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Abstract The likelihood ratio test (LRT) has attractive failure-detection properties. However,

evaluating the likelihood ratio and implementing the LRT require knowledge of the underlying proba-
bility distributions. Data or knowledge, especially about future failures, is often quite limited. In this
paper we employ the info-gap robustness function in specifying the parameters of the LRT when the
probability distributions are imperfectly known. We develop an info-gap analog of the probabilistic
detection-error trade off curve, and demonstrate the results by application to pressure measurements
on an industrial production device.
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1 Introduction

Failure detection is the discovery of the occurrence of anomalous behavior, as distinguished from
failure diagnosis that characterizes the nature and origin of the anomaly. We employ info-gap theory
in formulating a failure detection algorithm based on the likelihood ratio test (LRT), given imperfect
knowledge of the probability distribution of future failures.

Failure detection has been studied systematically and in depth at least since the early decades
of the 20th century, and is the subject of numerous books and articles studying both theory and
application. This literature applies a wide range of tools from statistics and signal processing. For
instance, Gertler (1998, chap. 11) applies statistical tests on residuals (the difference between mea-
surements and model predictions) to detect the presence of failure. Patton, Frank and Clark (1989)
discuss a range of filter and observer techniques for failure detection. Williams (1998) summarizes
model-based failure detection. Willsky (1976, 1984) discusses likelihood ratio methods for detec-
tion of abrupt changes. Pau (1981, chap. 4) explores time-minimization statistical tests. Basseville
and Nikiforov (1993) provide a masterful and very accessible discussion of statistical tools—especially
based on the likelihood ratio concept—for detecting abrupt changes in dynamical systems. Campbell
and Nikoukhah (2004) explore interrogative methods—applying external signals—for failure detec-
tion. We mention just a few of the myriad recent specific applications. Tibaduiza et al. (2013) build
statistical models of dynamic behavior for detecting and classifying damage in structural health
monitoring. Hwang, Lee and Hwang (2013) develop a condition monitoring method based on likeli-
hood change of a stochastic model of the system in normal operation. Earls (2013) uses non-contact
and very sparse contact inspection methods for non-destructive evaluation and testing for hidden
corrosion in steel bridge connections.

Much effort has been invested in studying the relations among these various approaches to failure
detection. Quite often seemingly distinct methods—such as likelihood ratio tests and residual parity
checks—are equivalent in the sense that either method can be represented by the other (Basseville and
Nikiforov, 1993, p.241). Nonetheless, representationally equivalent methods may be very different
in computational difficulty or in their requirements for prior information. The choice of a failure
detection strategy depends on the type of system, the type of failure, and the available information.

The LRT has an optimality property that make it very attractive: minimal probability of missed
detection (type II error), for given probability of false alarm (type I error). However, evaluating the
likelihood ratio and implementing the LRT requires knowing the underlying probability distributions.
Data or knowledge, especially about future failures, is often quite limited. In this paper we employ the
info-gap robustness function to specify the parameters of the LRT when the underlying probability
distributions are imperfectly known.

Robustness to uncertainty is a central concept in many approaches to failure detection. Chow
and Willsky (1984), Gertler (1988), Frank (1990) and many others discuss methods of “analytical
redundancy” and “residual generation” for exploiting redundant information in system models to
enhance robustness against modeling error. Ding et al. (2000) continue this direction and discuss
observer-based methods for robustly detecting unknown inputs to linear time-invariant systems.

‘Robustness’ has many meanings. The concept of robustness used in this paper derives from
a prior concept of non-probabilistic uncertainty. Knight (1921) distinguished between ‘risk’ based
on known probability distributions and ‘true uncertainty’ for which probability distributions are
not known. Similarly, Ben-Tal and Nemirovski (1999) are concerned with uncertain data within a
prescribed uncertainty set, without any probabilistic information. Likewise Hites et al. (2006, p.323)
view “robustness as an aptitude to resist to ‘approximations’ or ‘zones of ignorance’”, an attitude
adopted also by Roy (2010). We also are concerned with robustness against Knightian uncertainty.
We consider uncertainty in probability distributions but we do not pursue an explicitly statistical
approach to robustness as studied by Huber (1981) and many others.

Our approach is in the tradition of Wald. Wald (1945) studied Knightian uncertainty in the
problem of statistical hypothesis testing based on a random sample whose probability distribution
is not known, but whose distribution is known to belong to a given class of distribution functions.
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Wald states that “in most of the applications not even the existence of . . . an a priori probability
distribution [on the class of distribution functions] . . . can be postulated, and in those few cases
where the existence of an a priori probability distribution . . . may be assumed this distribution is
usually unknown.” (p.267).

In this paper we quantify Knightian uncertainty using info-gap theory (Ben-Haim, 2006; info-
gap.com). Info-gap theory has been applied to various problems of statistical inference where prob-
abilistic properties or distributions are incompletely known. Pierce, Worden and Manson (2006) use
info-gap theory in assessing the reliability of artificial neural nets for damage detection. Zacksen-
house et al. (2009) use info-gap theory in managing data uncertainty in linear regression for neural
decoding of brain-machine interfaces. Ben-Haim (2010) employs info-gap theory in regression of eco-
nomic data and for confidence interval estimation given uncertain probabilities. Mirer and Ben-Haim
(2010) use info-gap theory in the design and analysis of “penalty tests” in which excess stresses are
applied to an explosive material in assessing its safety against accidental actuation and its reliability
of operational actuation. Ben-Haim (2011) applies info-gap theory in statistical evaluation of null
results—not detecting the presence of a prenicious agent—when the degree of statistical correlation
between observations is uncertain.

The basic properties of the LRT are discussed and illustrated in sections 2 and 3. The robustness
function is formulated in section 4, and demonstrated on industrial data in section 5. Specification of
the parameters needed for implementation of the LRT algorithm, and use of the robustness function
in assessing confidence in the decision, are illustrated in section 6. We also demonstrate an info-gap
analog of the probabilistic detection-error trade off curve (also known as the Receiver Operating
Characteristic, or ROC).

2 Statistical Concepts and Hypothesis Tests

In this section we define the requisite statistical concepts and notation.
Probability distributions and innovations. Our task is to detect the occurrence of change in

the system. Let θ be a vector of parameters that specifies the system, where θ0 and θ1 are the values
before and after the onset of failure, respectively. We will assume that θ0 is known from system
identification in failure-free conditions, while θ1 is unknown or highly uncertain.

We assume that we have access to the inputs and outputs of the system. A set of consecutive
control inputs is denoted Zj

i = {zi, . . . , zj} at time steps i, i+1, . . . , j. A set of consecutive output

measurements is denoted Xj
i = {xi, . . . , xj}.

The measured output vector xi is a random variable whose probability density function (pdf) is
denoted p(x|θ). Thus x is distributed according to p(x|θ0) before failure, and according to p(x|θ1)
after failure. We will assume that p(x|θ0) is known or reliably estimated. In contrast, we are uncertain
about some aspects of p(x|θ1).

Given measured inputs Zi
1 and outputs X i−1

1 and a specification θ of the system we can construct
the conditional pdf of the next output, xi, denoted p(xi|Zi

1, X
i−1
1 , θ). This may employ system

identification, or state-estimators such as the Kalman filter. If i = 1, so that x1 is the first output,
we define p(x1|Z1

1 , X
0
1 , θ) as p(x1|z1, θ). We can write the joint pdf of the outputs Xm

1 as:

p(Xm
1 |θ) =

m∏
i=1

p(xi|Zi
1, X

i−1
1 , θ) (1)

We can then evaluate the conditional expectation of xi+1, denoted E(xi+1|Zi+1
1 , Xi

1, θ). When
xi+1 is observed we can calculate the innovation:

yi+1 = xi+1 − E(xi+1|Zi+1
1 , Xi

1, θ) (2)

A consecutive sequence of innovations is denoted Y j
i = {yi, . . . , yj}. If θ is a correct specification

of the system, then, in many situations, the innovations Y j
i are zero-mean and uncorrelated, or

sometimes even statistically independent.
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Hypotheses. Given inputs Zm+1
1 and outputs Xm

1 (indexed with respect to the start of a given
data window), we wish to decide between the following two hypotheses. Hypothesis H0 states that
no change has occurred in the system. Hypothesis H1 states that change in the system has occurred,
or begun, at time step ic. These hypotheses are stated more formally as follows.

H0 : θ = θ0, 1 ≤ i ≤ m (3)

H1 :

{
θ = θ0, 1 ≤ i < ic
θ = θ1, ic ≤ i ≤ m

(4)

ic denotes the time step at which change began. Thus, according to hypothesis H1, measurements
Xic−1

1 are governed by θ0, and measurements Xm
ic are governed by θ1. Beginning in section 4 we will

deal with the uncertainty in θ1.
Decision function. Given inputs Zm+1

1 and outputs Xm
1 , D denotes the decision algorithm for

choosing between the hypotheses:

D =

{
0 : Accept H0

1 : Reject H0
(5)

Our task is to choose a specific structure for decision algorithm D.
Error probabilities. A decision algorithm can err in either of two ways. The algorithm could

falsely reject H0, which is called a type I error or “false alarm”, or it could falsely reject H1, called
a type II error or “missed detection”. The probabilities of these errors depend on the choice of the
decision function, D. Hence evaluation of these error probabilities can be used to evaluate and choose
the decision function.

Given inputs Zm+1
1 and outputs Xm

1 , the probabilities of type I and type II errors are formally
defined as:

α0 = Prob (D = 1|H0) (6)

α1 = Prob (D = 0|H1) (7)

α0 is the probability of type I error: the probability that the algorithm will decide in favor of H1

when in fact H0 holds. α0 is the probability of false alarm. α1 is the probability of type II error: the
probability that the algorithm will decide in favor of H0 when in fact H1 holds. α1 is the probability
of missed detection. It is well known that these two detection-error probabilities trade off against
one another as the specification of the decision algorithm is changed.

Likelihood ratio. Given an innovation, yi, at time ti, the log of the likelihood ratio is:

si = ln
p(yi|Zi

1, X
i−1
1 , θ1)

p(yi|Zi
1, X

i−1
1 , θ0)

(8)

Given inputs Zm+1
1 and outputs Xm

1 , we define the log likelihood ratio of the innovations as:

Sm
1 = ln

∏ic−1
i=1 p(yi|Zi

1, X
i−1
1 , θ0)

∏m
i=ic p(yi|Z

i
1, X

i−1
1 , θ1)∏m

i=1 p(yi|Zi
1, X

i−1
1 , θ0)

(9)

=
m∑

i=ic

si (10)

Sm
1 is sometimes called the cumulative sum of the log likelihood ratios.
Likelihood ratio test. The likelihood ratio test (LRT) is defined as follows. For any fixed value

of λ, decide between hypotheses H0 and H1 according to:

D =

{
0 if Sm

1 < λ (Accept H0)
1 if Sm

1 ≥ λ (Reject H0)
(11)

The Neyman-Pearson lemma specifies widely occurring conditions under which the likelihood
ratio provides an optimal test. The lemma also provides a statistical meaning of optimality. Roughly
speaking, the LRT has maximum power from among all tests of the same significance (Basseville and
Nikiforov, 1993, p.129).
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3 Nominal Implementation of the LRT: Known Normal Distribu-
tions

We first briefly consider the implementation of the LRT given full probabilistic information.
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Figure 1: Innovations from an industrial production device.

Fig. 1 shows innovations calculated from pressure measurements on an industrial production
device that is supposedly operating normally and for which the conditional expectation in eq.(2) is
effectively zero. The innovations fluctuate erratically around zero as we expect for normal operation.
The vast majority of the innovations are less than 0.004 in absolute magnitude; some values exceed
0.005 and rarely reach 0.01. The number of observations is 99,998, taken at 2-second intervals and
thus cover about 55 hours.

We base the LRT on the assumption of normal distributions of the innovations under both
hypotheses, and knowledge of the moments of these distributions. That is, the hypotheses in eqs.(3)
and (4) are:

H0 : yi ∼ N (µ0, σ
2
0), 1 ≤ i ≤ m (12)

H1 :

{
yi ∼ N (µ0, σ

2
0), 1 ≤ i < ic

yi ∼ N (µ1, σ
2
1), ic ≤ i ≤ m

(13)

where µi and σ2
i are specified for i = 0, 1.

The log likelihood ratio of a sequence of innovations, eq.(10), is:

Sm
1 = (m− ic + 1) ln

σ0
σ1

+
1

2σ2
0

m∑
i=ic

(yi − µ0)
2 − 1

2σ2
1

m∑
i=ic

(yi − µ1)
2 (14)

We note that evaluation of the likelihood ratio depends on the innovations and on the probabil-
ity distributions under both hypotheses. H0 is accepted or rejected by comparing Sm

1 against the
threshold, λ, as stated in eq.(11).

Fig. 2 shows the log likelihood ratio, Sm
1 in eq.(14), with µ0 = 0 and σ0 = 0.0015, which are very

close to the sample mean and standard deviation of the entire data set, and µ1 = 0 and σ1 = 0.005
which represents a possible altered condition. The entire data set is divided into short test windows,
each containing 600 data points, so m = 600. Failure is hypothesized to start at the 450th datum in
each window, so ic = 450.

Suppose, as an example, that the decision threshold is λ = 100. From eq.(11) and fig. 2 we see
that H0 is accepted throughout most of the data set, except for repeated rejections of H0 in the time
interval from 25,000 to 35,000 seconds, around 120,000 seconds, and around 190,000 seconds.

We now explore the robustness of decisions such as these, in the face of uncertainty in the
statistical properties of the data after onset of failure.
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Figure 2: Nominal cumulative-sum log likelihood ratio.

4 Robustness of the Likelihood Ratio Test

In section 4.1 we define and discuss the info-gap model for uncertainty in the pdf under failure
hypothesis H1. In section 4.2 we formulate two info-gap robustness functions.

4.1 Info-Gap Models of Uncertainty

We distinguish between the uncertain pdf’s of the innovations p(y|θi) under hypothesesHi (i = 0 or 1)
and their known estimates, p̃(y|θi), which will be referred to as the ‘nominal’ pdfs. The uncertainty in
these distributions is quantified using an info-gap model. We will shortly consider a specific example,
but for now it is sufficient to define a generic info-gap model for uncertainty in the pdf’s.

In this context, an info-gap model is a unbounded family of nested sets of pdf’s (p(y|θ0), p(y|θ1)).
All info-gap models, denoted U(h) for h ≥ 0, have two properties:

Contraction: U(0) = {(p̃(y|θ0), p̃(y|θ1))} (15)

Nesting: h < h′ =⇒ U(h) ⊆ U(h′) (16)

‘Contraction’ states that the uncertainty set U(0) is a singleton, containing only the estimated pdf’s.
‘Nesting’ asserts that the uncertainty sets U(h) become more inclusive as h increases. These two
properties endow h with its meaning as an horizon of uncertainty. The value of h is unknown so an
info-gap model is an unbounded family of nested sets of uncertain entities.

The info-gap model represents severe uncertainty about the estimated pdf’s in the sense that there
is no known worst case and that there is no known probability measure on the space of uncertain
entities. This sort of non-probabilistic uncertainty is sometimes called “true uncertainty” (Knight,
1921) or “deep uncertainty” (Lempert, et al., 2003). The robustness functions to be discussed in
section 4.2 quantify the impact of this uncertainty on the interpretation of the LRT decision. The
generic results derived from these properties are illustrated in a specific industrial example. The
uncertainty is also severe because of the large potential impact of an uncertain failure in an industrial
context. Even seemingly innocuous system changes can have huge impact on production processes
and product quality.

Consider a specific example, to which we will return later. First suppose that p(y|θ0), the pdf of
the innovations under the no-failure hypothesis H0, is known and normal. There is no uncertainty
in p(y|θ0) so it need not be distinguished from its estimate, p̃(y|θ0), and hence it is not included in
the info-gap model.

Furthermore suppose that strong evidence exists that p(y|θ1), the pdf of the innovations under
failure hypothesis H1, is normal. However, the mean and standard deviation of p(y|θ1) are highly
uncertain because the origin and nature of the failure—if there is one—is unknown.

We have estimates of the mean and standard deviation of p(y|θ1), denoted µ̃1 and σ̃1, but these
estimates are highly uncertain (and may be little more than guesses) because the failure is unknown.

6



We have approximate error estimates, denoted sµ and sσ, but the actual errors in the estimated
moments under H1 may be greater. In fact, we have no realistic or meaningful knowledge of the
maximum error in these estimated moments. This information supports the following fractional-
error info-gap model for p(y|θ1) (Ben-Haim, 2006):

U(h) =
{
p(y|θ1) ∼ N (µ1, σ

2
1) :

∣∣∣∣∣µ1 − µ̃1

sµ

∣∣∣∣∣ ≤ h,

∣∣∣∣σ1 − σ̃1

sσ

∣∣∣∣ ≤ h, σ1 ≥ 0

}
, h ≥ 0 (17)

Each set, U(h), contains all normal pdfs whose mean or standard deviation deviates fractionally from
the estimates by no more than h, the horizon of uncertainty. The value of h is unknown. Hence this
is an unbounded family of nested sets of normal distributions and obeys the properties of contraction
and nesting. That is, there is no known worst case, and there is no known probability distribution
on the uncertain moments.

4.2 Definition of Robustness

In this section we define the robustness to uncertainties in the pdf’s in the context of a generic info-
gap model, U(h), which is restricted only by the properties of contraction and nesting, eqs.(15) and
(16). We will develop two different robustness functions, whose properties are discussed in section 5.
Robustness will provide a tool for specifying the decision threshold of the LRT and for interpreting
the test decisions, discussed in section 6.

Nominal acceptance of H0. Suppose that, given a sequence of innovations Y m
1 , the likelihood

ratio Sm
1 (p̃), based on the nominal pdf’s p̃(y|θ0) and p̃(y|θ1), accepts H0 at threshold λ:

Sm
1 (p̃) < λ (18)

We ask: how robust is this acceptance of H0 to uncertainty in the pdf’s? The robustness is the
greatest horizon of uncertainty up to which H0 is accepted for the given sequence of innovations Y m

1 :

ĥ0(λ) = max

{
h :

(
max

p(y|θi)∈U(h)
Sm
1 (p)

)
< λ

}
(19)

ĥ0(λ) is the greatest horizon of uncertainty, h, up to which a nominal decision to accept H0 is
unchanged.

Suppose ĥ0(λ) is large. This means that hypothesis H0 is accepted, and failure is not declared,
for any realization of the pdf’s of the innovations up to a large horizon of uncertainty. If failure
has actually not occurred, and if the correct distributions p(y|θ0) and p(y|θ1) are actually within the
horizon of uncertainty ĥ0(λ), then failure will, correctly, not be declared. In this sense, ĥ0(λ) can
be thought of as the robustness against type I error (false alarm) resulting from error in the pdf’s:
When ĥ0(λ) is large, failure will not be erroneously declared unless p(y|θ0) and p(y|θ1) are far from
the nominal distributions, p̃(y|θ0) and p̃(y|θ1).

Nominal rejection of H0. Suppose that, given a sequence of innovations Y m
1 , the likelihood

ratio Sm
1 (p̃), based on the nominal pdf’s p̃(y|θ0) and p̃(y|θ1), rejects H0 at threshold λ:

Sm
1 (p̃) ≥ λ (20)

We ask: how robust is this rejection of H0 to uncertainty in the pdf’s? The robustness is the greatest
horizon of uncertainty up to which a nominal decision to reject H0 is unchanged, for the given
sequence of innovations Y m

1 :

ĥ1(λ) = max

{
h :

(
min

p(y|θi)∈U(h)
Sm
1 (p)

)
≥ λ

}
(21)

Suppose ĥ1(λ) is large. This means that hypothesis H1 is accepted, and failure is declared, for
any realization of the pdf’s of the innovations up to a large horizon of uncertainty. If failure has
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actually occurred, and if the correct distributions p(y|θ0) and p(y|θ1) are actually within the horizon
of uncertainty ĥ1(λ), then this failure will be detected. In this sense, ĥ1(λ) can be thought of as the
robustness against type II error (missed detection) resulting from error in the pdf’s: When ĥ1(λ) is
large, failures will not be missed unless they occur when p(y|θ0) and p(y|θ1) are far from the nominal
distributions, p̃(y|θ0) and p̃(y|θ1).

As will be shown in section 5, in connection with eqs.(24) and (25), increasing λ has opposite
effects on ĥ0(λ) and ĥ1(λ) so there is a trade off between them.

Let Mi(h), for i = 0 or 1, denote the inner optimum in the definition of the robustness, eq.(19)
or eq.(21) respectively. The nesting property of the info-gap model implies that M0(h), the inner
maximum in eq.(19), is a non-decreasing function of h. Similarly, the nesting property implies that
M1(h), the inner minimum in eq.(21), is a non-increasing function of h. In both cases the robustness
is the greatest value of h at which Mi(h) = λ. This implies that Mi(h) is the inverse of the robustness,
ĥi(λ). Consequently, a plot of h vs. Mi(h) is identical to a plot of the robustness, ĥi(λ) vs. λ, for
either i = 0 or i = 1. The evaluation of Mi(h) is explained in appendix A.

5 Properties of the Robustness Functions: Example

We now illustrate and discuss basic properties of the robustness functions, before demonstrating their
application to the LRT in section 6. We use the info-gap model of eq.(17).

The data in fig. 1 are divided into windows, each with 600 data points (m = 600 in eqs.(12) and
(13)) corresponding to 1,200 seconds. Failure is hypothesized, under H1, to start at the 450th datum
in each window, so ic = 450. The pdfs are assumed to be normal, with known moments µ0 = 0 and
σ0 = 0.0015 under H0, and estimated but uncertain moments µ̃1 = 0 and σ̃1 = 0.005 under H1. The
error weights in the info-gap model, eq.(17), are sµ = 0.001 and sσ = 0.005.

We look at 4 individual windows starting at 29,900sec, 79,900sec, 119,900sec and 179,900sec. The
innovations for the 4 windows are shown in fig. 3. The innovations in the 1st and 3rd windows tend
to be larger than in the other windows, as expected from fig. 2.
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Figure 3: Innovations in 4 windows.

The robustness curves for these four time intervals are calculated by evaluating Mi(h) vs. h as
explained in appendix A. Plotting h vertically vs Mi(h) horizontally is identical to plotting ĥi(λ)
vertically vs. λ horizontally. The robustness curves for the 4 windows in fig. 3 are shown in figs. 4
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and 5. The color codes are preserved between figs. 3, 4 and 5: each color refers to the same time
interval.

The numerical results discussed subsequently are based on the info-gap model in eq.(17) with
industrial data. However, the zeroing and trade off properties to be discussed hold for any info-gap
model, and result from the properties of contraction and nesting, eqs.(15) and (16), as explained in
the following discussion.
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Figure 4: Robustness for
nominal acceptance of H0.

Figure 5: Robustness for
nominal rejection of H0.

Three points can be made from these figures: zeroing, trade off between robustness and threshold,
and trade off between ĥ0 and ĥ1.

Zeroing. The inner extrema in the definitions of the robustness functions, eqs.(19) and (21),
are M0(h) and M1(h), respectively. These two functions are equal when h = 0 because the info-gap
uncertainty set, U(0), is a singleton and contains only the nominal pdf as a result of the contrac-
tion property of all info-gap models, eq.(15). Furthermore, these functions then precisely equal the
nominal log likelihood ratio:

M0(0) = Sm
1 (p̃) = M1(0) (22)

From eq.(22) and the monotonicity of Mi(h) we conclude that, if Sm
1 (p̃) is adopted as the decision

threshold, λ, then the robustness precisely equals zero:

ĥi(λ) = 0 if λ = Sm
1 (p̃) (23)

This is the zeroing property: attaining the estimated performance, Sm
1 (p̃), has zero robustness to

uncertainty. p̃ is our best—but highly uncertain—estimate of the pdf under failure. Sm
1 (p̃) is the

resulting estimate of the likelihood ratio. However, using Sm
1 (p̃) as the decision threshold results in

decisions that have no robustness to uncertainty in p̃. The zeroing property is manifested in figs. 4
and 5 by the horizontal intercepts being the corresponding Sm

1 (p̃) values, which are the same in both
figures as stated in eqs.(22) and (23).

Trade off between robustness and threshold. The robustness curves in fig. 4, ĥ0(λ) vs. λ,
all have positive slope: larger λ entails greater robustness to uncertainty. ĥ0(λ) is the robustness for
acceptance of H0. Larger λ means that H0 is accepted more easily. The robustness for acceptance
of H0 increases as the criterion for acceptance of H0 is relaxed.

A similar interpretation applies to fig. 5. The robustness curves in fig. 5, ĥ1(λ) vs. λ, all have
negative slope: smaller λ entails greater robustness to uncertainty. ĥ1(λ) is the robustness for
rejection of H0. Smaller λ means that H0 is rejected more easily. The robustness for rejection of H0

increases as the criterion for rejection of H0 is relaxed.
These trade offs are completely general, and are not restricted to the info-gap model of eq.(17).

The trade offs result from the nesting property of all info-gap models, eq.(16), and from the definitions
of the robustness functions, eqs.(19) and (21). The inner maximum in eq.(19) is a non-decreasing
function of the horizon of uncertainty, h, because it is the maximum on a family of nested sets: as
h gets bigger the sets U(h) become more inclusive and the maximum increases. Likewise, the inner
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minimum in eq.(21) is a non-increasing function of the horizon of uncertainty, h, because it is the
minimum on a family of nested sets: as h gets bigger the sets U(h) become more inclusive and the
minimum decreases. Hence, as the threshold requirement, λ, increases, ĥ0(λ) increases and ĥ1(λ)
decreases for any info-gap model.

We can summarize these trade offs as:

∂ĥ0
∂λ

≥ 0 (24)

∂ĥ1
∂λ

≤ 0 (25)

Note, however, that ĥ0(λ) and ĥ1(λ) are never positive at the same value of λ. From eqs.(19)
and (21) we conclude that:

ĥ0(λ) = 0 for λ ≤ Sm
1 (p̃) (26)

ĥ1(λ) = 0 for λ ≥ Sm
1 (p̃) (27)

Trade off between ĥ0 and ĥ1. We note that the robustness-ranks of the four curves in fig. 4
are the reverse of the robustness-ranks of the four curves in fig. 5, throughout most of the λ-range.
The most robust interval in fig. 4 (blue, 2nd interval), is the least robust in fig. 5. The 2nd-most
robust interval in fig. 4 (red, 4th interval), is the 2nd-least robust in fig. 5. And so on. The 2nd and
4th intervals have the lowest innovations, so H0 is most confidently accepted and the robustness for
acceptance of H0 is greatest. Equivalently, the robustness for rejection of H0 is low in the 2nd and
4th intervals. Note however that the robustness curves in fig. 4 cross one another at high robustness,
so this trade off is not universal.

6 Implementing and Assessing the LRT

6.1 Formulation

Implementing the LRT requires choice of the decision threshold, λ, and the estimated moments µ̃1

and σ̃1 under failure hypothesis H1. In this section we explain and illustrate the choice of these
parameters, based on the robustness function. We also discuss the use of the robustness function for
assessing the strength of rejection of H0. This will lead to an info-gap analog of the probabilistic
detection-error trade off curve. We use the info-gap model of eq.(17).

The mean and standard deviation, µ0 and σ0, under H0 are calculated from a failure-free section
of data, running from 50,000 to 100,000 [sec] in fig. 1. The data from 100,000 to 200,000 [sec]
are tested for failure in overlapping test windows. The size of each test window is m = 600 steps
(corresponding to 1,200 [sec]) and the index within each window, at which failure starts according
to H1, is ic = 1. A new test window is initiated each 50 steps. The moments µ̃1 and σ̃1 under failure
hypothesis H1 are calculated from the innovations yic , . . . , ym in each test window, eqs.(31) and (32)
in appendix A. This maximizes the log likelihood ratio, Sm

1 in eq.(14) (see appendix B), and thus
maximizes the robustness for nominal rejection of H0 in eq.(21). The error weights of these estimates
in the info-gap model of eq.(17) are chosen as:

sµ = max(0.001, µ̃1), sσ = max(0.005, σ̃1) (28)

In subsequent results, fig. 6, we will see that sµ = 0.001 and sσ = 0.005.
Let α0c denote the largest probability of false alarm (type I error) that we are willing to accept.

The choice of α0c is an operational judgment, for instance that a 5% false alarm rate is acceptable,
in which case α0c = 0.05.

For each test window we calculate the decision threshold, λ̂, as the smallest threshold for which
the empirical false alarm probability in the failure-free section does not exceed the critical value α0c.
This is based on µ0, σ0 and µ̃1, σ̃1 for the test window.
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Specifically, consider a test window whose estimated moments under H1 are µ̃1 and σ̃1. Let
F (λ, µ̃1, σ̃1) denote the fraction of non-overlapping windows of length m, in the failure-free section,
for which H0 is rejected. H0 is rejected in a window if Sm

1 ≥ λ for that window. For any window,
Sm
1 is evaluated with eq.(14), and with the innovations of that window and the values µ̃1 and σ̃1. In

summary, given µ̃1 and σ̃1 estimated from the test window, the λ̂ for that test window is defined as:

λ̂ = min {λ : F (λ, µ̃1, σ̃1) ≤ α0c} (29)

As in section 4.2, M1(h) denotes the inverse of the robustness function ĥ1(λ). The evaluation
of M1(h) is specified in appendix A. For each test window we evaluate the robustness to missed-
detection associated with the decision threshold λ̂, namely ĥ1(λ̂), as the value of h satisfying:

M1(h) = λ̂ (30)

6.2 Results
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Figure 6: Innovations, means and standard deviations in the test section.

The upper frame of fig. 6 shows the estimated mean and standard deviation under H1, µ̃1 and
σ̃1, for each test window. The lower frame, reproduced from fig. 1, shows the innovations. One sees
that the moments reflect disturbances in the innovations, though it is also clear that the moments
themselves are not clean or sensitive indications of anomalous innovations.

The 4 frames of fig. 7, from bottom to top, show the innovations in the test section, yi, the
decision threshold λ̂, the log likelihood ratio Sm

1 , and the robustness for nominal rejection of H0,
ĥ1(λ̂), in each test window.

λ̂ and Sm
1 in the 2nd and 3rd frames of fig. 7 show sharp deviations in regions of larger innovations,

for instance around 125,000 and 195,000 [sec]. The robustness, ĥ1, in the top frame also deviates
strongly in parallel to λ̂ and Sm

1 .
The decision of the LRT for each test window is specified in eq.(11). From eq.(21) we see that ĥ1

is positive if and only if H0 is nominally rejected in the corresponding test window. Thus from the
top frame of fig. 7 we see that H0 is rejected in most of the test windows before 162,000 and after
182,000 [sec].
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Figure 7: Innovations yi, decision threshold λ̂, log likelihood ratio Sm

1 ,

robustness ĥ1(λ̂), in the test section. α0c = 0.05.

However, the strength of rejection of H0 is not uniform over the test section, as expressed by the
variation of the robustness. ĥ1 is in the range of 0.4 to 0.5 in test windows around 125,000 [sec],
and about 0.3 around 194,000 [sec], but much less over most of the remainder of the test section.
From eq.(28) and the info-gap model of eq.(17) we understand that a robustness of 0.5 means that
the estimated moments µ̃1 and σ̃1 under H1, could err by as much as 0.5 × 0.001 and 0.5 × 0.005,
respectively, without changing the decision. Referring to the moments in the upper frame of fig. 6,
we see that a robustness of 0.5 implies quite large immunity against fluctuation in the moments. The
corresponding decisions should be viewed confidently. A robustness of 0.3 is also fairly definitive.
Substantally lower (but positive) robustness must be viewed cautiously as a tentative warning. The
conventional LRT uses λ̂ and Sm

1 to decide betweenH0 andH1 as stated in eq.(11), based on known or
estimated moments. The added value of the robustness function, ĥ1(λ̂), is in assessing the confidence
for rejecting H0 in light of the severe uncertainty surrounding the moments of the pdf under failure.
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Figure 8: Robustness ĥ1(λ̂), in the test section. α0c = 0.02, 0.06, 0.20.
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6.3 Detection-Error Trade Off

The 3 frames of fig. 8 show the robustness, ĥ1, in a short part of the test section around 155,000 [sec].
From top to bottom, the frames are evaluated at increasing α0c, the maximum acceptable probability
of false alarm. From the 3 frames of fig. 8 we see that the robustness increases as the maximum
acceptable probability of false alarm increases: ĥ1 goes up as α0c goes up. The LRT declaration of
anomaly is more confident (larger ĥ1) as the likelihood of false alarm increases (larger α0c). In other
words, the confidence in declaring an anomaly trades off against the confidence in declaring no alarm.

This trade off suggests an info-gap robustness analog of the probabilistic detection-error trade off
curve (a variation on what is sometimes called a Receiver Operating Characteristic). A traditional
detection-error trade off curve shows α1 vs. α0, the probabilities of type II and type I errors in eqs.(6)
and (7). We can estimate α0 either with p(y|θ0) or as F (λ) based on failure-free data as explained
earlier. In contrast, α1 is unavailable (or highly unreliable) because p̃(y|θ1) is highly uncertain and
data on future failures are scarce or non-existent. The info-gap analog of the probabilistic detection-
error trade off replaces α1 by ĥ1, and α0 by α0c as shown in fig. 9. A large value of ĥ1, and a small
value of α0c, are both desirable. The curve in fig. 9 is monotonic, expressing the trade off between
the robustness against missed detection (type II error), ĥ1, and the probability of false alarm (type
I error), α0c.
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Figure 9: Robustness ĥ1(λ̂), evaluated at the test win-
dow at time 154,600 sec, as a function of the critical
probability of falsely rejecting H0, α0c.

The monotonic trade off between ĥ1(λ̂) and α0c is a generic property that does not depend on the
specific info-gap model underlying fig. 9, as we now explain. The relation between λ̂ and α0c is defined
in eq.(29) which does not depend on the specific info-gap model used in the example. From eq.(29)
we see that λ̂ is non-increasing as α0c increases. From eq.(25) we see that ĥ1(λ̂) is non-increasing
as λ̂ increases, which also is a generic property, independent of the specific info-gap model used in
the numerical example (as explained prior to eq.(25)). Combining these observations we see that the
trade off illustrated in fig. 9 is a general property that will be observed for any info-gap model.
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7 Conclusion

The challenges of failure detection are very different from those of state estimation with additive
noise. In state estimation—Kalman filtering and its derivatives for instance—one often presumes
complete knowledge of the probability distribution of the noise. Failures, in contrast, are often
unique and unprecedented. Stochastic characterization of failures, based on historical data, ignores
the endless “creativity” of failure avenues and mechanisms. There is typically a substantial gap
between what the analyst does know about failures before they occur, and what needs to be known
for a full probabilistic analysis. This gap in the information can be modeled and managed with
info-gap decision theory as demonstrated in this paper.

An info-gap robustness analysis does not presume that the analyst knows nothing about the
uncertain failures. On the contrary, a great diversity of info-gap models of uncertainty are available
for representing different degrees and types of knowledge and ignorance (Ben-Haim, 2006). All info-
gap models share two properties—contraction and nesting—that reflect unbounded uncertainty in
failure-dependent features and in how failures affect the discriminating features. However, one may
exploit very specific and precise information, such as normality in our example, without requiring
knowledge of other aspects of the failure.

The analyst has data, models, and some understanding about future failures. However, one cannot
answer the question ‘How wrong is this information?’ without extensive—usually prohibitive—
effort. One can, however, answer the question ‘How much error can be tolerated?’. The info-gap
robustness function provides a quantitative answer to this question. The robustness function is non-
probabilistic and less informative than most stochastic assessments of risk. On the other hand, the
robustness function, and the info-gap model of uncertainty upon which it is based, depend on less
information than probabilistic models. The info-gap robustness analysis is attractive for designing
failure detection algorithms because information is usually scarce.

These ideas are demonstrated in a simple yet challenging industrial application of failure de-
tection from measurements. As is very common in failure detection, the industrial colleagues have
extensive experience with the no-failure condition but only limited experience with the failed condi-
tion. Consequently it was possible to construct good models for the measured signals in the no-fail
condition and to characterize well the pdf of the resulting prediction errors (the innovations). Hence
the uncertainty associated with the innovations in the no-failure case is negligible compared with
the uncertainty of the innovations under the failure condition. The latter is severe since experience
with failure is limited to only a few examples that do not cover all the possible failure scenarios.
Indeed, the system may fail in many other ways not covered by current experience, and thus the pdf
of the no-fail innovations may differ from the estimated pdf under the failure condition. We make
the simplifying yet reasonable assumption that the pdf of the innovations remains normal under
failure, and we represent the uncertainty in the moments of the normal distribution (both mean and
variance) by info-gap models centered on their estimates. Thus, there is no limit on the moments
and no assumption about their distribution. The info-gap framework allows us to compute the ro-
bustness function of the nominal decision—failure or no-failure—to uncertainties in the moments:
i.e., what is the maximum horizon of uncertainty for which the nominal decision remains unchanged.
These robustness functions depend on the decision threshold for the LRT, and provide a method for
selecting the threshold level. This method is demonstrated in specific examples, and generates an
info-gap robustness analog of the probabilistic detection-error trade off curve (a variation on what
is sometimes called a Receiver Operating Characteristic). In addition, the robustness functions for
nominal acceptance or rejection of the null hypothesis can be interpreted as robustnesses against
type I and type II errors that could result from erroneous probability distributions.

In summary, the likelihood ratio test is a powerful method for failure detection. However, it
relies on knowledge of the pdf of the innovations under both the no-failure and the failure cases. We
have described how to capture uncertainties in these pdfs, and in particular in the pdf under the
failure condition, using info-gap models of uncertainty. We derive the resulting robustness curves
of the nominal decision and characterize the underlying trade-offs. These ideas and features are
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demonstrated in the context of a simple yet challenging industrial application. By integrating info-
gap theory with the likelihood ratio test we provide a tool for evaluating the robustness of the
resulting failure detection.
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Appendix

A Derivation of the Inverse Robustness Functions

Let Mi(h), for i = 0 or 1, denote the inner optimum in the definition of the robustness, eq.(19) or
eq.(21) respectively. Mi(h) is the inverse of ĥi(λ) as explained following eq.(21). Mi(h) is evaluated
as follows.

Given observed innovations Y m
1 = (y1, . . . , ym), denote the sample mean and sample variance

from onset of failure as:

y =
1

m− ic + 1

m∑
i=ic

yi (31)

s2y =
1

m− ic + 1

m∑
i=ic

(yi − y)2 (32)

Consider Sm
1 in eq.(14) as a function of the moments µ1 and σ1. In appendix B we show that:

1. Sm
1 (µ1, σ1) has a global maximum when:

µ1 = y and σ2
1 = s2y (33)
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2. Sm
1 (µ1, σ1) has no other local optima. That is, Sm

1 (µ1, σ1) increases as µ1 moves towards y, or
as σ1 moves towards sy.

These conclusions result from the fact that the sample mean and variance, y and s2y, are maximum
likelihood estimates of the population moments (DeGroot, 1986, pp.342–343).

Nominal acceptance of H0. We evaluate the inverse of the robustness, ĥ0(λ), in eq.(19).
As we explained above, Sm

1 (µ1, σ1) has a global maximum with µ1 and σ1 at the sample moments,
y and sy in eqs.(31) and (32). Also, Sm

1 (µ1, σ1) increases as µ1 or σ1 move towards from y or sy,
respectively. We derive an explicit expression for M0(h), the maximum of Sm

1 (µ1, σ1) at horizon of
uncertainty h. M0(h) is the inverse of the robustness, ĥ0(λ).

Let (x)
+

equal x if x is positive, and equal zero otherwise. Define:

µ− = µ̃1 − sµh (34)

µ+ = µ̃1 + sµh (35)

σ− = (σ̃1 − sσh)
+

(36)

σ+ = σ̃1 + sσh (37)

Now define:

µ⋆
1 =

{
min (µ+, y) , if µ̃1 ≤ y

max (µ−, y) , else
(38)

σ⋆
1 =

{
min (σ+, sy) , if σ̃1 ≤ sy

max (σ−, sy) , else
(39)

It is evident that:
M0(h) = Sm

1 (µ⋆
1, σ

⋆
1) (40)

We now have an explicit expression for M0(h). Plotting M0(h) vs. h is identical to plotting λ vs.
ĥ0(λ).

Nominal rejection of H0. We evaluate the inverse of the robustness, ĥ1(λ), in eq.(21).
As we explained above, Sm

1 (µ1, σ1) has a global maximum with µ1 and σ1 at the sample moments,
y and sy in eqs.(31) and (32). Also, Sm

1 (µ1, σ1) decreases as µ1 or σ1 move away from y or sy,
respectively. We derive an explicit expression for M1(h), the minimum of Sm

1 (µ1, σ1) at horizon of
uncertainty h. M1(h) is the inverse of the robustness, ĥ1(λ).

It is evident that M1(h) equals the value of S
m
1 (µ1, σ1) with the minimizing combination of µ and

σ from among eqs.(34)–(37):

M1(h) = min {Sm
1 (µ−, σ−), Sm

1 (µ+, σ−), Sm
1 (µ−, σ+), Sm

1 (µ+, σ+)} (41)

We now have an explicit expression for M1(h). Plotting M1(h) vs. h is identical to plotting λ vs.
ĥ1(λ).

B Maximum of the Log-Likelihood Ratio

Lemma 1 The sum of the log-likelihood ratios, Sm
1 (µ1, σ1), has a single extremum.

Given:
• A sample yic , . . . , ym.
• Sample estimates of µ1 and σ2

1, y and s2y in eqs.(31) and (32).
• The sum of the log-likelihood ratios, Sm

1 (µ1, σ1) in eq.(14), considered as a function of µ1 and
σ1.
Then:

Sm
1 (µ1, σ1) has a single extremum—a maximum—at:

µ1 = y, σ2
1 = s2y (42)
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Proof of Lemma 1. We find this optimum from the first and second derivatives of Sm
1 (µ1, σ1) in

eq.(14) with respect to µ1 and σ1.
The first derivatives are:

∂S

∂µ1
=

1

σ2
1

m∑
i=ic

(yi − µ1) (43)

∂S

∂σ1
= −m− ic + 1

σ1
+

1

σ3
1

m∑
i=ic

(yi − µ1)
2 (44)

Note that these derivatives vanish at the sample moments in eqs.(31) and (32):

µ1 = y and σ2
1 = s2y (45)

These are the only values (for non-negative σ1) at which the derivatives vanish. Thus the slopes
change sign only once. Thus eq.(45) is a global extremum and there are no other local extrema. We
will show that it is a maximum.

The elements of the Hessian matrix are:

∂2S

∂µ2
1

= −m− ic + 1

σ2
1

(46)

∂2S

∂µ1∂σ1
= − 2

σ3
1

m∑
i=ic

(yi − µ1) (47)

∂2S

∂σ2
1

=
m− ic + 1

σ2
1

− 3

σ4
1

m∑
i=ic

(yi − µ1)
2 (48)

Evaluating these elements at y and sy results in:

∂2S

∂µ2
1

= −m− ic + 1

s2y
(49)

∂2S

∂µ1∂σ1
= 0 (50)

∂2S

∂σ2
1

= −2
m− ic + 1

s2y
(51)

The determinant of the Hessian matrix is positive and the first element is negative, so y and sy are
a local maximum. Since the derivatives change sign only once, this is a global maximum and there
are no other local extrema.
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