the evidence in hand would arise from the same hypothesis (if it has passed a robust severe test), so
that only evidence far beyond the pale of experience would arise from the competing hypothesis. If
the competing hypothesis were true, we would have gotten evidence greatly different from what was
observed.

A somewhat analogous intuition can be enlisted to support the plausibility of the probabilistic
severe test. Mayo has analyzed at great length the foundations for probabilistic severe tests, and I do
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not intend to re-iterate any of her arguments. Rather, it is interesting that an apparently different
justification of inference based on a probabilistic severe test can be constructed by a continuity
argument which is analogous to the continuity of cause and effect. Probabilistic inference is plausible
if one holds a prior belief in the continuity of cause and frequency of effect: events which are rare
with respect to one cause can be caused frequently by distant causes, while small changes in the
cause produce small changes in the likelihoods. This again is a pebble-splash idea: if you see a large
ripple, the pebble must have hit the water nearby. The calibration of what is a ‘large’ ripple is done
in terms of probability.

Neither of these continuity justifications can be viewed as incontrovertible. One could imagine
discontinuities between cause and effect, in which greatly disparate causes mimic each other’s effects.
Similarly, one can imagine discontinuities in conditional probabilities, so that large changes in the
cause (the conditioning variable) produce small changes in the probability distribution. The result
would be that what is frequent with one cause becomes frequent with a greatly different cause as well.
Nonetheless, both of these continuity intuitions seem “reasonable”, though why one might accept
one or both of them is beyond the scope of this paper.

One point to stress is that, though the intuitions which underlie robust and probabilistic severe
tests are distinct, they are similar. This similarity may be responsible for the impression among some
people that the tests themselves are the same, or that one can be reduced to the other. This we
know to be false, since the axiomatic bases of probabilistic and info-gap models of uncertainty are
quite different.

Also, it is important to realize that these two continuity intuitions are not mutually exclusive.
One can hold to both simultaneously, just as one can adhere to two distinct axiomatic systems such
as those of probability and info-gap models, or euclidean and lobachevskian geometries.

Finally, the cause-effect continuity has no reference to likelihood or recurrence-frequency (though
its similarity to the cause-frequency continuity may obscure this). The cause-effect continuity is very
characteristic of info-gap modelling, and is based on a nested view of the universe of possibilities.
Robust severe testing is rooted in the interpretation of uncertainty in terms of the geometrical ideas
of clustering and information gap which we discussed in section 4.4.

Convexity and uncertainty. Almost all info-gap models of uncertainty used in practice employ
convex sets. When the practitioner defines an uncertainty model as the set of all elements consistent
with a given body of evidence, as we did in section 2, quite often the set turns out to be convex.
Theorems 3 and 4 can be interpreted as stating that if a set of “macroscopic” events is formed as the
superposition of many “microscopic” events, then it will tend to be convex. (See [13] for discussion
of the analogy between theorems 3 and 4 and the central limit theorem.) Convexity of an info-gap
model of uncertainty can thus arise as a by-product of the complex combination of underlying pro-
cesses. A good example of this is the convexity of response sets in the assay of spatially random
material, where the response to an arbitrary spatial distribution of analyte is the linear superposition
of an infinity of point-source responses [2, p.25]. Convexity of info-gap models of uncertainty is the
rule in practice, but convexity need not be included as an axiom by virtue of these theorems, if one
is willing to allow the convexity to arise asymptotically. For more discussion see [3].

Appendix: Proofs

Proof of lemma 1. Since U(α, u) is a U-map it is evident that U(α, u) + v is nested.
Proof of lemma 2. Direct application of contraction and translation, axioms 2 and 3.
Proof of lemma 3. By axiom 4: U(β, 0) = β

αU(α, 0). Axiom 3 implies U(β, v) = U(β, 0) + v
and U(α, 0) = U(α, u)− u are U-maps. Relation (9) results by substitution.

Proof of theorem 1. A linear transformation T between Banach spaces S and V has the
property that T (βu + γv) = βT (u) + γT (v) where β and γ are numbers and u, v ∈ S. When we
apply T point-wise to the info-gap model U we can represent it as a map from R× T (D) into P(V )
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because linear transformations are single-valued functions. That is: T [U(α, u)] = W(α, T (u)) ⊆ V .
We must show that the four axioms of info-gap models hold for the transformed map W. (1)
Nesting, axiom 1, holds by virtue of eq.(10). (2) Contraction, axiom 2: For a linear transformation,
T (0) = 0, so T [U(0, 0)] = {0}. (3) Translation, axiom 3: From translation of U and linearity of
T one finds that T [U(α, u)] = T [U(α, 0) + u] = T [U(α, 0)] + T (u). But T [U(α, u)] = W(α, T (u))
and T [U(α, 0)] = W(α, 0). So: W(α, T (u)) = W(α, 0) + T (u). (4) Expansion, axiom 4: From

expansion of U and linearity of T one finds that T [U(β, 0)] = T
[
β
αU(α, 0)

]
= β

αT [U(α, 0)]. So:

W(β, 0) = β
αW(α, 0).

Proof of theorem 2. The “easiest” info-gap model axiom to violate universally is contraction.
V(0, 0) = Uc(h(0), 0). By nesting (axiom 1) and contraction (axiom 2), 0 ∈ U(h(0), 0). Thus
0 ̸∈ V(0, 0) which violates axiom 2.

Proof of lemma 4. Info-gap models of size zero are singleton sets and thus convex, so we need
only consider sets of positive size. We must show that, for any v, w ∈ U(β, y), the convex combination
γv + (1 − γ)w also belongs to U(β, y), for any 0 ≤ γ ≤ 1. Since U is an info-gap model, lemma 3
implies that:

α

β
(v − y) + u ∈ U(α, u), α

β
(w − y) + u ∈ U(α, u) (33)

The convexity of U(α, u) implies:

γ

[
α

β
(v − y) + u

]
+ (1− γ)

[
α

β
(w − y) + u

]
∈ U(α, u) (34)

After simplifying and again applying lemma 3 one finds γv + (1− γ)w ∈ U(β, y).
Proof of theorem 3. (1) U1 is a U-map so it is nested, (axiom 1). It is thus elementary to show

that n!-fold combinations of U1 are also nested, satisfying axiom 1. The proof is omitted.
(2) Let U(α, u) denote the convex hull of U1(α, u). To prove convergence we must show that, for

any ε > 0, there is an Nε such that h(Un,U) < ε for all n > Nε.
(2.1) Since Un is the superposition of all n! combinations of elements of U1, the sequence of sets

is nested: Un ⊆ Un+1. The proof: An arbitrary element of Un is 1
n!

∑n!
m=1 ym, for y1, . . . , yn! ∈ U1.

But this equals 1
(n+1)!

∑n!
m=1(n+ 1)ym which belongs to Un+1.

(2.2) The convex hull of a set A is the union of the convex spans of all finite subsets of A [19,
p.200]. Thus any convex combination of any finite number of elements of U1 is an element of U .
Hence each Un belongs to U . Consequently, maxx∈Un miny∈U ∥x−y∥ = 0. Thus the Hausdorff metric
becomes h(Un,U) = maxy∈U minx∈Un ∥x− y∥.

(2.3) Consequently, (2.1) implies that h(Un,U) ≥ h(Un+1,U), so to prove convergence it is suffi-
cient to show that, for any ε > 0, there is an n such that h(Un,U) < ε.

(2.4) Any y ∈ U can be represented as y =
∑M

m=1 cmym for some M where y1, . . . , yM ∈ U1

and c1, . . . , cM are convex coefficients (non-negative and summing to one). Also, for any n! ≥ M
one can choose x ∈ Un as: x =

∑M
m=1 rmym where r1, . . . , rM are rational convex coefficients.

Thus ∥x − y∥ =
∥∥∥∑M

m=1(rm − cm)ym
∥∥∥ ≤ µ

∑M
m=1 |rm − cm| where µ = maxm ∥ym∥. It is evident

that, by choosing n large enough, one can make the rational coefficients rm arbitrarily close to
the real coefficients cm, thus satisfying the convergence criterion. For example, let ρm = pm/qm,
m = 1, . . . ,M , be rational convex coefficients such that, for each m, |ρm − cm| ≤ ε/µM . Choose

n! =
(∏M

m=1 qm
)
!. It is now possible to choose each rm = km/n! where km = n!pm/qm so rm = pm/qm.

Hence µ
∑M

m=1 |rm − cm| < ε.
Proof of theorem 4. (1) The proof of convergence is the same as for theorem 3 and will not

be repeated. (2) Nesting: Un is nested by theorem 3. (3) Contraction: U1(0, 0) = {0} by axiom 2,
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so n!-fold combinations of U1(0, 0) also equal {0}. Hence Un(0, 0) obeys axiom 2. (4) Translation:

1

n!

U1(α, 0) + · · ·+ U1(α, 0)︸ ︷︷ ︸
n! times

+ u =
1

n!
[(U1(α, 0) + u) + · · ·+ (U1(α, 0) + u)] (35)

=
1

n!
[U1(α, u) + · · ·+ U1(α, u)] (36)

Hence Un(α, u) = Un(α, 0) + u, obeying axiom 3. (5) Expansion:

β

α

1

n!

U1(α, 0) + · · ·+ U1(α, 0)︸ ︷︷ ︸
n! times

 =
1

n!

[
β

α
U1(α, 0) + · · ·+ β

α
U1(α, 0)

]
(37)

=
1

n!
[U1(β, 0) + · · ·+ U1(β, 0)] (38)

Hence Un(β, 0) =
β
αUn(α, 0), obeying axiom 4.

Proof of lemma 6. (1) Nesting results from lemma 5. (2) Contraction is a direct result of
axiom 2. (3) Translation. For unions we have W(α, 0) + u = [U(α, 0) ∪ V(α, 0)] + u = U(α, u) ∪
V(α, u) = W(α, u). A similar relation holds for intersections. Note that, by axiom 1, U(α, 0)∩V(α, 0)
is not empty. (4) Expansion. For unions we have β

αW(α, 0) = β
α [U(α, 0)∪V(α, 0)] = U(β, 0)∪V(β, 0) =

W(β, 0). A similar relation holds for intersections.
Proof of theorem 5. Since U(α, u) is dispersed, let U(α, u1), . . . , U(α, un) be disjoint as in

definition 1. Then:

P

[
n∪

i=1

U(α, ui)
]
=

n∑
i=1

P [U(α, ui)] = nh(α) (39)

P (·) is normalized and additive so it nowhere exceeds unity. Thus h(α) ≤ 1/n for any α and any
finite n. Hence h(α) = 0 since, suppose there is an ϵ > 0 such that h(α) = ϵ. Let n > 1/ϵ. Since
h(α) ≤ 1/n < ϵ we conclude that the supposition is false and that h(α) is equal to no positive
number.

Proof of theorem 6. Suppose there is such a probability function. By theorem 5 we know
that P [U(α, u)] = 0 for all (α, u) ∈ R × S. Since the U-map is unbounded we conclude that the
probability of any ball in E is zero. Since P (·) is additive and E is the union some, possibly infinite,
number of balls, P (E) = 0 which violates the normalization of the probability function. Thus no
such probability function exists.
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