LA-UR-11-4996

Approved for public release;
distribution is unlimited.

Title:

Author(s):

Intended for:

a

Simulating the Dynamics of Wind Turbine Blades:
Part I, Model Development and Verification

(Manuscript)

Mark G. Mollineaux, Stanford University
Kendra L. Van Buren, Clemson University
Francois M. Hemez, Los Alamos National Laboratory

Sezer Atamturktur, Clemson University

Wind Energy, August 2011

=3
» Los Alamos

NATIONAL LABORATORY

EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security,
LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By
acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish
or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however,

the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)



Wind Energy

WIND ENERGY
Wind Energ. 2013; 16:694-710
Published online 11 July 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/we.1519

RESEARCH ARTICLE
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ABSTRACT

In the state of the art of modeling and simulation of wind turbines, verification and validation (V&V) is a somewhat under-
developed field. The purpose of this paper is to spotlight the process of a completely integrated V&V procedure, as it is
applied to a wind turbine blade. The novelty, besides illustrating the application of V&V to blade modeling, is to challenge
the conventional separation between verification and validation activities. First, simple closed-form solutions for bending
stress, torsional stress and mode shapes of a hollow cylinder are derived analytically to verify the ANSYS finite element
software. Shell-281 elements are used to approximate these closed-form solutions and demonstrate that the software runs
properly. The grid convergence index is used to quantify the degree of numerical uncertainty that results. Next, model
development and verification activities are applied to the CX-100 blade designed at the Sandia National Laboratories.
A three-dimensional model is developed based on the actual geometry of the CX-100 blade. For simplicity, the model
assumes smeared cross sections with uniform, isotropic material properties. Solution verification is performed to quantify
the numerical uncertainty due to mesh discretization of the finite element model. The mesh refinement study provides
evidence that the model leads to numerical solutions located in the regime of asymptotic convergence. We depart from
the conventional V&V paradigm by proposing that the level of mesh discretization should be based on an assessment of
experimental variability. Instead of choosing the mesh size ‘in a vacuum’, it is selected such that the overall numerical
uncertainty caused by truncation effects is similar to, or smaller than, the test-to-test variability. This rationale guarantees
that predictions are sufficiently accurate relative to the level of uncertainty with which physical tests can be replicated.
Part II of this work highlights the V&V steps implemented to quantify sensitivities of the model and further quantify the
prediction uncertainty caused by our imperfect knowledge of the idealized material description. Copyright © 2012 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Wind power in the USA has the potential to supply a major amount of electricity. This objective is outlined by the ‘20%
by 2030’ initiative of the U.S. Department of Energy (DOE), whereby DOE identifies wind energy as a viable source
to contribute to 20% of installed energy, assuming a 39% increase in demand for electricity.! This ambitious objective
has enormous implications for the wind power market that supplied only 2% of electrical energy in the USA by the end
of 2009.

For the increased use of wind energy to be realized, the cost of energy needs to decrease significantly. This can be
facilitated by understanding wind turbine failures so that they can be better prevented. It has been shown that damage to
wind turbine components, such as the generator, drive train, hub, gearbox and blades, can result in periods of downtime,
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in which the wind turbine is temporarily taken out of service.2 The combination of repair and loss in energy production
during downtime can negatively impact the sales and profitability model of an entire wind plant.> This study focuses on
wind turbine blades because they are first in line to capture the kinetic energy of the wind and also produce all of the loads
for the entire system.* Furthermore, even minor damage to blades can progress to serious secondary damage to the entire
wind turbine system.’

Modeling and simulation (M&S) will play an indispensable role in the development of future wind turbine blades,
whether it is to understand blade vibrations, simulate the loading environment that vibrations generate on the main shaft
assembly or predict the occurrence and severity of structural damage. It is also forecasted that M&S will be essential to
filter a wide variety of plausible design concepts down to the most effective ones.®

The current state of the practice of M&S and availability of computing resources for engineering applications necessi-
tate a certain trade-off between the implementation of large-scale, high-fidelity models and the use of simplified models
that are much less computationally expensive. It is desirable to assess, for example, the potential consequences of structural
damage on blade performance, but large-scale models are too demanding of computational resources to be implemented for
rapid prototyping and diagnostics. For this reason, the study presented in this paper and companion publication’ proposes
to develop a finite element model that, although simplified as much as possible, still captures the main dynamics of
interest. Importantly, this trade-off is quantified, allowing the process to run along methodical, and not arbitrary, grounds.
V&V activities discussed in these two manuscripts are essential steps of the model development process to guarantee that
the simplifications introduced are justified for the intended purpose.

In this study, V&V activities are applied in the development of a finite element (FE) model of the CX-100 wind
turbine blade using NuMAD,® pre-processing software developed at the Sandia National Laboratories (SNL) and imported
to ANSYS version 12.1. The CX-100 wind turbine blade is a 9 m research blade developed at the SNL in 2002 as a part of
ongoing research efforts to improve the performance of wind turbine blades.® The CX-100 was developed for the purpose of
studying the performance, and reducing the energy production costs, of wind turbine blade designs that utilize lightweight
carbon fiber material to reinforce the spar cap.” Our main goals are to develop a validated simulation of the low-frequency
dynamics and quantify the uncertainty that arises, both from the potential lack of resolution in calculations and from uncer-
tainty relating to parameter estimation. The dynamics of interest for this study are the first three flap-wise bending modes.
The model developed herein relies on a strong simplification: the cross-sectional areas of the blade are smeared, using
isotropic material properties, instead of modeling the multiple composite layers embedded in an epoxy matrix. Credibility
of the simulation rests on our ability to quantify various sources of numerical, modeling and experimental uncertainties.

The manuscript is organized as follows. Section 2 briefly discusses pertinent literature from the discipline of wind tur-
bine blade modeling and testing. An upper bound of solution uncertainty is derived in Section 3 to guide the selection
of an appropriate level of mesh discretization. Code verification activities are presented in Section 4. Section 5 discusses
the experimental setup and measurements collected from vibration testing. Finally, the upper bound of solution uncer-
tainty (derived in Section 3) is combined to the experimental variability (estimated in Section 5) to arrive at a rational and
scientifically defendable selection of mesh resolution in Section 6.

2. REVIEW OF PERTINENT LITERATURE

An issue relating to the development of FE models was revealed in 2005, when a code verification study of shell elements
was performed to explore whether the implementation of shell elements in FEA software (which have since been modified)
was appropriate to model the torsional response of wind turbine blades.!® The study found that shell elements modeled
with nodes at the exterior surface for a hollow cylinder deviated significantly from the closed-form solution for torsional
stress. This error was especially unfortunate in that the results for the shell elements diverged from the exact solution as
the mesh was refined. This formulation, in which the nodes of the shell element are at the exterior surface (as opposed
to the middle), is common in wind turbine blade modeling. This deficiency of earlier shell elements shows that a simple
code verification study is necessary to establish credibility of numerical simulations because it brings into question the
dependability of FE predictions and M&S efforts performed prior to this finding.

Additionally, verification campaigns frequently execute mesh refinement by less than rigorous methods, in which a mesh
is ultimately selected at an arbitrary density. A common practice is to select the resolution of a mesh discretization by com-
pletely qualitative methods or simply to obey the constraints defined by the computational resource available. To effect truly
credible predictions, verification activities should include quantitative methods of determining the uncertainty of numeri-
cal simulations.!! Selecting a proper mesh discretization can be achieved by several helpful metrics for extrapolation and
quantification of truncation error, which are well understood.'2

Experimental modal analysis (EMA) has been used to study the vibration response of wind turbine blades. There are
two typical testing configurations in EMA: free—free, in which the testing specimen is suspended in the air (using straps or
cushions) such that the response is as though there is no imposed boundary condition, and fixed free, in which movement is
constrained at the support of the testing specimen. Previous studies discuss that the use of a free—free boundary condition,
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although less applicable to reality, is common because it is easy to implement under laboratory conditions.'?'* In com-
parison, it is significantly more difficult to achieve an idealized fixed-end condition in experimental testing of wind turbine
blades. Furthermore, methods have been proposed to quantify uncertainty to account for variability in modal testing of the
SNL research blades.!>~17 In one instance, for a free—free analysis, the variability of test results is quantified to account for
the support conditions, mass loading of the accelerometers, cable effects on the free—free condition and temperature of the
ambient environment. In addition, natural variability is considered to investigate the repeatability of measured natural fre-
quencies from one test specimen to another. The results from these studies help to quantify sources of uncertainty (relative
to each other) and provide important considerations for the free—free modal testing of wind turbine blades.

It is important to propose a robust methodology to develop FE models because as previously observed, there can be vari-
ability during experimental testing of wind turbine blades that will result in slightly different responses.'> In addition to
variation among the blades, further variation will result because of the experimental campaigns (calibration errors, test-to-
test variability, etc.), hence requiring even more robustness in the analysis. This publication and its companion second part
propose such methodology that accounts for the experimental variability, numerical uncertainty and modeling uncertainty
introduced, for example, by the lack of knowledge in constitutive material properties.

3. DERIVATION OF AN UPPER BOUND OF SOLUTION UNCERTAINTY

Because numerical uncertainty is an essential part of our quantification effort for V&V, we start by proposing an upper
bound of solution uncertainty on the basis of the concept of asymptotic convergence. The upper bound arrived at is
compared with the well-known grid convergence index (GCI) of Roache!® and used in Section 6 to select an appropriate
mesh size.

3.1. Derivation on an upper bound of solution uncertainty

The partial differential equations solved by a numerical method, such as a FE software, always provide an approximation
of the ‘exact-but-unknown’ solution of the continuous equations. Such an approximation comes in two steps, according to
the formalism established by the Lax equivalence theorem.!® Convergence states that the code self-converges to a solution
denoted by the symbol y*, or ‘y(Ax) — yx’, as the level of resolution in the calculation increases. Consistency of the
numerical method, on the other hand, provides ‘y* — yPX2_ For simple test problems, the unknown solution y# can
be obtained from modified equation analysis (MEA), as explained in Hirt?® and Warming and Hyett.>! The distinction
between solutions y# and yF*4°t emphasizes that a code could potentially self-converge to a solution that is different from
the exact solution.

For practical applications that involve complicated geometries, boundary conditions or forcing functions, the exact solu-
tion yE¥2t cannot be derived in closed form. Likewise, MEA becomes intractable, which prevents the derivation of the
solution y*. Our purpose, therefore, is to bound the difference |y * —y(Ax)|. For a consistent numerical method, and in
the limit of asymptotic convergence, the discrete solutions y(Ax) converge to the solution y* of the modified equation,
which in turn reduces to the exact-but-unknown solution yE*4t as Ax — 0. Because these solutions are ‘equal’ only in the
asymptotic limit, we seek an upper bound of solution error defined as

ly * —y(Ax)| < U(Ax) - |y(Ax)| (1)

In the application of Section 5, y* denotes the best-possible estimation of an ‘exact-but-unknown’ natural frequency,
whereas y(Ax) is the approximation obtained by running the calculation at mesh size Ax.

A solution for the upper bound U(Ax) can be derived by examining the relationships between the discrete solutions
resulting from a coarse-mesh (Axc) and a fine-mesh (Axg) discretization. If the resolutions Axc and Axp provide discrete
solutions within the regime of asymptotic convergence, the following (approximate) equations can be postulated:

Y*%Y(AxF)—i—ﬂ.Axé’ and Y*”JY(AXC)-i-ﬁ-Axg ?)

where f is a pre-factor coefficient and the exponent p denotes the rate of convergence. This formalism derives from MEA,
as mentioned previously.?! MEA defines a Taylor series-like expansion that is usually infinite and whose sophistication
depends on the combination of partial differential equations solved and properties of the numerical method implemented.

Equations (2) are simple approximations of the MEA where the higher-order terms are ignored, the pre-factor f is
assumed to be constant (which is generally not the case), convergence is monotonic as Ax — 0, and analysis is restricted
to scalar-valued quantities (Hemez?2 offers a generalization to one-dimensional curves or multidimensional fields). These
assumptions translate the fact that truncation effects (caused by mesh discretization) dominate the overall production
of numerical error within the regime of asymptotic convergence. It can be observed that if expressed on a logarithmic
scale, equations (2) define a linear relationship between the errors and mesh sizes. The slope of this linear relationship
(or exponent p) provides the order of accuracy of the numerical method.
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An elementary rearrangement of the well-known triangular inequality |a| + |b| > |a + b| produces the form |¢ — d| >

|c| — |d|. (Simply substitute ¢ = a + b, d = b.) From this, using the quantities
c=y(Axc)—yx* and d = y(Axp)— y* 3)

combined with equations (2) and incorporating the assumption that convergence is monotonic (such that the sign of the
pre-factor coefficient B can be kept constant), results in

|y(Axc) = y(Axp)| = |y * —y(Axc)| — |y x —y(Axp)| =~ B - Ax’ — B- Axf )
Using the mesh refinement ratio defined as R = Axc/Axg > 1, equation (4) becomes
y(Axc) = y(Axp)| = B~ Axf -(RP 1) ®)
Inserting the first one of equations (2) to replace the term S - Axlf in equation (5), we arrive at

[y (Axc) — y(Axp)|/(RP = 1) = |y * —y(Axp)]| (6)

This final equation is the upper bound sought. When the exact solution yEX2t of the continuous equations is unknown,

which is generally the case of a general-purpose FE calculation, one can no longer talk of an ‘error’. The difference
|y % —y(Ax)| in the right-hand side of equation (6) becomes an uncertainty because of truncation effects. The best that one
can achieve is to bound this uncertainty at any given level of mesh resolution Ax.

3.2. Analogy to the grid convergence index

Our proposal for an upper bound U(Ax) of solution uncertainty at mesh resolution Ax is

CAX) — y(A
U(Ax) = |y(R (R);)_ 1y)( x)| ™

where Ax is a characteristic mesh size of the calculation and R denotes the refinement ratio (where, by definition,
R > 1). It is emphasized that definition (7) only requires two calculations at the coarse and fine levels of mesh resolutions
Axc = R-Ax and Axg = Ax, respectively.
This definition is analogous to the GCI of Roache,'?!8 defined as
Fs | y(R-Ax)—y(Ax)

GCIAY) = Gy 5 ) ®)

where Fs denotes the so-called ‘safety factor’ added to provide conservatism and generally chosen within the range
1 < Fs < 3. Clearly, the upper bound (7) of solution uncertainty is related to the GCI by the following equation where
F s = 1:

U(Ax) = GCI(Ax) - |y(Ax)| 9

Even though the definitions are similar, modulo Fg = 1, it is emphasized that the motivation put forth by P.J. Roache is
different. The GCI is explained by Roache! as

The idea behind the proposed GCl is to approximately relate the € [. .. | obtained by whatever grid convergence study
is performed (whatever p and r) to the € that would be expected from a grid convergence study of the same problem
with the same fine grid using p =2 and r =2, i.e., a grid doubling with a second-order method.

This explanation justifies the choice of a safety factor Fs = 3 to cancel out the (R? — 1) term in equation (8). This
renders the GCI of an arbitrary mesh refinement study comparable with a value obtained with R = 2 (grid doubling) and
p = 2 (second-order accurate method).

To the best of the authors’ understanding, the GCI was not proposed initially as an attempt to define an upper bound of
solution uncertainty. Equation (9) sheds new light on an index that can be used to estimate where the ‘exact-but-unknown’
solution y* may be located relative to a discrete solution obtained by analyzing the problem with a level of mesh resolution
Ax. This is analogous to statistics obtained from physical observations, such as a mean value, that come with an uncer-
tainty that estimates the unknown value of the experimental setup. The upper bounds of solution uncertainty presented in
Section 5 are based on equations (8-9) with Fg = 3.

Wind Energ. 2013; 16:694-710 © 2012 John Wiley & Sons, Ltd.
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4. CODE VERIFICATION ACTIVITIES

Code verification is the first step of the V&V study. ‘Spot check’ verification is performed to assure that the FE software
is running properly, without any significant programming mistake that would negatively impact the results sought. One
specific area of concern is that in the past, shell elements have been found to have shortcomings in torsion.'? Because the
first torsion of the wind turbine blade is of interest, this potential issue warrants careful investigation.

To verify the correctness of implementation of shell elements in ANSYS, together with their numerical performance,
a simple hollow cylinder with known analytical solution is modeled. (This, by design, hews closely to the modeling
performed in Laird er al.'%) ANSYS version-12.1 is used to model and analyze this code verification test problem for
which three scenarios are explored: (i) a bending load applied to a fixed-free cylinder; (ii) a torsion load applied to the same
fixed-free cylinder; and (iii) the modal analysis of a fixed—fixed cylinder. These three scenarios feature the same geometry
with different cases of loading and boundary condition.

The varying boundary conditions are explored to assess the ability of the code to predict more than one configuration. In
addition to the fixed-free boundary, a fixed—fixed setup is exercised because implementing a fixed boundary is somewhat
more complicated and, therefore, prone to potential mistakes in the analysis software.

4.1. Verification of the bending stress

The bending stress is verified by reporting results from the shell elements at midsection where there is no membrane-
bending coupling. The closed-form solution for the bending stress is

_M-c
T

where o denotes the maximum normal stress due to bending, M is the bending moment, ¢ is the greatest distance from the
neutral axis and / represents the cross-sectional moment of inertia.

Figure 1 illustrates one of the meshes analyzed where the bending load is applied. The vertical, upward-pointing arrows
indicate the location and direction of the applied load. The analysis of the same test problem is repeated with increasing
levels of mesh resolution. Figure 2 shows the solution error as a function of mesh size. The percentages of solution error
are depicted on the left, and the asymptotic convergence of numerical solutions is illustrated on the right.

It can be observed from Figure 2 that as expected, the solution error decreases as a function of mesh resolution. A model
with fewer than 1000 elements produces less than 1% error between the predicted bending stress and analytical solution
of equation (10). In addition, the log—log representation indicates that solution error converges with a rate of convergence
of p = 2.17. This observation matches expectation because quadratic shell elements, which are expected to produce an
accuracy of pThe™ = 2 are used for discretization. It is concluded that the element is implemented correctly and performs
according to expectation to model the response under bending load.

An inspection of asymptotic convergence in Figure 2 (right) reveals that the convergence is not quite monotonic. Solu-
tions produced by the two finest meshes actually have greater errors than any of the next three solutions obtained with
coarser meshes. The reasons for these oscillations are not apparent, although it is suspected that such effects owe to either
round-off errors or finite elements demonstrating uncharacteristic behavior at sufficiently small sizes. Because our analysis
searches for overall trends using simple power laws, such as the best-fitted model log(|o *—o (Ax)|) = 2.17-log(Ax)—0.61
illustrated in Figure 2 (right), we believe that our conclusions are not adversely affected by this erratic behavior.

o (10)

Figure 1. Definition of the hollow cylinderin-bending test problem.
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Figure 2. Solution error (left) and asymptotic convergence (right) of the bending problem.

Figure 3. Definition of the hollow cylinderin-torsion test problem.

4.2. Verification of the shear stress

A similar analysis is performed for the case of a torsion load. The closed-form solution is

T-r
T = —
J

an

where 7 denotes the maximum shear stress due to torsion, 7" is the torque applied, r is the outer radius of the cylinder and
J represents the polar moment of inertia.

Figure 3 illustrates the test problem where the applied load is indicated by opposite-pointing arrows that define the
torsion. The overall evolution of solution error as a function of mesh resolution is depicted in Figure 4.

As noted previously, it can be observed from Figure 4 that fewer than 1000 finite elements are needed to reach less than
1% error between the predicted shear stress and analytical solution of equation (11). The log—log representation leads to an
observed rate of convergence of p = 2.05. Also noticeable is the stable behavior of the shell element in torsion, as indicated
by a solution error that is more predictable than the error in bending (Figure 3 (right)) as the mesh resolution is refined.
These observations are strong evidence that the shell element implemented in ANSYS performs according to expectation
of second-order accuracy to model the response under both bending and torsion loads.

Wind Energ. 2013; 16:694-710 © 2012 John Wiley & Sons, Ltd. 699
DOI: 10.1002/we



Simulating the dynamics of wind turbine blades: part | M. G. Mollineaux et al.

Torsional Error Cylinder Shear Stress Asymptotic Convergence
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Figure 4. Solution error (left) and asymptotic convergence (right) of the torsion problem.
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Figure 5. Solution errors for bending (left) and torsion (right) natural frequencies.

4.3. Verification of the modal solution

Because the FE model is ultimately used to simulate the vibration response of a wind turbine blade, the ability of the
ANSYS shell element to reach an accurate modal solution also needs to be verified. A third test problem is analyzed to
simulate the vibration of a simply supported, hollow cylinder without axial constraint. Highly accurate approximations
of the natural frequencies of vibration are obtained from Blevins?® and used as substitutes to the ‘exact-but-unknown’
solutions. Figure 5 plots the relative frequency errors in bending and torsion as a function of Ax.

Figure 5 (left) indicates that fewer than 100 elements suffice to predict the first three bending frequencies of the hollow
cylinder to within 1% error or less. Figure 5 (right) shows that a finer mesh with 250 elements converges to less than 0.1%
error, confirming the ability of the shell elements to predict the torsion frequency.

Figure 6 shows the agreement between simulated (left) and closed-form (right) mode shapes for the first three bending
modes. The figure illustrates the excellent level of correlation with which mode shape deflections are predicted. This obser-
vation increases confidence in the ability of the FE model to accurately capture the bending of the main spar cap of the
wind turbine blade.

700 Wind Energ. 2013; 16:694-710 © 2012 John Wiley & Sons, Ltd.
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(a) Simulation (left) and closed-form solution (right) for the first bending mode.

(c) Simulation (left) and closed-form solution (right) for the third bending mode.

Figure 6. Comparison of simulation and closed-form mode shape deflections.

4.4. Verification of the pre-processing software NuMAD

After satisfactorily checking the quality of the ANSYS software, it is next desired to perform accompanying code verifica-
tion studies of the NuMAD pre-processor, developed by SNL to ease the production of FE models of wind turbine blades.
This software receives information of cross-sectional geometry at each station and material properties for each section
comprising the structure. It produces a text file (written in ANSYS parametric design language) that defines an ANSYS
model corresponding to these characteristics.

To verity the suitability of a NuMAD-generated model, the cylinders created in Sections 4.1 and 4.2 are recreated with
NuMAD. The main difference is that constraint equations are imposed for all nodes at the tip, or free, end of the blade so
that the shape cannot be deformed. However, the material properties are stiff enough in the unconstrained, ANSY S-based
setup that effects of this change never become apparent. Mesh refinement is performed to assess the performance of the
NuMAD-generated model for bending and shear stresses.

The results are similar to those obtained previously. As an alternative illustration of the convergence upon the true solu-
tion, Figure 7 shows the bending and torsional stress solutions when solved by ANSY'S using the NuMAD pre-processor.
The analysis uses the GCI to describe the bounds of solution uncertainty due to truncation error (see equations (8-9) of
Section 3). Stress values and uncertainty bounds are shown in Figure 7 as a function of element size. The upper bounds
function as expected: the exact solutions of equations (10) for bending and (11) for torsion are converged upon as the
element size is refined. Even though not indicated by Figure 7, it is also verified that for larger element sizes, the upper
bounds always contain the exact solutions.

Figure 7 indicates that one significant difference between bending (left) and torsion (right) is that asymptotic convergence
is monotonic in the latter case, hence producing one-sided bounds of solution uncertainty. On the other hand, convergence
of the bending stress is oscillatory, which leads to two-sided bounds of uncertainty since the two cases ‘y(Ax) > y*’ and
‘yx > y(Ax)’ are possible as Ax — 0. On the basis of the agreement between the exact and discrete solutions for the
NuMAD-created cylinder test problem, it is deemed satisfactory that the pre-processing software accomplishes the basic
function it purports to do.

5. EXPERIMENTAL MODAL ANALYSIS OF THE WIND TURBINE BLADE

At this point of the study, the ANSYS code for FE modeling and its pre-processor software NuMAD have undergone
sufficient code verification activities for the purpose intended. A model of the CX-100 wind turbine blade is generated,
as described in Section 6. One lingering question in the development of the FE model is the selection of an appropriate
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Figure 7. Solutions for bending (left) and torsion (right) stress, with uncertainty bound.

Figure 8. Free—free modal testing configuration (left) and close-up of excitation grid (right).

mesh size for the calculations. This question refers to the level of discretization needed to support sensitivity analysis and
uncertainty quantification.’

Modal testing of the CX-100 blade is performed under free—free and fixed-free boundary conditions at Los Alamos
National Laboratory (LANL). These measurements are used not only to calibrate parameters of the simplified model as
explained in Van Buren ez al.” but also to guide the choice of an appropriate level of mesh resolution. This is a significant
departure from the common V&V paradigm that tends to promote a strict separation between code verification activities
and comparison between predictions and measurements. It is emphasized that only the experimental variability, and not
the measured response, is used.

Testing includes exploring the overall levels of experimental variability that result from using different setups where
excitation locations, excitation types and support conditions are varied to quantify their potential effects on system iden-
tification. Roving impact hammer test is performed to collect modal data with uniaxial accelerometers at three locations
on the blade. A linear average with five repeats and a 150 Hz sampling frequency is used. The acceleration response is
measured for 11 s. No window function is applied because of the relatively long sampling period. Figure 8 depicts one of
the setups tested (left) and shows a close-up of the grid used to record locations used for excitation and sensing (right).
Van Buren er al.” discussed the effect that varying these configurations has on the identification of resonant mode shapes
and natural frequencies, in comparison with corresponding predictions of the FE model.

The experimental investigation also includes performing linearity and reciprocity checks to verify the quality of datasets
collected. A linearity check consists of testing the CX-100 blade with increasing levels of force excitation. A structure
that responds linearly, which is a fundamental assumption of the system identification method used to extract the resonant
modes, should yield similar frequency response function (FRF) curves regardless of the applied force. A reciprocity check
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Figure 9. Verification of linearity (left) and reciprocity (right) during modal testing.
Table I. Statistics of system identification obtained for the CX-100 blade.
Type of mode Mean statistic (Hz) Standard deviation (Hz) Variability? (%)
First flap-wise bending 7617 0.004 0.06
Second flap-wise bending 20.167 0.055 0.27
Third flap-wise bending 32.256 0.051 0.16

aThe coefficient of variance listed in the last column is defined as the standard deviation (third column) divided by the mean (second
column). These statistics are based on 27 replicates for the free—free vibration tests.

consists of swapping pairs of excitation and sensing locations to compare FRF curves. Another assumption of linear struc-
tural dynamics is that the load path from point A to point B is identical to the reverse path. Establishing that the FRF curves
are, again, similar verifies the assumption of reciprocity.

Figure 9 illustrates that for these series of modal tests, the CX-100 blade behaves as a linear structure and exhibits
reciprocity. The FRF curves compared on the left originate from modal tests performed with different levels of force exci-
tation. It is observed that their agreement is excellent. Likewise, the curves compared on the right of Figure 9 originate
from a reciprocity test at two locations, and the same conclusion is reached. The reader is referred to Deines ef al.?* to
learn further details about the experimental setup and results of these vibration tests.

The levels of variability observed are quantified and listed in Table I, summarizing results for testing the blade with
free—free boundary conditions. Overall, very low levels of variability are obtained, which are due to replicated modal tests
on the same wind turbine blade. This quantification of experimental variability does not account for specimen-to-specimen
variability, experimenter variability or test setup repeatability. These results are also used in the companion publication as
‘baseline’ for inference of the idealized material properties of the FE model.”

Besides providing important information for test-analysis correlation, the statistics of Table I are also used to guide the
selection of a mesh size Ax at which the subsequent parametric studies (sensitivity analysis, inference uncertainty quan-
tification, etc.) are conducted. The maximum level of experimental variability observed is 0.27% for the second free—free
bending mode.

Since this value corresponds to one standard deviation o, the £30 (two-sided) bounds are equal to 1.62% variability.
These +30 bounds are adopted to characterize the experimental variability since they account for 98% of the total prob-
ability mass, assuming a Gaussian probability law. This choice yields a fair comparison with the bounds of total solution
uncertainty quantified in Section 6.2, where the mesh size is chosen such that the numerical uncertainty is similar to this
1.62% variability for predictions of the resonant frequencies.

6. SOLUTION VERIFICATION AND QUANTIFICATION OF
NUMERICAL UNCERTAINTY

This section starts by describing attributes of the FE model developed to simulate bending deformation shapes of the
CX-100 wind turbine blade. The main assumption that enables fast-running calculations, namely the use of homogenized
material properties, is proposed. Solution verification is carried out, first, to assess the numerical performance of the model
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and, second, to choose a mesh resolution that results in an appropriate level of numerical uncertainty. Finally, the behavior of
the NuMAD pre-processing software is revisited to assure that its mesh sensitivities do not produce adverse consequences
for the FE model developed.

6.1. Development of a simplified model of the CX-100 blade

The model of the CX-100 blade is developed with the NuMAD pre-processor and imported into the ANSYS software. The
blade is 9 m long, and its geometry is represented in the model using design specifications with as few simplifications as
possible. Figure 10 provides a comparison of the simplified FE model used in this study to a high-fidelity FE model, which
can more accurately capture the taper of materials used to define the root section.

The model used in this study is achieved by segmenting the geometry of the blade into a small number of sections and
defining smeared properties for each section. This is carried out, in contrast to the type of modeling provided in Figure 10,
because a high-fidelity model is computationally too expensive to lend itself to the parametric studies that we wish to
pursue. It is emphasized that the number and definition of smeared sections are considered to be a model-form choice, as
opposed to a discretization, which implies that the ‘convergence’ of the vibration response as a function of the number
of sections is not currently studied. The ability of the simplified model to predict the bending modes of vibration with
reasonable accuracy is discussed in Van Buren er al.”

Six sections are defined: the shear web, root, spar cap, trailing edge, leading edge with balsa and leading edge without
balsa. Figure 11 represents five of these sections, whereas the interior shear web is illustrated in Figure 12. To reflect the
tapering of the edges in the real-life structure, the trailing edge and leading edge of the blade are further subdivided into
three subsections of differing stiffness coefficients.

Within each section, an isotropic material is defined by assuming smeared cross-sectional properties. The validity of this
simplification is explored in Van Buren er al.” by performing sensitivity analysis, uncertainty quantification and compar-
isons between model predictions and physical measurements. The rule of mixtures is utilized to homogenize the composite

Figure 10. High-fidelity CX-100 ANSYS model with detailed cross-sectional modeling.

Leading Edge Leading
Root with Balsa Edge

Trailin
Spar Cap Edgeg

Figure 11. lllustration of the ANSYS model showing different sections of the blade.
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Figure 12. lllustration of the ANSYS model's shear web located inside the blade.

///

Figure 13. Six meshes used to assess the asymptotic convergence of vibration modes.

cross sections.?> On the basis of the structure of composites, the rule of mixtures blends together the differing material
properties and estimates the material property of an equivalent isotropic material.

One important aspect of performing numerical simulations is to assess if the equations of motion, or conservation
laws, are discretized with enough resolution to produce ‘good-quality’ numerical solutions. A mesh convergence study
is performed to verify the performance of the ANSYS software, as applied to the CX-100 blade model, and determine
an appropriate level of mesh resolution for the calculations. Our decision criteria are to, first, reach a level of numerical
uncertainty that is comparable with, or smaller than, the overall experimental variability, while also being capable to run a
linear, modal extraction on a PC platform in fewer than 60 s.

6.2. Mesh refinement and quantification of truncation error

After having scripted and automated the execution of the FE model, over 20 meshes are analyzed to predict the low-order
resonant modes. Figure 13 illustrates six of these calculations, where the figures from left to right show progressively lower
levels of mesh resolution. Figure 14 reports the values of predicted resonant frequencies as a function of mesh size. The
three natural frequencies shown are the three modes targeted: first, flap-wise bending (mode 1); second, flap-wise bend-
ing (mode 3); and third, flap-wise bending (mode 4). It is clear from the figure that these resonant frequencies exhibit a
satisfactory degree of convergence as the number of elements of the discretization increases.
The numerical uncertainty due to truncation error, that is, lack of resolution in the calculation, is bounded as explained
in Section 3 for the three bending frequencies of interest. These upper bounds are defined as
w * —w(AX)
e <uan) (12

where wx is the best-possible estimation of the ‘exact-but-unknown’ frequency whereas w(Ax) is the approximation
obtained by running the calculation at mesh resolution Ax. The uncertainty bound U(Ax) is related to the GCI through
the introduction of a safety factor Fg, as illustrated in equations (8) and (9). When the solution w* is estimated, for exam-
ple, through the method of Richardson’s extrapolation, it is possible to examine the solution error and assess asymptotic
convergence.'? This extrapolation scheme leads to an approximation obtained simply as

w(Ax) —w(R- Ax)
RP — 1

w* ~ w(Ax) + (13)
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Figure 15. Asymptotic convergence of frequencies as a function of mesh resolution.

Figure 15 illustrates the behavior of solution error |w* —w(Ax)| as a function of mesh size Ax for the same three modal
frequencies as those of Figure 14, where the exact solution is approximated by applying equation (13) to the two finest
levels of mesh resolution.

Convergence is observed even though five to seven models analyzed with the coarsest levels of resolution are located in
a non-asymptotic region where refining the mesh does not necessarily decrease the truncation error. These under-resolved
calculations are disregarded for the purpose of best-fitting the model of truncation error |® * —w(Ax)| = - AxP, whose
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Mesh Convergence for the ANSYS Model of the CX-100 Blade
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Figure 16. Values of the grid convergence index for the first three flap-wise bending modes.

definition applies only within the asymptotic regime of convergence. The log—log scale of Figure 15 indicates that conver-
gence is nearly second order for the models located in the asymptotic regime. This is confirmed by a quantitative analysis
that best fits the two unknowns (8; p) of simple power-law equations |® * —w(Ax)| = B - AxP to the error data of
Figure 15. The observed rates of convergence are equal to p = 1.82 for the first flap-wise bending mode, p = 1.89 for the
second flap-wise bending mode and p = 2.43 for the third flap-wise bending mode. It implies that second-order accuracy
is achieved for the modal analysis.

Figure 16 shows the GCI obtained with a safety factor of Fs = 3. Three bending frequencies are denoted by different
symbols. The dashed line illustrates the goodness-of-fit obtained with a simple power-law equation GCI (Ax) = - Ax?
for the average GCI. Best-fitted coefficients equal to f = 0.044 and p = 1.98 lead to, again, strong evidence of second-
order accuracy. On the basis of these observations, the hypothesis that the finest levels of mesh resolution provide solutions
within the regime of asymptotic convergence cannot be rejected.

So far, the mesh refinement results have been analyzed to assess the performance of the FE software. Although observing
second-order accuracy is reassuring, it may not be of great practical interest given that the code verification activities of
Section 4 have already concluded to the lack of significant implementation issue for the intended purpose. It is, however, a
first step needed to support the quantification of solution uncertainty. What is more valuable to the practicing engineer is to
select an appropriate mesh size to pursue the parameter studies of Van Buren et al.”

Often, the strategy to select a mesh size is ‘run as fine a mesh as computationally feasible’. This approach may lead to
a waste of resources when the resolution employed is too fine. It is also unsatisfactory in the context of V&V because this
rationale does not take into account the intended purpose of the numerical simulation, desired level of prediction accuracy
and overall reproducibility of experimental testing (whenever available). In this work, an alternative strategy is proposed on
the basis of the overall level of experimental variability. While challenging the conventional separation between verification
and test-analysis correlation, our proposal offers the advantage of avoiding to select a mesh size in a ‘vaccum’.

Our guiding principle is to use a mesh discretization that provides an overall level of numerical uncertainty comparable
with the experimental variability. The rationale is that there is no reason to provide significantly more prediction accuracy
than the level with which the response can be measured when experimental testing is replicated.

Table II lists the GCI of equation (8) obtained with a safety factor of Fg = 2. This choice is made, instead of Fg = 3
used in Figure 16, by analogy to the =30 bounds of experimental variability of Section 5 that are two sided. Our contention
is to select a mesh size that leads to a numerical uncertainty similar to the 1.62% level of experimental variability. Another
constraint imposed by the parameter studies is to minimize time to solution. The 7 cm mesh, although it satisfies the first
criterion, does not provide modal solutions in fewer than 60 s on our PC computing platform (Intel single-core, 2 GHz pro-
cessor, 4 GB memory, Windows 7 operating system). It is decided that the next level of mesh size provides the best trade-off
between the two competing constraints. The solution uncertainty obtained at Ax = 8 cm is the fourth row highlighted in
bold in Table II. The 8 cm mesh calculates modal solutions in fewer than 60 s while yielding 1.78% solution uncertainty,
on average, which meets the objective of comparing favorably with the 30 bound of 1.62% variability assessed from
Table I.
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Table Il. Grid convergence index (GCI) for predictions of the three bending modes of interest.

Mesh size, Ax (cm) First mode GCI (%) Third mode GCI (%) Fourth mode GCl (%) Mean GCl (%)
5.0 0.77 0.61 0.67 0.68
6.0 11 0.94 1.16 1.07
70 1.50 1.29 1.73 1.51
8.0 1.73 1.50 2.10 1.78
9.0 1.99 173 2.53 2.08
10.0 2.30 2.01 3.06 2.46

These calculations are based on a constant safety factor, Fs = 2; see equation (8).
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Figure 17. Stress values for different meshing options of the shear web.

To pursue the parameter studies of Van Buren ez al.,” the decision is made to “freeze’ the resolution at Ax = 8 cm. It
gives a FE model with 3070 elements from which the resonant modes can be extracted in 60 s, approximately.

6.3. Mesh sensitivity introduced by the pre-processing software NuMAD

Through the course of the above analyses, several other variables are altered to explore their potential effects upon the trun-
cation error. Notably, it is attempted to explore different meshes by overriding the default meshing method implemented
by the pre-processor NuMAD and assign a coarser or finer mesh to the shear web than the resolution used for the other
structural components of the CX-100 model. This study involves creating and running a separate post-processor to modify
the output generated by the NuMAD software.

Figure 17 illustrates qualitative results for a bending stress analysis and a torsional shear stress analysis, using three
different options of shear web meshing—a coarse, medium and fine mesh (as compared with the other components of the
model). The values of stress are depicted as a function of mesh size for the other, non-shear-web elements. Our hypothesis
is that there is no reason to observe any significant cross-sensitivity between the mesh size used to discretize the shear web
and the mesh size used to discretize the other components.

The results yield some surprising findings: in neither case is the effect of the mesh size of the shear web on the resulting
stress monotonic. The predictions obtained with the medium mesh size for the shear web are, in each case, extreme, when
they instead would be expected to lie between predictions obtained with the coarser and finer levels of resolutions. The
calculations exhibit the expected behavior at any given level of shear web resolution, that is, moving along one of the
datasets as Ax — 0. What is unexpected is to observe the extent to which predictions are sensitive to the combination of
mesh sizes for the shear web and other components.

No explanation for this effect is readily apparent. These observations are nevertheless made in the interest of full dis-
closure of the results obtained. For all results other than those discussed in this section, FE models are generated from the
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default, homogeneous mesh option of the pre-processor. The mesh cross-sensitivity observed is therefore not believed to
be detrimental to the quality of our numerical predictions.

7. CONCLUSION

This publication discusses the development of a FE model for the CX-100 wind turbine blade and overviews some of the
analysis procedures implemented to verify the code, quantify the overall level of solution uncertainty due to truncation
error and compare it with experimental variability. These are some of the activities typically deployed in a V&V study.
Other activities that include sensitivity analysis, the propagation of parametric uncertainty from inputs of the model to its
predictions and the calibration of model parameters are addressed in a companion paper for the same application.”

To rigorously quantify numerical uncertainty in the absence of an exact solution to the equations of motion, or conserva-
tion laws, being solved, an upper bound of solution error is derived. An analogy is made with the well-known GCI when a
specific value of its safety factor is implemented. Another novelty of this publication is to propose a criterion based, on the
one hand, on time-to-solution and, on the other hand, on a comparison-to-experimental variability to select an appropriate
level of mesh resolution for the calculations.

Our investigation concludes that the analysis code is adequate to model the low-order bending and torsion dynamics
of interest, mainly on the basis of the shell-281 FE of the ANSYS software. Comprehensive mesh refinement studies are
performed not only to assess the regime of asymptotic convergence of predictions but also to select a mesh size that yields a
numerical uncertainty that is suitable on the basis of the experimental context. The experimental variability observed when
performing modal tests of the CX-100 blade with different support setups is quantified and used to guide the selection of
mesh resolution. On the basis of the findings discussed in this paper, the FE model is deemed verified and ready for further
validation and uncertainty quantification studies discussed in Van Buren ez al.”
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