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Abstract

Physicians use clinical guidelines to inform judgment about therapy. Clinical guidelines
do not address three important uncertainties: (1) uncertain relevance of tested popula-
tions to the individual patient, (2) the patient’s uncertain preferences among possible
outcomes, and (3) uncertain subjective and financial costs of intervention. Unreliable
probabilistic information is available for some of these uncertainties; no probabilities are
available for others. The uncertainties are in the values of parameters and in the shapes
of functions. We explore the usefulness of info-gap decision theory in patient-physician
decision making in managing cholesterol level using clinical guidelines. Info-gap models of
uncertainty provide versatile tools for quantifying diverse uncertainties. Info-gap theory
provides two decision functions for evaluating alternative therapies. The robustness func-
tion assesses the confidence—in light of uncertainties—in attaining acceptable outcomes.
The opportuneness function assesses the potential for better-than-anticipated outcomes.
Both functions assist in forming preferences among alternatives. Hypothetical case stud-
ies demonstrate that decisions using the guidelines and based on best estimates of the
expected utility are sometimes, but not always, consistent with robustness and oppor-
tuneness analyses. The info-gap analysis provides guidance when judgment suggests that
a deviation from the guidelines would be productive. Finally, analysis of uncertainty can
help resolve ambiguous situations.

Keywords: Clinical guidelines, cholesterol management, judgment under uncertainty,
patient satisfaction, info-gap decision theory.



1 Introduction

The emergence of probability theory in the early 17th century brought to the fore the diversity of
categories of knowledge. On the one hand the astronomer, for instance, could aspire to certain,
almost apodeictic, knowledge of the laws of celestial motion. In contrast, the physician could at best
make judgments of plausible truth. The deductive certainty of Aristotelian logic was inadequate
for the inferences made in the ‘low’ sciences of medicine, alchemy etc., and new modes of inference
for uncertain induction began to emerge [1].

The twentieth century saw a diversification of models of uncertainty, reflecting a broadening
diversity of categories of knowledge which underlie judgment and inference: Linguistic knowledge;
observed frequencies; hunches and beliefs; microscopic or fundamental quantum randomness as
distinct from the macroscopic randomness of ensembles; randomness which arises from partial
knowledge of a deterministic system (“Like the queen of England, determinism reigns but does not
govern.” [2, p.63]); ignorance one is aware of, and ignorance one is ignorant of.

Great strides have been made in the much needed synthesis of a coherent system for the diverse
types of knowledge and their attendant uncertainties [3]. Nonetheless, “As our island of knowledge
grows, so does the shore of our ignorance.” [4]. In particular, the integration of non-measure-
theoretic models of uncertainty, such as info-gap models [5], into a system of measure theoretic
formulations, has not yet been accomplished [6, p.37].

Once again, as in the 17th century, we find that medical decisions confront us with heterogeneous
uncertainties for which we are incompletely prepared. Clinical trials are rendered to the practitioner
as probabilistic functions, expressing outcome-likelihoods under specified conditions. However,
as we will explain in section 2, these probability estimates can be subject to uncertainties for
which we have no probabilistic information. Furthermore, patients are challenged to quantify
their anticipated utility (or dis-utility) of future outcomes of treatments with which they have no
experience. The enlightened physician assists the patient to fold these anticipated utilities into
the selection of a therapy. However, these anticipations are fraught with severe uncertainty as we
will discuss in section 4.1. For these uncertainties we have limited or no probability models. The
challenge is to develop decision tools and evaluate the quality of these tools. The diversity of types
of information, and of the associated uncertainties, has impeded the development of generic and
universal decision methodologies.

This paper illustrates a methodology for quantifying severe non-probabilistic uncertainties, for
combining uncertainties of different types, and for then using these results to support a medical
decision. We make no claim for the optimality of this methodology, which is based on info-gap
decision theory [5]. Indeed it is a formidable task to define and evaluate the optimality of a
decision strategy, which is not a goal of this paper. However, the development of concepts and
criteria of optimality is supported by the study of diverse methodologies. We contribute to this task
by offering a methodology—info-gap theory—which is different from the many existing measure-
theoretic techniques.

In section 2 we review the role of clinical guidelines in medical decision-making, and discuss the
attendant uncertainties. In section 3 we present a standard probabilistic model for cholesterol risk
assessment which underlies medical intervention. In section 4 we formulate the info-gap models of
the relevant diverse uncertainties. We then formulate the info-gap robustness and opportuneness
functions which underlie the choice of an intervention. In section 5 we apply the info-gap analysis
to 4 plausible clinical cases. In section 6 we discuss the implications of our work for medical
guidelines. We conclude in section 7 with a methodological comparison of info-gap theory with
other methods.

2 Clinical Guidelines

The dissemination of clinical guidelines has significantly impacted medical practice. Inaugurated
as algorithms for common problems in clinical medicine, guidelines now encompass all aspects of
medical practice. The National Guideline Clearinghouse indexes over 2100 guidelines [7]. Mehta et
al. [8] conclude: “Improved application of existing therapies, directed by evidence-based guidelines,
may offer immediate savings of life and function to patients with cardiovascular disease.” Frei et
al. [9] report significant improvement in clinical outcomes from “guideline-concordant antibiotic
therapy” in treating community-acquired pneumonia.

But how well do clinical guidelines deal with the diverse uncertainties facing both patient and
clinician? How can patient and physician assess these uncertainties and incorporate this assessment



in their decisions? This paper studies the management of low density lipid (LDL) cholesterol as
a framework for illustrating the construction of non-probabilistic info-gap models of uncertainty.
We consider diverse types of uncertain information—some probabilistic, some not—which must
be combined in assessing and choosing among therapeutic alternatives. We define and construct
robustness and opportuneness functions to support these tasks.

A criticism of clinical guidelines is that they constitute “cookbook medicine” and externally
applied restrictions on clinical judgment and autonomy [10]. Advocates of guidelines also stress
that “it is important to tailor treatment to the needs of each individual patient” [11].

In addition, guidelines do not readily facilitate consideration of three challenging uncertainties
which physicians regularly face.

First, guidelines are based on clinical trials with populations which may not reliably reflect the
individual patient. Both patient and physician are sometimes quite uncertain about the relevance
of the clinical trials to their specific case. Greenfield et al. [12] note that randomized control trials,
which underlie clinical guidelines, typically enroll patients with less severe disease and exclude older
patients, making the resulting guidelines of uncertain applicability to the excluded populations.
Feinstein and Horwitz [13] warn against the prevalence of randomized clinical trials in which “the
data do not include many types of treatments or patients seen in clinical practice”. Morimoto et al.
[14] note that clinical guidelines, developed in the U.S. for use of aspirin in primary prevention of
cardiovascular events, need modification before application in Japan. McLaughlin [15] reports the
conclusions of a roundtable discussion of implications of heterogeneity of treatment effects (HTE).
He concludes that, due to HTE, and especially in the absence of “sound data”, “care has to be
individualized, using the clinician’s best judgment regarding available treatment options.”

The second challenge is that guideline recommendations do not account for the individual
patient’s uncertain preferences among possible outcomes of treatment, especially adverse outcomes
unfamiliar to the patient.

The third challenge, related to the second, is that guidelines often fail to account for the cost
of intervention, either the subjective cost of lifestyle change or the quantitative financial cost.

This paper presents a quantitative decision-theoretic methodology for addressing these uncer-
tainties when using clinical guidelines. Quantitative decision theory underlies computer-based
clinical decision-support. Availability of decision-support technology has resulted in substantial
increase in physician compliance with clinical guidelines [16].

We apply the methodology to LDL cholesterol reduction. The guideline recommendations are
sometimes, but not always, found to be consistent with the info-gap analysis of uncertainty in a
series of plausible clinical examples. The examples illustrate how physician judgment to deviate
from the guidelines can be supported, or refuted, by the analysis of uncertainty, as well as how
patient preferences can be incorporated in the decision process.

This paper employs info-gap decision theory [5], which has been applied in a large array of
decision problems under severe uncertainty, including biological conservation [17, 18], resource
management [19], ethology [20], statistical testing [21], homeland security [22], engineering design
[23, 24, 25, 26, 27] and fault diagnosis [28], project management [29, 30], portfolio investment [31]
and conflict resolution [32].

3 Cholesterol Management and the LDL Risk Model

Alteration of cholesterol concentration is a common intervention in primary and secondary preven-
tion of heart disease. Population studies, like the longitudinal Framingham study [33], demonstrate
that cholesterol level is a major risk factor for cardiovascular events, and that alterations in choles-
terol level can reduce the incidence of stroke and heart attacks.

Debate continues about altering LDL and high density lipid (HDL) cholesterol levels. Brindle
et al. [34] review the applicability of the Framingham data to diverse populations, concluding
that caution is needed in applying the Framingham score to some sub-populations such as lower
socio-economic groups. Kostis [35] suggests that the 10-point cardiac risk assessment based on
the Framingham study may not deal adequately with some sub-populations such as young women.
Pharmacological interventions such as statins are costly and have measurable toxicity, especially
for young people facing life-long treatment [35]. Some patients resist life-long intervention if it is
only ameliorative. Robson [36] observes that there “is most uncertainty about treating the many
people at intermediate risk ... [which] can turn large numbers of people into lifelong patients.”
Finally, no clinical study is ultimately definitive. For instance, Grundy et al. [37] report on clinical



trials which suggest some modifications of the earlier Framingham study.

The patient considering intervention is uncertain how he or she matches the study population.
The Framingham study, which is the canonical prototype of all major risk models to date, examined
free-living, healthy, middle-aged white suburbanites west of Boston [33], and may not be applicable
to, for example, an Hispanic in Chicago or Lima. Although the application may be valid, patients
and physicians are legitimately uncertain. The patient may also be uncertain regarding the future
utility or disutility of the treatment outcome.

Wilson et al. [33] estimate the probability of a cardiac event based on the patient’s condition
which is characterized by a vector, ¢, of known, non-negative numbers. ¢; and ¢y equal the patient’s
age and age-squared. c13 and c14 each equal 1 if the patient has diabetes or smokes, and equal zero
otherwise. Elements 3-7 specify the patient’s HDL level, where coy; = 1 for patients in the ith
HDL group. Only one of c3, ..., ¢y is non-zero. Elements 8-12 specify the patient’s blood pressure
group, where c74; = 1 for patients in the ith group. Only one of cg, ..., ¢12 is non-zero. Elements
15-19 specify the patient’s LDL level, where ¢141; = 1 for patients in the ith LDL group. Only
one of ¢y5, ..., c19 is non-zero. The non-zero element from among cis, ..., c19 indicates which
therapeutic intervention has been chosen.

The probability of developing coronary heart disease (CHD) over a ten-year period, for members
of the ¢th LDL group, is based on the Framingham study [33]:

Py(y)=1-8¢"° (1)

S = 0.90017 for men and S = 0.9628 for women, and G = 3.00069 for men and G = 9.914136 for
women. L = cT’y. The subscript ¢ indicates that cj44¢ = 1 while the other elements of ¢i5, ..., ci9
equal zero. The best estimate of the vector v is 74, shown in table 1. The estimates of S, G and
5 were obtained in [33] by a prospective study of 2489 men and 2856 women aged 30 to 74 at
baseline with 12 years of follow-up. During these 12 years 383 men and 227 women developed
CHD. Standard errors of these estimates are not available in [33]. The Framingham study is based
on a middle-aged white American population. The practicing physician may be uncertain to what
extent eq.(1) is relevant to a patient who belongs to another sub-population, either ethnically or
due to idiosyncratic medical history.

4 Info-Gap Analysis with Uncertain Expected Utility

In section 4.1 we discuss several info-gap models for representing different types of uncertainty:
uncertainty in the parameters of a probability function, uncertainty in estimated utility coefficients,
and uncertainty in the shape of a utility function. In section 4.2 we discuss the info-gap robustness
and opportuneness functions and explain how they are used to choose among the alternative
therapies.

4.1 Uncertain Expected Utility

Many utility and quality-of-life functions are used in medical decision making [38]. We will use
expected utility, which is a generally accepted, versatile, and powerful method for exploiting the
probability model developed in the Framingham study, though one could use other quality-of-life
functions such as quality adjusted life years (QALYS).

In an expected utility model one represents the patient’s preferences as a linear combination
of the utility coefficients of elementary events. In our case, the patient has positive utility uy
from health, negative utility (disutility) u. from a cardiac event, and negative utility u;(¢) from
the cost of intervention to bring the patient’s LDL concentration to the ¢th level. While wu}, must
be positive and u, must be negative, they need not have equal magnitude: many people have
asymmetric utilities for good and bad outcomes. The elicitation and combination of these utilities
can be done in many different ways, (see for instance Keeny and Raiffa [39] and Keeny [40]).
Our discussion is independent of how this is done. In any case, uy, u, and u; are utilities which
are calibrated subjectively in linguistic terms. The patient’s estimates of these utilities are based
on introspection, conversation with family, friends and medical professionals, and perhaps formal
supervised elicitation. The elicitation process establishes subjective meaning for the patient of
different values of utility. That is, positive utility in different numerical ranges is related to various
linguistic descriptors such as ‘good’, ‘very good’, etc. Likewise, negative utilities in various ranges
have descriptors such as ‘poor’ or ‘not too bad’. The formulation and elicitation of these estimates is



Symbol Variable Men Women
Y1 Age, y 0.04808 0.33994
o Age squared, y? 0t —0.0027

HDL—-C, mg/dL
Y3 < 35 0.48598 0.88121
o 35-44 0.21643 0.36312
s 45-49 0* 0.19247
e 50-59 —0.0471 0*
o > 60 —0.3419 | —0.35404
Blood Pressure
s Optimal —0.02642 | —0.51204
Yo Normal 0* 0*
Y10 High normal 0.30104 | —0.03484
Y11 Stage I hypertension 0.55714 0.28533
Y12 Stage II-IV hypertension | 0.65107 0.50403
Y13 Diabetes 0.42146 0.61313
V14 Smoker 0.54377 0.29737
LDL—-C, mg/dL
Y15 < 100 —0.69281 | —0.42616
Y16 100-129 0~ 0~
V17 130-159 0.00389 0.01366
Y18 160-189 0.26755 0.26948
Y19 > 190 0.56705 0.33251

Table 1: Estimated v coefficients, 7, for predicting cardiac event using LDL-C categories,
based on Wilson et al. [33]. The values marked *’ are “referent” values which are zero by
definition. The value marked ‘*’ is zero by definition: the age-squared term is not included
in the regression for men.

not easy or trivial, and these estimates are clearly highly uncertain. Our primary concern, however,
is not with the process by which these estimates are formed, but in managing the considerable
uncertainty which accompanies these estimates.

The expected utility is the average of uy, and ue, weighted by Py(7), plus the fixed disutility of
intervention, u;(¢). Denote these 3 utilities collectively with the vector u. Expected utility for the
¢th LDL level is:

Eo(v,u) = Pe(7)ue + [1 = Po(y)]un + ui(f) (2)

Un, Ue and w;(¢) are uncertain: people poorly predict future feelings. Py(7y) is uncertain because
of uncertain relevance of the population study to the individual. These uncertainties are infor-
mation gaps between what we do know, and need to know, in order to dispel reasonable doubt.
Info-gap models quantify these uncertainties [5]. Roughly, up, ue, ui(£) and Pp(y) are estimated,
but we don’t know how wrong those estimates are. An info-gap model of uncertainty quantifies
the unbounded range of possibilities which this entails, without using probability distributions or
presuming knowledge of a worst case.

We now consider uncertainty quantifications for Py(7y), e, un and w;(¢).

Uncertain probability. The probability Py(7y) is uncertain because the coefficients vy are un-
certain. (One could also consider uncertainty in the form of the function, but we will not explore
that here.) Our best statistical estimate of the ~-coefficients is 7, table 1. However, those coeffi-
cients are estimated for a specific sub-population (middle-aged white American suburbanites) and
we don’t know how different the coeflicients would be for some other sub-population from another
ethnic group or with specific medical histories not represented by the Framingham study. We are
not able to identify a worst case (greatest deviation), nor do we have a probability distribution for
the error of 7. We will represent this uncertainty with an info-gap model: an unbounded family



of nested sets of possible v vectors. The nesting parameter of this family of sets, denoted by «, is
referred to as the horizon of uncertainty, which is an unspecified non-negative real number. As the
name implies, the horizon of uncertainty expresses the level of uncertainty. Nonetheless, it is ax-
iomatically different from a probability, and does not obey the Kolmogorov axioms of a probability
measure [41].

We now formulate an info-gap model for uncertainty in 7.

In some situations one might know a standard error, o;, of the estimate 7;, in which case one
can define p; = o0;/|7,| for all 4,’s which are included in the regression. Those terms which are
zero by definition (marked “*’ or ‘¥’ in table 1) do not vary. For these terms we arbitrarily define
p; = 1, which has no impact on the numerical results. In our numerical examples, based on the
Framingham study [33], we do not know standard errors. We have no information with which to
differentiate between coefficients. Hence we define p; = 1, which means that the available range
of fractional error is the same for each coefficient of the terms in the linear combination, at any
horizon of uncertainty. Note that we do not know the value of the horizon of uncertainty, which
may be different for different coefficients.

We now define a fractional-error info-gap model [5] for uncertainty in the ~;’s:

Ulewy) =1 i =%l Sepilyil, i=1,...,19), a>0 (3)

Like all info-gap models of uncertainty, U(«,¥) is a family of nested sets of possible realizations of
the uncertain quantity, v in this case. In the absence of uncertainty (when av = 0) the set ¢(0,7)
contains only the estimated vector, 7. The set U(«,7) becomes more inclusive as the horizon of
uncertainty, «, increases. The horizon of uncertainty, «, is unknown, so this is an unbounded
family of nested sets of y-vectors. We have estimates, 7, but we are unable to specify maximum
deviations of these estimates from the true values, and we know no probability distribution for the
error of 7.

Uncertain utility coefficients u, and w;. The individual’s personal utility coefficients, u,
and uy, reflect introspection, conversations with family, friends and physicians, social norms and
constraints, and so on. (We will consider the disutility of intervention, wu;(€), separately.) The
choice of u, and wy, is highly uncertain. Whatever method the patient uses to estimate his or
her utilities, we denote the estimates by the vector @ = (Ue,up). ue is a disutility and thus must
be negative, while uy must be positive. The same holds for the best estimates, @, and u,. We
have no information about how differently the patient might choose the utility coefficients in other
circumstances, for instance following experience of a subsequent cardiac event. Lacking more
detailed information about the uncertainty in the utility coefficients, u, we adopt the following
fractional-error info-gap model. Let us define the following function: h(zx) = z if z > 0, and
h(z) =0 if z < 0. The info-gap model for uncertainty in the utility coefficients is:

U(a,) ={u: QI+a)te < ue <h(l—a)le,

h(1—a)u, < un <(I+a)un}, a>0 (4)
This info-gap model is an unbounded family of nested sets of utility vectors, u = (ue,un). In
the absence of uncertainty (when o = 0) the set contains only the estimate, w. The set U, (o, @)
becomes more inclusive as the horizon of uncertainty, «, increases, and « is unbounded so there is
no known worst case.

Uncertain disutility of intervention, wu;(¢). The disutility of intervention, w;(¢), is highly
uncertain. The monetary cost varies with patient condition [42], full lifetime costs are difficult to
identify and evaluate [43], and the impact of lifestyle change is hard to evaluate beforehand. It
is hard to identify individuals who currently are free of disease but would develop disease in the
future if intervention is not taken now [44]. Utility coeflicients can be elicited from patients who
are not diagnosed with a disease by describing the disease to the patient. However, the patient’s
assessments of utility may depend on knowing a positive diagnosis or not. In short, there are
many sources of uncertainty in the patient’s utility. One can formulate various different plausible
disutility functions, and the large attendant uncertainty can be represented with an info-gap model
as we now explain.

Let £, denote the patient’s current LDL level. The disutility, w;(¢), of moving to the ¢th LDL
level will increase as the difference between ¢, and ¢ increases. Furthermore, the disutility of
intervention is estimated to be proportional to the spread between the (positive) utility of health,



up, and the (negative) utility of a cardiac event, ue. A plausible (though uncertain) model for the
disutility of intervention would be:
ui(€) = |€ = Lefuo (5)

where ug is the following negative value:

o — _M (6)

The term Uy, — U, expresses the spread in estimated utility between health (uy,, which is positive)
and disease (., which is negative). Large damage of a cardiac event makes u, very negative and
the spread very large. ug (which is negative) is a disutility that is large when the damage is large.
The ‘4’ in the denominator is the greatest possible value of |¢ — £.|. Note that if f = 0 then there
is no disutility of intervention, while a large value of f implies large estimated disutility.

The function %;(¢) in eq.(5) is plausible, but we don’t have much actual evidence that the
dependence is really linear, or for a specific value of ug. In short, the magnitude and shape of this
disutility function is highly uncertain. We will now formulate an info-gap model for uncertainty in
this disutility function.

An info-gap model expresses the unknown deviation of the true function, w;(¢), from the plausi-
ble function u;(€). We require that u;(¢) be negative. We are considering uncertainty in the actual
shape of the function, not just in its parameters. We use a “slope-bound” model, in which all the
functions are negative, reach zero when ¢ = /.., and the fractional error in the slope is unknown and
unbounded. This implies that cost will increase with the magnitude of the intervention, though
the slope (and magnitude) of the cost function is uncertain. w{(¢) is the slope of the disutility
function, which is negative for £ > /. and non-negative for ¢ < /.. Explicitly, the info-gap model
is the following unbounded family of nested sets of functions:

L{i(a,ﬂi) = { ul(ﬁ) . ui(éc) = 0, ul(é) S 0, A E,
)
)

I+ a)up < (¢

IN

uf h(1 — a@)ug, £> L.
—h(l —a)ug < uf

) <—(1+a)ug, €<lc}, a>0 (7)

Recall that ug < 0, as defined in eq.(6).

4.2 Robustness and Opportuneness

We now define robustness and opportuneness functions, and explain how they assist patient and
physician in choosing an LDL level.

Robustness. If we confidently knew Py(y), un, ue and u;(¢), then we could confidently choose
the LDL level, ¢, to maximize the expected utility, Fy(v,u). However, Py(7), un, u. and u;(¢) are
highly uncertain. Consequently we evaluate how reliably we can obtain an acceptable outcome with
different ¢’s. Conversely, what constitutes an acceptable outcome is influenced by how confident
we are in attaining that outcome with a chosen LDL level, /.

E. denotes the lowest expected utility the patient would accept. Neither ¢ nor E. are specified,
and the patient may be unsure about what E. value to require. We use a robustness concept [5]
to choose ¢ and evaluate different E,’s.

We have estimates—likely to be off the mark—of uy, e, u;(£) and Py(y). We wish to choose
an LDL level, ¢, for which adequate utility, F., will be achieved even if these estimates err greatly.

The robustness of the /th LDL level is the greatest horizon of uncertainty, «, up to which
expected utility Ey(,u) is guaranteed to be no less than the critical utility, E.:

a(l,E.) =max{ a: min  Ey(y,u) | > E; (8)

yeU(a,y)
u€Uu(a,u)
ui €U (or,uy)

The robustness function a(¢, E.) establishes preferences over the options. £ is preferred over ¢/, at
critical aspiration E., if we are more robust to the uncertainty with ¢ than with ¢'. Succinctly:

O 0 if & E)>al,E) 9)



The decision strategy implied by this preference ordering satisfices the expected utility and ranks
the alternatives based on the robustness. For brevity, this strategy is called robust-satisficing.
We show how to conveniently evaluate the robustness function in appendix A.

Robu§tness

Negative slope:
rob. trades-off with utility

Zero robustness at
estimated utility

Expected Utility

Figure 1: Properties of
robustness curves.

Interpreting robustness curves. We will use plots of robustness, a(¢, E;), vs. expected
utility, F., to choose therapeutic intervention. We now explain how to interpret these plots, and
illustrate that a choice of ¢ can usually be made with only a rough idea of the required critical
utility, E.. T'wo points are characteristic of all robustness curves, illustrated in fig. 1.

First, the negative slope of the robustness curve in fig. 1 expresses the trade-off of robustness to
uncertainty, against the expected utility which can be reliably anticipated. Greater expected utility
is invariably associated with lower robustness to error in the underlying models. This intuitive
idea—that high aspirations are more vulnerable to surprises or errors than low aspirations—is
quantified by the negative slope.

Second, the robustness curve reaches the horizontal axis at some value of expected utility, as
shown by the solid dot in fig. 1. The robustness is zero at this value of utility. Significantly, this
value of expected utility is precisely the value obtained with the estimated models and data. In
other words, the best estimate of the expected utility has no robustness against error in the models
and data upon which that estimate depends. Best estimates exploit all available information,
without regard to their potential error, so the estimated utility has no immunity against error in this
information. Only less optimistic estimates—for lower expected utility—have positive robustness,
which returns us again to the previous point: the trade-off between robustness and utility.

Robu‘stness Robu§tness
1 1
2 .
Curve crossing
)
2
0 - 0 = -
X
Expected Utility Expected Utility
Figure 2: Preference for Figure 3: Preference rever-
intervention 1. sal between therapies.

We now examine figs. 2 and 3 to understand how robustness curves are used to evaluate and
choose among alternative interventions.

Fig. 2 shows the robustness curves of two different therapeutic interventions, denoted ‘1’ and
‘2’. Option ‘1’ is more robust than ‘2’ at all levels of expected utility with positive robustness.
Since more robustness is preferable over less, option ‘1’ is unambiguously favored over option ‘2’.
Note that this is the same choice as the guideline recommendation based on the estimated utilities
of these two options (represented by the points at which the curves meet the horizontal axis).

Fig. 3 shows a different situation, in which the robustness curves for two different therapeutic
interventions intersect at some value of expected utility, F«, and robustness, ax. More robustness
is better than less robustness. However, when utility is sacrificed for robustness, with it goes the
aspiration for the higher results promised by the model. If utility in excess of F« is needed, then



option ‘2’ is preferred. This is the same choice as the guideline recommendation based on the
estimated utilities of these two options. We must recognize, however, that the trade-off between
robustness and utility implies that utility in excess of E« will be obtained only with robustness
in the lower part of the robustness scale, below robustness ay. If greater confidence (greater
robustness) is needed, and the patient and physician are willing to obtain this robustness premium
by relaxing the aspiration for utility to a value below Ey, then alternative ‘1’ is preferred. In this
case the crossing of the robustness curves has caused the decision maker to change preference from
the guideline option. The decision maker does not need to choose a specific value of either critical
utility, E., or robustness, dx, in order to gain the advantage of this formulation. Only a choice of
the required range of these values is needed.

Opportuneness. Robustness against failing to achieve acceptable utility is only one part
of managing uncertainty. Uncertainty also entails opportunities for windfall, that is, a benefit
or outcome better than anticipated [5]. A more opportune choice is preferred, though this may
disagree with the robustness preferences.

E,, denotes a large and highly desirable level of utility, a windfall, larger than the critical utility
E. and larger than the utility based on the estimated models. The opportuneness of the /th
LDL level is the lowest horizon of uncertainty, «, at which expected utility Fy(vy,u) is possibly
(though not necessarily) as large as the windfall value Ey:

B(t,Ey) =min{ o: max_ Ey(y,u) | > By (10)
yEU(ev,y)

uel/lu(oc,i:)

i €U (r,uq)
The opportuneness function is the lowest level of uncertainty which enables better-than-anticipated
results, Ey. If this level of uncertainty is large, then better-than-anticipated results (windfalls) will
require extraordinary circumstances; if this level of uncertainty is small, then windfall is possible
(though not guaranteed) even in nearly ordinary situations. Thus, a small value of 5(¢, E,) means
that windfall is feasible, and decision ¢ is opportune. A large value of E (¢, Ey) means that great
uncertainty is needed in order to enable windfall as large as Ey,. We can summarize this by saying
that 8(¢, Ey) assesses the degree to which intervention ¢ is immune to windfall outcomes: large
g(ﬁ,Ew) implies high immunity to windfall and low opportuneness; small B(ﬁ, Ey) implies low
immunity and high opportuneness. R

In short, the opportuneness function, 3(¢, Ey,), is the immunity against windfall. Since windfall

is desirable, small values of B(E, Ey) (low immunity to windfall) are preferable over large values.
Hence the opportuneness function establishes preferences over the options. ¢ is preferred over ¢,
at windfall aspiration Ey, if we are more prone to favorable uncertainty with ¢ than with ¢'. Thus
¢ is preferred over ¢’ if B(¢, Ey) is less than S(¢', Ey,):

0o 0" if B4, Ey) < B(U,Ey) (11)

The decision strategy implied by this preference ordering attempts to facilitate windfalls (which we
will refer to as ‘windfalling’), and ranks the alternatives based on the opportuneness. For brevity,
this strategy is called opportune-windfalling.

The preference rankings in eqs.(9) and (11) may or may not agree.

We show how to conveniently evaluate the opportuneness function in appendix A.

Robustness or
Opportuneness Opportuneness
A

Positive slope: 1 1/ Oppor.
oppor. trades-off
with certainty Rob.

2
Zero uncertainty at
estimated utility
0 e oL .
X
Expected Utility Expected Utility
Figure 4: Properties of oppor- Figure 5: Using opportuneness

tuneness curves. and robustness.
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Interpreting opportuneness curves. Fig. 4 shows a typical opportuneness curve, illustrat-
ing the analog of the two robustness properties described in fig. 1. The positive slope in fig. 4
expresses the trade-off between opportuneness and certainty: high windfall aspiration (for larger-
than-expected utility) is feasible only at great ambient uncertainty. Likewise, the opportuneness
curve hits the horizontal axis precisely at the estimated utility: no surprise is needed in order to
enable (though not guarantee) the expected outcome.

Since decision makers are usually risk averse, the opportuneness curves are usually used to
resolve situations where robustness is ambiguous, as illustrated in fig. 5. The decreasing curves
on the left of the figure are the robustness curves for two alternative interventions. These curves
intersect at expected utility E«. Consequently, if utility around Ey is required, consideration of
robustness does not resolve the choice between these options, since the two options are equally
robust. The opportuneness curves—with positive slope—do not intersect one another in this case.
Since a small value for 5(¢, Fy,) is preferred, we see that option 2 is more opportune than option
1, suggesting a resolution of the robustness-ambiguity in favor of option 2.

5 Results: 4 Case Studies

In this section we illustrate the info-gap decision analysis with uncertainty in the probability of a
cardiac event, the patient’s utility coefficients for disease and health, and the cost of intervention.
We consider 4 hypothetical, but realistic, case studies.

Cases 1 and 2, sections 5.1 and section 5.2, compare the decision analysis for a middle-aged
male with difference in HDL level, blood pressure, smoking and diabetes.

Case 3, section 5.3, looks at the effect of age, with other variables unchanged.

Case 4, section 5.4, considers a female of age 55.

5.1 Casel
Group | HDL-C, mg/dL Blood pressure LDL-C, mg/dL
1 <35 Optimal < 100
2 3544 Normal 100-129
3 45-49 High normal 130-159
4 50-59 Stage I hypertension 160-189
) > 60 Stage II-IV hypertension > 190

Table 2: HDL-C, blood pressure and LDL-C groups. The systolic and diastolic pressures
defining the blood pressure groups are defined in table 1 of Wilson [33].

Example 1 is a male, aged 55, group-5 HDL, group-1 blood pressure (see table 2), non-diabetic
non-smoker whose pre-intervention LDL level is group 5. The info-gap analysis examines various
estimated (but uncertain) costs of intervention, together with uncertainty in the probability of a
cardiac event and uncertainty in the patient’s utility coefficients for disease and health.

We will discuss robustness and opportuneness curves (figs. 6 and 7) for transition to various
LDL levels £. Before doing so we explain how these curves are constructed.

The patient’s utility coefficients, uy, . and u;(¢) are estimated by one or another method
as described in section 4.1. One outcome of this estimation process is that the patient develops
subjective understanding of the meaning, in terms of linguistic descriptors such as ‘poor’ or ‘pretty
good’, of different ranges of utility on the horizontal axes of these figures. The central task of the
uncertainty analysis is to address the following questions. First, for any given intervention, what
levels of utility can be reliably attained; this is based on the robustness function. Second, for any
given intervention, what levels of utility can be aspired to as potential windfall; this exploits the
opportuneness function.

The robustness and opportuneness functions are evaluated for the individual patient based on
the patient’s estimated utility coefficients. Thus the curves are individualized to the patient, ex-
pressing the preferences, and the uncertainties, for that individual. The evaluation of robustness
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and opportuneness is specified mathematically in the appendix. A different robustness and oppor-
tuneness curve is calculated for each possible intervention. Thus, since 5 LDL levels are possible,
there are 5 robustness and 5 opportuneness curves.

The disutility of intervention, u;(£), for moving to the £th LDL level is estimated to increase
as the difference between ¢ and the patient’s current LDL level, /., increases. Furthermore, the
disutility is estimated to be proportional to a fraction f of the utility of health w, minus the
disutility of a cardiac event u.. These subjective estimates, however, are highly uncertain.

0.9+ R

071

0.6

Robustness, a—hat, or Opportuneness, B-hat

09-

0.8

0.6-

0.5r

0.1

LDL: < 100 LDL: < 100 ]
— — — LDL: 100 - 129| A — — — LDL: 100 - 129 i1y
—+— LDL:130 - 159 \ '\ 01| —°— LDL: 130 - 159 ,
LDL: 160 - 189 \ \\ 7 LDL: 160 - 189
— — LDL:>=190 \> — — LDL:>=190
-15 -1 -0.5 0 0.5 -2 -15 -1 -0.5 0 0.5
Utility of chosen LDL level, EC or EW Utility of chosen LDL level, Ec or EW

Figure 6: Case 1. Robustness and opportuneness vs. desired utility for case in section 5.1.
Patient’s estimated utilities are u = [—1, 0.5]. p is the unit vector. f. = 5. f = 0 (left),
f=0.1 (right).
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Figure 7: Case 1. Robustness and opportuneness vs. desired utility for case in section 5.1.
Patient’s estimated utilities are & = [—1, 0.5]. p is the unit vector. ¢, = 5. f = 0.2 (left),
f =04 (right).

Figs. 6 and 7 show robustness and opportuneness curves for transition to various LDL levels
£. The left frame of fig. 6 is the case of no cost at any level of uncertainty (f = 0), while the
right frame of fig. 7 shows an uncertain cost estimated as 40% of the benefit (f = 0.4). The other
frames of figs. 6 and 7 show intermediate values (f = 0.1 and f = 0.2) for the estimated cost of
intervention.

The robustness curves in the left frame of fig. 6 are for the case of no cost of intervention. The
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nominal preferences, based on the best estimates—at which the robustness is zero as explained in
connection with fig. 1—are for decreasing the LDL level as much as possible. Level 1 is preferred
over level 2 (represented by “>"). Levels 2 and 3 are identical (represented by “~”), since their
estimated v coefficients are essentially the same (table 1). However, they are both preferred over
level 4, which is preferred over level 5. We can succinctly represent these preferences as:

1-2~3>4>5 (12)

The robustness to uncertainty for each of these options, for attaining the corresponding estimated
utility, is zero, as explained in fig. 1. Consequently these options can not be depended on to reliably
result in the corresponding utilities. However, the preference ranking is the same at every level of
robustness up to 100% (@ = 1), since the robustness curves have not crossed one another up to
robustness of 1. The situation here is like fig. 2, in which the robustness curves do not cross one
another. It is noteworthy, though, that levels 4 and 5 have substantially less utility than lower LDL
levels at robustness of 0.5 and greater. This is unlike the situation at zero robustness, in which the
utility-margin between the different options is small. At robustness of @ = 1 the robustness curve
for £ =1 crosses the curves for levels 2 and 3, thus reversing the preference among these levels if
larger robustness is required, noting that the corresponding utility is quite low compared to the
nominal utility.

The opportuneness curves in the lefthand frame of fig. 6 are ordered nominally, and rapidly
converge. This indicates that considerations of opportuneness do not promote one intervention
over another.

The situation is very different in the righthand frame of fig. 6, for which the estimated (though
uncertain) cost of intervention is 10% of the estimated benefit, so f = 0.1. Now the nominal
(zero-robustness) preferences are the reverse of the no-cost preferences in eq.(12):

5=4>=3>-2~1 (13)

The curve for £ = 5 has not shifted between the two frames of fig. 6 because the patient’s pre-
intervention LDL level is /. = 5. However the other curves have shifted to the right, and changed in
shape, as a result of the cost of intervention. These nominal, zero-robustness preferences are weak.
However, there is substantial crossing of robustness curves at low robustness (around & ~ 0.2),
causing preference-reversal among the interventions as explained in connection with fig. 3. At
50% robustness (@ = 0.5) there is strong preference against level 5, despite the intervention cost,
while the preferences among the other levels is not large. More precisely, the preferences at 50%
robustness are:

B=1)=2-4>5 (14)

where the parentheses indicate that the preferences between levels 3 and 1 are weak.

A similar picture emerges when we consider higher estimated cost of intervention, f = 0.2 and
f=0.41n fig. 7. The results of these 4 figures are summarized in table 3.

Before examining table 3, consider the righthand frame of fig. 7 at moderate robustness (& =
0.5). The robustness curves for the two most attractive interventions, levels 4 and 5, cross at
a = 0.5, indicating indifference between these two options, where level 5 implies no intervention
since this is the patient’s pre-intervention LDL level. However, examining the opportuneness
curves in this figure shows that remaining at level 5 is more opportune for windfall outcome than
moving to level 4. This is an instance where the opportuneness analysis can be used to resolve a
robustness-tie between options, as discussed in connection with fig. 5.

A clear picture emerges from table 3 for this individual, whose pre-intervention LDL concen-
tration is at level 5. If there is no cost for intervention (f = 0), then the nominal, zero robustness
(a = 0), preference is for reducing the LDL concentration to level 1. If there is any cost to inter-
vention (f > 0.1), then the nominal (no-robustness) preferences call for no intervention. However,
requiring moderate robustness to uncertainty (@ = 0.5) changes the picture, and intervention to
lower the LDL to the 3rd level is indicated at moderate cost (f = 0.1 or f = 0.2). At high cost,
f =0.4, levels 4 and 5 are equivalent in robustness, and opportuneness mitigates for no interven-
tion (level 5). The enhanced robustness resulting from these decisions is obtained at the expense of
guaranteeing lower utility, as understood from the trade-off between robustness and utility (fig. 1).
The picture remains the same at high robustness (& = 1), and correspondingly low utility.
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0.1

5>~4>3>2~1

3>=1)>2%=4>5

3>-2=1=4%5

0.2

5>~4>=3>2>1

3>-4>(2>1>5)

3>-2>4>(1>05)

0.4

5>-4>=3>2%>1

5~4%>=3>2%>1

3~5=4=2+1

Table 3: Preference ranks of LDL options for case 1, based on robustness, from figs. 6 and
7.

5.2 Case 2

Let’s consider a case whose prognosis is quite different from the case in section 5.1: a male, aged 55,
group-1 HDL, group-5 blood pressure, diabetic smoker whose current (pre-intervention) LDL level
is group 5. We will again consider the info-gap analysis for various estimated (but uncertain) costs
of intervention, together with uncertainty in the probability of a cardiac event and uncertainty in
the patient’s utility coefficients for disease and health.
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Figure 8: Case 2. Robustness and opportuneness vs. desired utility for case in section 5.2.
Patient’s estimated utilities are & = [—1, 0.5]. p is the unit vector. . = 5. f =0 (left),
f=0.1 (right).

Results for 4 different estimated costs of intervention are shown in figs. 8 and 9. The nominal
best-estimated utilities of the options—at zero robustness—are lower than in case 1 (section 5.1,
figs. 6 and 7) at all estimated costs. Likewise, at any given level of utility, the robustnesses are
lower in case 2 than in case 1 for all estimated costs. The crossing of robustness occurs as in case
1, though at lower robustness and lower utility.

The picture which emerges for this case, in table 4, is somewhat different than for case 1 in
table 3. In case 2, as in case 1, if there is no cost for intervention (f = 0), then the nominal,
zero robustness (@ = 0) preference is for reducing the LDL concentration to level 1. However, the
robustness curves rapidly converge at f = 0, so that at moderate and high robustness, @ = 0.5 and
@ = 1, there is no preference among the options in terms of robustness, and very little preference
based on opportuneness, though the opportuneness curves are separated and do not cross one
another. If there is no cost of intervention, then one presumably would not intervene in the
absence of additional considerations. At low or moderate cost of intervention, f = 0.1 or f = 0.2,
the nominal, zero-robustness preference is for minimizing the LDL level. At high cost, f = 0.4,
the zero-robustness preference is indifferent between all levels except £ = 2 which is less preferred;
again one would presumably not intervene. However, at moderate or high robustness (& = 0.5 or
a = 1) and positive cost (f > 0.1), the preference is for £ = 5, which is the patient’s current state,
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Figure 9: Case 2. Robustness and opportuneness vs. desired utility for case in section 5.2.
Patient’s estimated utilities are & = [—1, 0.5]. p is the unit vector. ¢, = 5. f = 0.2 (left),
f =04 (right).

Cost No robustness Moderate robustness | High robustness
f a=0 a=0.5 a=1

0.0 1>-2~3=4%>5 1~2~3~4~5 |1~2~3~4~5
01 |1>B8%2)=4>=5| 5>4>3>2>1 |5>-4>3>2>1
0.2 1~3>2~4%>5 5>-4>3>2>1 |5>=4>=3>2>1
0.4 1~3~4~5>2 5>~4>-3>2>1 |5>~4>3>2>1

Table 4: Preference ranks of LDL options for case 2, based on robustness, from figs. 8 and
9.

so intervention is not indicated here either.
We see here, as in case 1, the strong effect of considering robustness to uncertainty in cost and
the other factors of the estimated decision model.

5.3 Case 3

In this example we explore the effect of age and estimated cost of intervention. Case 3 is a non-
smoking non-diabetic male with group-5 HDL and group-1 blood pressure, at pre-intervention LDL
level 5. We compare ages 35, 55 and 75.

Consider first the robustness curves without intervention cost, fig. 10 (ages 35 and 75), and the
left frame of fig. 6 (age 55). The main effects of advancing age are to reduce the zero-robustness
nominal utility, which shifts the curves to the left, and to substantially reduce the robustness at
any lower utility, which lowers the robustness curves.

Age No robustness Moderate robustness High robustness

(y) a=0 a=05 a=1

35 5-=4>3=2=1 5-4>-3>2>1 | (3>4)>(2>5)>1
55 5-4>3>2>1 3-4>2>1>5)| 3>2=4>(1>5)
o B=4>-3)-(1>2)| 1~3~(2>4)>5 5>-4>3>2>1

Table 5: Preference ranks of LDL options for case 3, based on robustness and figs. 10 and
11, and the left frame of fig. 7. Results for f = 0.2.
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Figure 10: Case 3. Robustness and opportuneness vs. desired utility for case in section 5.3.
Patient’s estimated utilities are u = [—1, 0.5]. p is the unit vector. ¢, =5, f = 0. Age 35
(left), age 75 (right).

Similar conclusions hold at moderate estimated cost of intervention, f = 0.2, as seen in fig. 11
and the left frame of fig. 7. Furthermore, the curves have moved with respect to one another
sufficiently so that the preference rankings are different at the different ages, as illustrated in table 5,
part of which (age 55) is reproduced from table 3. The nominal, zero-robustness recommendation is
the same for all three ages: no intervention. At moderate robustness, @ = 0.5, the recommendations
are: no intervention at age 35, lower LDL to level 3 at ages 55 and 75. At high robustness, a = 1,
the young and mid-age groups move to LDL level 3, while the oldest age group does not mandate
intervention. We see in this example, as before, the strong effect of considering uncertainty in the
underlying data and models.

5.4 Case 4

This example is a non-smoking non-diabetic aged-55 woman with HDL level 5, blood pressure
group 1, and pre-intervention LDL level 5. This is the same as the case in section 5.1 except for
the sex of the patient, so the figures for comparison are figs. 6 and 7 and table 3.

Figs. 12 and 13 shows results for four different estimated costs of intervention. The most striking
result is the far lower robustness than for the similar male patient, figs. 6 and 7.

Cost No robustness Moderate robustness | High robustness
f a=0 a=0.08 a=0.2

00 |1>2~3>(4>5)| 1>2~3>(4>5) |[1~2~3~4~5
0.1 5-4>=3>2>1 | 1>3>(2>5%4) |5>4>=3=2>1
0.2 5-4>=3>2>1 | 5>3>4)>1>2 |5>4>=3=2>1
0.4 5>4>=3>2>1 5-4~3>2>1 |5>=4>=3>=2>1

Table 6: Preference ranks of LDL options for case 4, based on robustness and figs. 12 and
13.

We summarize the results of figs. 12 and 13 in table 6, which should be compared to table 3.
‘Moderate’ and ‘High’ robustnesses are lower for female than male patients, but the interventions
are roughly similar. At zero robustness, both male and female cases call for no intervention if there
is even low cost of intervention (f > 0.1), and lowering LDL to level 1 if f = 0. At moderate
robustness (& = 0.08) the recommendation for females is for no intervention at high cost (f = 0.2
or f = 0.4), and lowering to level 1 at zero or low cost (f = 0 or f = 0.1). At high robustness
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Figure 11: Case 3. Robustness and opportuneness vs. desired utility for case in section 5.3.
Patient’s estimated utilities are & = [—1, 0.5]. p is the unit vector. ¢, =5, f = 0.2. Age
35 (left), age 75 (right).

(@ = 0.2) the recommendation for females is strong intervention at zero cost, and no intervention
otherwise.

6 Discussion: Medical Guidelines

Clinical guidelines have become central to medical practice. The physician is charged with evaluat-
ing a guideline’s relevance for each patient, and knowing when and how to recommend a deviation
from the guideline. Furthermore, the patient should be able to evaluate the guideline and express
individual preferences. Missing from the process of considering clinical guidelines is the diverse and
partly non-probabilistic uncertainty facing both physician and patient. Info-gap analysis explicitly
incorporates this severe uncertainty into the decision making process, thus respecting individual
judgment, variation in preference, and autonomy. A methodology is presented here for employing
guidelines, in light of uncertain relevance of population studies to individual patients, uncertainty
in patient preferences among outcomes, and uncertain cost of intervention. The uncertainties rep-
resented by info-gap models are both in the values of parameters and in the shapes of functions.

Info-gap robustness and opportuneness functions are useful for evaluating and selecting thera-
pies. Robustness is defined as the greatest uncertainty at which acceptable outcomes will occur.
Large robustness is preferred over small robustness, generating preferences among available ther-
apies. Opportuneness is defined as the lowest uncertainty which is needed in order to enable a
windfall outcome. Small values for the opportuneness function are preferred over large values, also
generating preferences among options which need not agree with robustness-based preferences.
The opportuneness preferences can be used to resolve ambiguous robustness preferences.

We have illustrated the use of robustness and opportuneness for selecting LDL levels in con-
junction with guidelines, for plausible clinical situations. The following conclusions are suggested.

e Decisions using guidelines and best estimates of expected utility are sometimes supported by
analysis of robustness to, and opportuneness from, uncertainty. That is, ranking the options
in terms of estimated expected utility is sometimes the same as ranking the options in terms
of robustness and opportuneness. When this occurs, the robustness and opportuneness
analysis provides additional support for the guideline-based decision.

e Combined with guidelines, info-gap analysis can increase confidence in the choice of treat-
ment. The degree of confidence in attaining an outcome is quantified by robustness: the
numerical evaluation of the robustness indicates how wrong the estimates can be without
jeopardizing one’s aspiration for quality of outcome. When the robustness is low, as occurs in
some cases, the decision maker will perhaps look further before deciding. Or, less risk-averse
decision makers may use the opportuneness function to identify opportune therapies.
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Figure 12: Case 4. Robustness and opportuneness vs. desired utility for case in section 5.4.
Patient’s estimated utilities are u = [—1, 0.5]. p is the unit vector. ¢, =5, f = 0 (left),
f=0.1 (right).

e The analysis helps resolve ambiguity. In some situations the best-estimated outcome is
essentially the same for several therapies (righthand frame of fig. 6 or fig. 9, or the left
hand frame of fig. 10). One may choose the most robust option, which may differ from the
guideline recommendation. For example, the nominal, guideline, recommendation in the
righthand fig. 6 is for no intervention (¢ = 5), but the nominal preference for this choice is
weak. The robustness curves cross one another at low robustness in this figure and the £ =5
option rapidly becomes substantially less robust than the other options, suggesting that the
nominal recommendation is not suited to this case.

e The opportuneness function can be used to resolve situations where robustness does not
establish unambiguous preferences. The left hand frame of fig. 13 is a case in point. The
robustness curves are very close to one another over much of the utility-range, resulting
in ambiguous robustness-preferences. However, the opportuneness curves are well sepa-
rated, indicating strong opportuneness-preference for LDL level 5. The decision makers
may choose to resolve the robustness-ambiguity by selecting the greater opportuneness of
non-intervention (level 5) in this situation.

e The analysis provides guidance when judgment suggests deviation from the guideline. The
left hand frame of fig. 9 illustrates this. The best estimates indicate guideline-based pref-
erence for the lowest LDL level. However, as always, best-estimated outcomes have zero
robustness against uncertainty (fig. 1). The left hand frame of fig. 9 shows that LDL level
5 has far greater robustness than level 1, over much of the utility range. When the decision
makers feel substantial uncertainty, they may opt for level 5, rather than 1, due to greater ro-
bustness of this option. Additionally, exogenous considerations of collateral medical impacts
may be folded into preferring level 5, supported by greater robustness of this option.

Conventional application of clinical guidelines is often appropriate. A robust approach expands
the usefulness of guidelines to individual patients and provides increased confidence in outcomes
when dealing with diverse and substantial uncertainty. Further, coupling opportuneness to robust-
ness reveals potential for better-than-expected outcomes. Additionally, uncertainty analysis may
provide support when the physician’s judgment indicates deviation from the guidelines. Finally,
the value of clinical guidelines is enhanced by the availability of quantitative decision-theoretical
tools, suggesting that guidelines are amenable to computer-based decision-support technology.

We make no claim of optimality for the info-gap analysis developed here. For decisions of such
complexity, and with uncertainties of such diversity, we know of no feasible criterion for optimality
of a decision methodology. We claim only that diverse and clinically realistic information and
uncertainty can be efficiently and meaningfully managed with info-gap theory. Furthermore, just as
we have combined non-probabilistic info-gap tools with probabilistic ones (expected utility theory)
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Figure 13: Case 4. Robustness and opportuneness vs. desired utility for case in section 5.4.
Patient’s estimated utilities are & = [—1, 0.5]. p is the unit vector. ¢, =5, f = 0.2 (left),
f =04 (right)

our contention is that the combination of tools can prove useful in situations such as clinical
decision making. The search for criteria of optimality of a decision tool is of prime importance.
We suggest that methodological pluralism is a possible guide in this search.

7 Discussion: Info-Gap Theory and Other Methods

In the spirit of methodological pluralism we will briefly compare info-gap robust-satisficing and
opportune-windfalling to four different decision methodologies: robust Bayesian analysis, min-max,
probability bounds analysis, and coherent lower previsions. Our comparison will concentrate on
three questions. The first question is epistemic: what information is needed in order to implement
the methods. The second question is behavioral: what aspirations or requirements does the decision
maker bring to the decision process, and how is the outcome of the decision evaluated? The third
question is: how can the methods can be combined in a hybrid analysis, which is often a fruitful
approach. We will not explicitly discuss axiomatic questions (what is the foundational structure of
the method?), or questions of normative rationality (what philosophy of good decision making does
the method entail?), though our discussion will sometimes intrude on these issues. It is hoped that
this discussion will both clarify the nature of info-gap theory, and encourage researchers to study
its relation to other theories. Klir writes that “It is not clear ... whether the information-gap
conception of uncertainty ... can be formalized within [Generalized Information Theory]. This is
an open research question.” (italics in the original) [3, p.418].

Robust Bayesian Decisions. In a nutshell, robust Bayesian methods embed ordinary Bayesian
methods in an analysis where some or all of the functions involved are uncertain. More specif-
ically, a function—usually a prior probability or sometimes the loss function or the conditional
probability—is replaced by a set of possible functions. The robustness analysis then evaluates the
stability of the decision, or of some function of the decision such as a Bayesian risk. This can
be done in many different ways [45, 46]; Jack Good has suggested that there are 46,656 types of
Bayesian [47, chap.4]. One particularly Bayesian version of robust Bayesian analysis is to put a
prior probability on the set of functions, and then perform an ordinary Bayesian analysis on this
extended problem.

Epistemics. Choosing a set of possible realizations of the uncertain function is similar to the
info-gap approach of defining an unbounded family of nested sets of possible realizations. The
difference is knowing the size of this set, which is either explicit or implicit in the Bayesian ap-
proach. Explicit knowledge of the size is based on judgment: one chooses the size to be reasonable
or plausible. Implicit knowledge is manifested in pragmatically varying the size to see how the
robustness changes. This is not all that different in spirit from the info-gap robustness and oppor-
tuneness functions, which ask: how large can the uncertain set be without jeopardizing a critical
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requirement (robustness), or how large must the set be in order to enable a windfall aspiration
(opportuneness).

The strictly Bayesian version of robust Bayesian analysis—choose a prior probability distribu-
tion on the set of uncertain functions—is epistemically very different from the info-gap approach,
in which uncertainty is represented by sets of functions without any measure functions at all. As
Levi pointed out: “Strict Bayesians are legitimately challenged to tell us where they get their
numbers.” [48, p.387].

Behavior. Bayesians are very concerned with making good decisions, and thus pay careful
attention to the choice of the loss or gain function. When a risk, or regret, or other loss function
is used, it is minimized; when a benefit, or utility, or other gain function is used, it is maximized.
This differs from both the robust-satisficing and the opportune-windfalling approaches.

Robust-satisficing is motivated by a behavioral orientation which says: a particular quality
of outcome is essential, and any decision which achieves at least this critical level is acceptable
even if it is less than the putative maximum. Satisficers do not attempt to optimize the outcome.
Psychologically, ‘more’ can be ‘less’ at the end of the day [49]. If the critical level is less than
the maximum, then there will usually be a multiplicity of actions which achieve the critical level.
Furthermore, a satisficing action may be more likely than a purportedly optimizing action to achieve
the critical outcome [5, section 11.4; 50]. The robust-satisficing approach seeks an action which
satisfies the critical requirement with maximum immunity to uncertainty. What is maximized is
robustness, not outcome.

In the opportune-windfalling approach the behavior is more ambitious, seeking to facilitate
favorable, better-than-anticipated outcomes. The decision maker aspires to windfalls and chooses
an action which enables (though cannot guarantee) a wonderful outcome at the lowest possible
level of uncertainty. What is maximized is the opportuneness of the decision to exploit favorable
uncertainty, and not the outcome.

Hybridization. The Bayesian uses judgment to choose a set of uncertain functions. Such
judgments may be subject to uncertainty, implying that the set of uncertain functions may itself
be uncertain. An info-gap model can represent uncertainty in this set. That is, the elements of the
info-gap model are sets. The info-gap robustness analysis asks: how wrong can the prior choice of
the uncertainty set be, and the outcome requirements are satisfied? The info-gap opportuneness
analysis asks: how wrong must the initial set be in order for windfall to be possible?

Min-Max Decisions. The min-max approach identifies a set of possible contingencies or
models or relevant functions and seeks the decision which minimizes the worst (maximal) loss on
this set. (The max-min approach maximizes the lowest (minimal) gain when considering benefits
rather than losses.) This concept is implicit in many robust Bayesian realizations, and many
of our comments there apply here as well. FEpistemically, the info-gap and min-max approaches
are similar in representing uncertainty without measure functions, though the min-max approach
requires the choice of a specific set. The hybridization of a min-max with an info-gap approach is
often attractive, as discussed in connection with Bayesian methods. Indeed, Wald’s work in the
early 1940s on min-max considers sets of uncertain probability distributions [51].

Behavior. We will discuss two concepts: the observational equivalence of min-max with info-gap
robust-satisficing, and the behavioral difference of these methods [52].

Observational equivalence: Suppose a robust-satisficing decision maker must choose between
two options, D; and D, and requires an outcome no worse than L. in fig. 14. This leads the
robust-satisficer to choose decision Dy, which is more robust than Dy at this requirement. An
observer can describe this behavior by supposing the decision maker to be an min-maxer who
believes that the horizon of uncertainty is «y, because at this level of uncertainty the maximum
potential loss from D; is less than from D,. Conversely, a min-maxing decision maker who believes
that o is the true horizon of uncertainty would likewise choose D; over Dy. An observer could
describe this by supposing the decision maker is a robust-satisficer whose requirement is L.. In
short, either strategy can be used to describe observed behavior by ascribing particular beliefs
to the decision maker. In other words, the modelling of decision-behavior under uncertainty is
under-determined in choosing between robust-satisficing and min-maxing.

Behavioral difference: Suppose a min-maxing decision maker believes that the horizon of un-
certainty can be as large as awq in fig. 14, but no larger. The min-maxer will prefer Do, whose
loss can be as large as Ly,, but less than the maximum potential loss of D;. Suppose a robust-
satisficing decision maker can accept a loss as large as L., but no larger. This robust-satisficing
decision maker will prefer Dy over Dy since D; can tolerate greater uncertainty for achieving this
requirement. The robust-satisficer will choose Dy over D5 even if the min-maxer has convinced the
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Figure 14: Crossing robustness curves, illustrating the observational equivalence and behavioral
difference between min-maxing and robust-satisficing.

robust-satisficer that «s is the true horizon of uncertainty. In short, when the robustness curves
for two decisions cross one another, a min-maxer and robust-satisficer may disagree about the
decision, depending on their beliefs and requirements.

In conclusion, the observational equivalence between min-maxing and robust-satisficing means
that modellers can use either strategy to describe observed behavior of decision makers. In contrast,
the behavioral difference means that actual decision makers will not necessarily be indifferent
between these strategies, and will choose a strategy according to their beliefs and aspirations.

The concepts of observational equivalence and behavioral difference have been noted before, in
different terms. Walley writes [53, p.10]:

Every [Dempster-Shafer| belief function can be represented as a lower envelope of a
set of probability measures. This is merely a mathematical representation, however;
it is misleading and unnecessary to regard a belief function as a lower bound for some
unknown probability measure. In the same way, every coherent lower prevision can
be represented as a lower envelope of a set of linear previsions, but this is no reason
to regard the lower prevision as a model for partial information about an unknown
linear prevision.

The observational equivalence of min-maxing and robust-satisficing asserts that either can be used
as a mathematical representation of the other. The behavioral difference between these methods
asserts that real decision makers with specific beliefs and requirements need not be indifferent
between these methods.

Probability Bounds Analysis. A probability box, or P-box for short, is an interval of
cumulative (probability) distribution functions (cdf’s). In its simplest form a P-box is specified
by a left-bounding and a right-bounding cdf. Uncertainty is analyzed by propagating the P-box
through the equations which describe the system, resulting in probability bounds on outcomes. P-
boxes are useful when the analyst is unsure about the precise cdf to use. Furthermore, convenient
generic software is available for implementing P-box analyses [54].

The P-box method belongs to the family of non-measure-theoretic set-based representations
of uncertainty, and thus is epistemically similar to info-gap theory. Since an info-gap model of
uncertainty is an unbounded family of nested sets of functions, one can formulate an info-gap
model for uncertainty in cdf’s as a family of nested P-boxes [55]. An ordinary P-box analysis
requires choosing a specific size for the P-box, while the info-gap model does not specify the size.
Nonetheless it is clear that the methods can be combined in a hybrid analysis, as has been done in
a study of portfolio investment [31]. The P-box method is behaviorally neutral or non-committal,
unlike Bayesian analysis which usually entails some type of risk function, or info-gap analysis which
supports robust-satisficing and opportune-windfalling. A P-box analysis can be integrated into
either an outcome-optimizing analysis (e.g. maximizing expected utility or minimizing Bayesian
risk) or an info-gap satisficing or windfalling analysis.

Coherent Lower Previsions. Much has been written on lower previsions; a sketchy mention
of central ideas will have to suffice. A gamble is a utility function, X (w), which depends on an
uncertain state of the world w. That is, utility X (w) results from state w. A lower prevision P(X)
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can be interpreted as the supremum buying price that an agent is willing to pay for the gamble X.
An upper prevision, P(X) is the infinum selling price for the gamble, and is related to the lower
prevision as P(X) = —P(—X) [53]. One measure of the imprecision, incompleteness, or internal
conflict of the agent’s information is the difference between the upper and the lower previsions,
P(X) — P(X). The lower prevision is ‘coherent’ if it satisfies several properties, whose meaning
is that (1) sure losses are not acceptable, (2) a gamble is acceptable if it is sure to be better than
another acceptable gamble, and (3) a positive linear combination of acceptable gambles is also
acceptable [56].

Epistemics. Any coherent lower prevision can be expressed as the lower envelope of a closed
convex set of linear previsions (which are ordinary statistical expectations) [53, p.12]. This connects
the lower prevision to a set of uncertain alternatives, thus establishing a similarity to info-gap
models of uncertainty which are families of sets. However, an info-gap model of uncertainty is
not a single set, but rather an unbounded family of nested sets of uncertain alternatives. While a
closed and bounded set has a worst case, an info-gap model does not (except a vacuous case which
bounds the entire universe of possibilities, if such a case exists at all). Thus the set uncertainty in
info-gap theory is more extreme than the set uncertainty to which coherent lower previsions can
be related.

In addition, the epistemic starting point for coherent lower previsions is (usually) a set of
“judgments and expressions of uncertainty” [53, p.8] such as ‘A is more likely than B’ or ‘If A
then probably B’, and so on. The process of ‘natural extension’ then constructs the coherent lower
prevision from the uncertainty statements. This can be done by finding the set of linear previsions
which are consistent with the uncertainty statements. In contrast, a typical starting point for
an info-gap analysis includes specification of the unbounded family of sets which make up the
info-gap model. (This suggests a possible hybridization which we will mention shortly.) In short,
uncertainty is represented by real-valued functions in the theory of coherent lower previsions, while
in info-gap theory this task is assumed by a set-valued function (the info-gap model of uncertainty).

Another epistemic distinction between the theory of lower previsions and info-gap theory has
to do with imprecision. In the former theory imprecision is evaluated as the difference between
the upper and lower previsions. This difference equals zero in the Bayesian case when probabil-
ities are known precisely. The imprecision that is quantified by the lower and upper previsions
represents “incompleteness or conflict in the available information” [53, p.10], which would have to
be resolved before implementing a Bayesian analysis. An info-gap model of uncertainty represents
incompleteness or conflict in the available information much less informatively, by defining a family
of sets of possibilities. For instance, suppose we have evidence provided by experts. The evidence
is perhaps in part conflicting, and other experts might give different evidence. The incompleteness
and conflict of the evidence can be represented by an info-gap model whose elements are sets of
possible evidence, of which the actual evidence in hand is one such set. In both theories the im-
precision is propagated through to the decision, though the nature of that propagation, and the
impact on the decision, can be quite different.

Behavior. The behavior of the decision maker is a central concern in the theory of lower and
upper previsions, where the interpretation “in terms of buying and selling prices for gambles or
in terms of their implications in other decision problems ... is sufficient to justify the axioms
and calculus of the theory.” [53, p.10] This behavioral interpretation is normative. It identifies
the characteristics of a decision procedure which is rational in the sense of conforming to rules
of consistency for achieving goals desired by the agent: a rational agent shouldn’t accept a sure
loss, etc. This approach to the behavioral formulation of a decision theory is in the tradition of
Ramsey, von Neumann and Morgenstern, Savage, and other early thinkers for whom rationality is
manifested in the concept of ordered preferences together with some form of logical consistency of
preferences (not to imply that these thinkers agreed on all points).

Stated differently, the behavioral interpretation of coherent lower previsions is foundational.
This differs from the behavioral interpretation of info-gap robust-satisficing and opportune-windfall-
ing which put major emphasis on evaluating the confidence in, or feasibility of, required or aspired
outcomes, and revising these requirements or aspirations as a result of analysis. Robust-satisficing
and opportune-windfalling can certainly be related to a foundational logic of preferences. Likewise,
a decision analysis based on coherent lower previsions can enable the decision maker to start over
or revise judgments when outcomes or implications are unacceptable. However, one attraction of
info-gap satisficing and windfalling for actual decision makers is that info-gap theory directly and
immediately incorporates outcome-aspirations in an iterative analysis of uncertainty.

Hybridization. Info-gap theory hybridizes easily and naturally with many disparate decision
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theories, and can be done in many different ways. We will suggest here two possible hybridizations
with lower previsions.

An analysis with lower previsions typically starts by identifying judgments of uncertainty which
the decision maker believes. The procedure of ‘natural extension’ enables the computation of new
lower previsions based on these judgments of uncertainty. One can imagine situations in which the
list of uncertainty judgments is itself uncertain. This may be due to “framing effects”: the way
verbal judgments are phrased can be influenced by the way in which information is presented. Or
it may be due to subtle distinctions which escape the decision maker. For instance, the statement
‘If A then probably B’ is not the same as the statement ‘Probably A, hence B’. However, the
decision maker may not distinguish between them or consider them both. Or, uncertainty in the
list of uncertainty judgments may result from uncertainty about the situation. For instance, in
the Cuban missile crisis Kennedy’s advisors may have been honestly uncertain if they should tell
the president ‘Russia probably does want war between Cuba and the US’ or ‘Russia probably
does not want war between Cuba and the US’. (See [32] for an info-gap analysis of uncertain
knowledge about the preferences of an adversary.) In short, the set M may be uncertain. We may
not know what alternative sets the decision maker might induce if the information is presented or
cogitated differently. One can formulate an info-gap model for uncertainty in the natural extension
of the uncertainty judgments. This info-gap model is a family of nested sets whose elements are
themselves sets of probability distributions. One then asks the info-gap robustness question: how
wrong can the decision maker’s actual specified set, M, be, and any proposed inference or decision
will lead to an acceptable outcome? The analogous windfalling question is also relevant.

The other hybridization of info-gap theory with coherent lower previsions is more direct. One
can construct an info-gap model for uncertainty in the lower prevision function itself, P(X). The
lower prevision inference is again embedded in an info-gap robustness or opportuneness analysis.
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A Evaluating the Robustness and Opportuneness Functions

Robustness. Let p(a,f) denote the inner minimum in the definition of the robustness function,
eq.(8). The robustness is the greatest horizon of uncertainty, a, up to which u(c, ) > E.. The
uncertainty sets, U(«,7), Uy (o, w) and U (o, U;), become more inclusive as « increases. This means
that u(a, £) (which is a minimum on the uncertainty set at horizon «) decreases monotonically as
« increases. Hence the robustness is the greatest value of « at which u(a, ) = E.. Finally, this
implies that p(a, ) is the inverse of the robustness function: a plot of p(a, ) on the horizontal
axis, versus « on the vertical axis, is identical to a plot of E. horizontally versus a(¢, E..) vertically.
This is the basis for evaluating the robustness function.
One can readily derive the following expression for u(a, ¢):
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(15)
The dependence of the righthand side on the chosen LDL level, ¢, arises through c. b is the vector
whose elements are b; = |7;|p;.

Opportuneness. Let M(a,£) denote the inner maximum in the definition of the opportuneness
function in eq.(10). By an argument analogous to the one about u(a, ) we conclude that M («, ¢)
is the inverse of the opportuneness function. That is, a plot of M(«,¥¢) on the horizontal axis
versus « on the vertical axis, is identical to a plot of Ey horizontally versus B\ (¢, Ey) vertically.
This is the basis for evaluating the opportuneness. One finds:
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(16)
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