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Abstract

Assessment of the credibility of a mathematical or numerical model of a complex system must
combine three components: (1) The fidelity of the model to test data, e.g. as quantified by
a mean squared error. (2) The robustness, of model fidelity, to lack of understanding of the
underlying processes. (3) The prediction looseness of the model. ‘Prediction looseness’ is the range
of predictions of models that are equivalent in terms of fidelity. The main result of this paper asserts
that fidelity, robustness, and prediction looseness are mutually antagonistic. A change in the model
that enhances one of these attributes will cause deterioration of another. In particular, increasing
the fidelity to test data will decrease the robustness to imperfect understanding of the process.
Likewise, increasing the robustness will increase the predictive looseness. The conclusion is that
focusing only on fidelity-to-data is not a sound decision-making strategy for model building and
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validation. A better strategy is to explore the trade-offs between robustness-to-uncertainty, fidelity
to data, and tightness of predictions. Our analysis is based on info-gap models of uncertainty,
which can be applied to cases of severe uncertainty and lack of knowledge.

1 Introduction

In computational physics and engineering, biological conservation, economics, homeland security,
and other fields, numerical models are developed to predict the behavior of a system whose response
cannot be measured experimentally and whose behavior is incompletely understood. A key aspect
of science-based predictive modelling is to assess the credibility of predictions. Credibility expresses
the extent to which the results of simulation reliably represent the phenomenon of interest with a
degree of accuracy consistent with the intended use of the model (Doebling, 2002). The literature
is rich in examples of the need for credible system modelling (Banks et al, 2003; B̊ardsen et al,
2005; Burgman, 2005; Friswell and Mottershead, 1995; Natke and Cempel, 1997).

The study of the credibility of models has a long history. Perhaps the earliest contribution was
Laplace’s proof of the central limit theorem and its use to provide a maximum likelihood motivation
for least-squares estimation. Hypothesis tests such as the chi-squared test or the Kolmogorov-
Smirnov test provide statistical concepts and tools for assessing model credibility. Tests such as
these assume asymptotic data sets, statistical independence of observations, and so on. Bayesian
methods of model up-dating have also been extensively used. Kennedy and O’Hagan (2001) develop
a Bayesian approach to model calibration which derives the posterior distribution of estimated
model parameters and of subsequent model predictions, by assuming that functions of the model
error are described by a Gaussian process. The choice of an approach to assessing model credibility
depends on the analyst’s judgment and understanding of the problem. As Kennedy and O’Hagan
note regarding their assumption of normality: “It is, of course, important that normality . . . is a
reasonable representation of prior knowledge or beliefs” (2001, p.432).

The main contributions of this paper employ info-gap decision theory, which is particularly
suited to situations in which probabilistic information is deficient or lacking. Nonetheless, one
element of our analysis can employ probabilistic or statistical tools.

This paper argues that assessment of the credibility of a mathematical or numerical model must
combine three components: (1) The fidelity of the model to test data. Fidelity can be quantified
in different ways as discussed in section 3, for instance with mean squared deviation between test
data and model predictions, or other methods. (2) The robustness, of model fidelity, to lack of
understanding of the underlying processes. (3) The prediction looseness of the model. ‘Prediction
looseness’ refers to the magnitude of the range of predictions expected from a family of models
all of which have fidelity no worse than a specified value. Predictive focus is the complement of
predictive looseness. The importance of prediction looseness stems from the fact that, to predict
with confidence, there should be little difference (or small looseness) between the predictions of
models with the same fidelity. We stress that the credibility of a model depends on all three
attributes: fidelity to data, robustness to ignorance, and prediction looseness. No one attribute
alone can establish the credibility of a model.

The main results of this paper, theorems 1 and 2, assert that fidelity, robustness, and prediction
looseness are mutually antagonistic. A change in the model which enhances one of these attributes
will cause deterioration of another. In particular, increasing the fidelity to test data will decrease
the robustness to imperfect understanding of the process. Fidelity to data adds warrant to the
predictions by anchoring them in experience. But without robustness to imperfect understanding
of the underlying process, the fidelity is not credible. Likewise, increasing the robustness will
decrease the predictive focus. Robustness is needed in order to add warrant to the fidelity, but lack
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of predictive focus vitiates the main purpose of the model. A model can be highly warranted by
virtue of high fidelity to data and high robustness to epistemic uncertainty, only by increasing its
predictive looseness.

It is important to stress that our definition of ‘model’ is not restricted to first-principle partial
differential equations. ‘Models’ may be physics-based models, phenomenological equations, back-
of-the-envelope calculations, statistical regression models obtained by fitting test data, as well as
expert judgment. These are all models in the broad sense that we use these various representations
of information and knowledge to make predictions, and they are all based on assumptions of various
sorts. Similarly, a ‘family of models’ is not restricted to a model whose coefficients can be changed.
The family of models could include all of the above classes as alternatives.

In section 2 we introduce our notation. In section 3 we define the info-gap robustness function
and re-iterate the well-known result that robustness and fidelity are antagonistic. The main con-
tribution of the paper appears in section 4 which discusses predictive looseness and its antagonistic
relation to robust fidelity. Section 5 presents an heuristic example that illustrates the interaction
between model structure and measurement error for the common scientific activity of identifying a
mathematical law governing the behavior of a system. We conclude the paper in section 6 with a
discussion of some philosophical questions. The scientific activities of validating models and war-
ranting our understanding of the underlying complexity are questioned in light of the trade-offs
exposed by the theorems.

2 Notation

Our basic notation is:
y is an observable real-valued vector which is predicted by a model. Examples include mate-

rial deflections, natural vibration frequencies, population densities, economic variables, etc. The
dimension of y is J .

p is a vector of control parameters which characterize the configuration of the system and which
may, in some situations, be chosen by the analyst. Examples include material dimensions and
properties, loading forces, temperatures, time, location, habitat, economic regime, etc. Specification
of the configuration will be important when we wish to distinguish between the configuration p at
which a model is up-dated and the configuration p′ (which may or may not differ from p) at which
forecast or prediction is made.

q is a vector of parameters which specify the structure and coefficients of the model for predicting
y. These parameters are not necessarily real-valued coefficients. The elements of q can represent
discrete or linguistic variables that select a model structure, a functional form expressing the relation
between variables, etc.

The vectors p and q differ from one another. p specifies the regime or configuration of a physical
system, either when it was measured or a regime in which its behavior will be predicted. q specifies a
mathematical model for describing the physical system. The model depends on the configuration of
the system, p, and the model is specified by q which, for instance, may be the values of coefficients.

Our analysis entails two types of mathematical models. The physical models M̃(p, q) andM(p, q)
predict values of y. The uncertainty model U(α, M̃) represents the epistemic uncertainty in the
physical models.

M̃(p, q) is a physical model which will be up-dated and used for predicting the value of y in
configuration p. Different realizations of M̃(p, q) are specified by the analyst’s choice of q. M̃(p, q)
is a real J-vector-valued function. We will sometimes refer to M̃(p, q) by its specifying vector q.

M(p, q) is an alternative possible physical model for predicting the value of y in configuration
p, for instance, a model proposed by a competing theory or a different expert. In the absence of
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epistemic uncertainty, no alternatives to M̃(p, q) would be considered. As the horizon of uncertainty
increases, more and more alternative models become candidates. Like M̃(p, q), M(p, q) ∈ ℜJ .

U(α, M̃) is an info-gap model for the uncertainty inM(p, q). The info-gap model is an unbounded
family of nested sets of physical models M(p, q), centered on M̃(p, q). We will encounter an example
of an info-gap model in section 5. The info-gap parameter for uncertainty in the physical model is
α. We will specify generic properties of info-gap models of uncertainty in section 3. See Ben-Haim
(2006) for further discussion.

N measurements of y, denoted Y = {y1, . . . , yN}, have been made in configuration p.

3 Robustness of the Fidelity between Model and Measurement

Let M(p, q) be any physical model in the info-gap model U [α, M̃(p, q)] at horizon of uncertainty
α. Let R[Y,M(p, q)] represent the error of model M with respect to test data Y. We impose no
restrictions of the function R[Y,M(p, q)] other than it be real-valued, though typically it will be
based on a vector norm. For instance:

R[Y,M(p, q)] =
1

N

N∑
i=1

∥yi −M(p, q)∥2 (1)

where ∥ · ∥ is a vector norm. R(Y,M) is the weighted least-squared error if ∥ · ∥ is the weighted
Euclidean norm:

∥yi −M(p, q)∥22,W = [yi −M(p, q)]TW [yi −M(p, q)] (2)

where W is a real, symmetric, positive definite matrix. Alternatively, one might use the absolute
norm:

∥yi −M(p, q)∥2∞,w = max
1≤j≤J

∣∣∣∣∣yij −Mj(p, q)

wj

∣∣∣∣∣ (3)

where w = (w1, . . . , wJ)
T is a real vector and yij is the jth element of yi. In this case R(Y,M) is

the mean, weighted, absolute error.
Various statistical tools for assessing observational error and model fidelity can be employed, such

as the level of significance of goodness-of-fit, or a Bayesian measure of risk, etc. The analyst chooses
the error function R[Y,M(p, q)], perhaps in order to filter out or otherwise manage observation
error. In our analysis, the only constraint is that R[Y,M(p, q)] be real scalar-valued.

‘Robustness’ has many meanings. Berger (1980), for instance, has developed Bayesian concepts
of robustness. As we will use it, the concept of robustness derives from a prior concept of non-
probabilistic uncertainty. Knight (1921) distinguished between ‘risk’ based on known probability
distributions and ‘true uncertainty’ for which probability distributions are not known. Wald (1945)
studied the problem of statistical hypothesis testing based on a random sample whose probability
distribution is not known, but whose distribution is known to belong to a given class of distribution
functions. Similarly, Ben-Tal and Nemirovski (1999) are concerned with uncertain data within a
prescribed uncertainty set, without any probabilistic information. Likewise Hites et al. (2006,
p.323) view “robustness as an aptitude to resist to ‘approximations’ or ‘zones of ignorance’ ”. We
are concerned with robustness against Knightian uncertainty.

M̃(p, q) is the physical model selected for predicting y. However, the model is surely imperfect.
It entails approximations, both acknowledged and unknown. M̃(p, q) is robust to these uncertainties
if M̃(p, q) can err greatly and still reproduce the observed data Y with acceptable fidelity. Because
M̃(p, q) is imperfect, the analyst cannot realistically aspire to perfect fidelity to the test data.
Rather, M̃(p, q) should satisfice the fidelity: achieve an acceptable level of fidelity. Let rc denote
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the greatest acceptable error between model and data. The robustness of physical model M̃(p, q),
at configuration p, is the greatest horizon of possible alternative models up to which the error
between the model and the data is no greater than rc:

α̂(q, rc; p) = max

{
α :

(
max

M(p,q)∈U [α,M̃(p,q)]

R[Y,M(p, q)]

)
≤ rc

}
(4)

Model q is preferred to model q′ if q is more robust than q′, at the same level of satisficed fidelity:

q ≻ q′ if α̂(q, rc; p) > α̂(q′, rc; p) (5)

where ‘≻’ means ‘is preferred to’. The robust-optimal model, q̂(rc, p), maximizes the robustness
and satisfices the mean-squared error at the level rc:

q̂(rc, p) = argmax
q

α̂(q, rc; p) (6)

We will denote the maximal robustness, α̂[q̂(rc, p), rc; p], by α̂(rc; p).
The following theorem establishes a basic trade-off between robustness-to-uncertainty, α̂(q, rc; p),

and fidelity to test data rc: robustness diminishes (α̂ gets smaller) as greater fidelity is demanded
(rc is reduced). The same trade-off holds also for the maximal robustness α̂(rc; p). For proof see
Ben-Haim (2000).

For the formulation of this theorem we need to specify two axioms of info-gap models. An
info-gap model is a family of nested sets, U(α,M), α ≥ 0. These set-valued functions have the
following properties:

Nesting: α < α′ implies U(α,M) ⊆ U(α′,M) (7)

Contraction: M ∈ U(0,M) (8)

We will employ an additional axiom later on:

Translation: U(α,M) = U(α,M ′) + {−M ′}+ {M} (9)

The addition operator is the Minkowski sum: adding every element of one set to every element of
the other set.

These info-gap axioms are exceedingly unrestrictive and can be used to represent model uncer-
tainties of many sorts. For instance, info-gap models can represent uncertain quadratic terms in
nominally linear models, or uncertain slopes of monotonic functional forms. Additionally, info-gap
models can represent uncertainty in probabilistic models. For instance, the hyper-parameters of
probability densities are often chosen by fitting low-order moments, which determines the unob-
served tails of the distribution. This is problematic unless the shape of the distribution is known
from first principles. An info-gap model can represent the uncertain shape of the unobserved tails.
Numerous examples of info-gap models can be found in (Ben-Haim, 1996, 2006).

Theorem 1 Robustness improves as fidelity deteriorates.
Let U(α,M) be an info-gap model which obeys the axioms of nesting and contraction. Let

α̂(q, rc; p) and α̂(rc; p) be its robustness function and maximal robustness function. rc < r′c implies:

α̂(q, rc; p) ≤ α̂(q, r′c; p) (10)

and
α̂(rc; p) ≤ α̂(r′c; p) (11)
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Eq.(10) asserts that, for any given model, specified by q, the robustness to model-error increases
as the required fidelity is relaxed. Eq.(11) asserts that the most robust model at one level of fidelity,
r′c, is more robust than the most robust model at better fidelity, rc.

Theorem 1 does not imply that it is impossible to find a model that is simultaneously true to
the test data (small rc) and robust to the uncertainty (large α̂). For instance, if the noise in the
data were very low then the fidelity could be high, regardless of our uncertainty about the model
structure. Likewise, if there were little uncertainty about the model structure—if our understanding
of the process were nearly complete—then our robustness would be large. What the theorem is
stating is that, in any given epistemic state, the robustness to model-error trades off against fidelity
to the data.

4 ‘Looseness’ of Model Prediction

In this section we explore the “looseness” of model prediction: the magnitude of the range of
predicted values deriving from models which all satisfy a specified fidelity requirement. We prove
a theorem whose meaning is that a change in the model which enhances fidelity-robustness to
modelling error, α̂(q, rc; p), also increases the looseness of the model prediction. In other words,
under the conditions of the theorem, fidelity-robustness and prediction-looseness are antagonistic
attributes of any model. An earlier and less general version of this theorem appears in (Ben-Haim
and Hemez, 2004).

4.1 The Definition

We first need some definitions. Let T denote the space in which the elements of the info-gap model
U(α,M) are defined. For any element µ ∈ T and any sets U and V in T , define ρ(·) as a “size”
function with the following two properties:

Nesting: U ⊆ V implies ρ(U) ≤ ρ(V ) (12)

Translation invariance: ρ(U + µ) = ρ(U) (13)

‘Nesting’ means that if U is contained in V then the size of U is no larger than the size of V .
‘Translation invariance’ means that the size of a set does not change as the set is translated in the
space.

As an example, let f(u) be a real-valued affine scalar function. The following function satisfies
eqs.(12) and (13):

ρ(U) = max
u∈U

f(u)−min
u∈U

f(u) (14)

We are now able to define prediction looseness.
The robustness of model M̃(p, q) at configuration p, is defined in eq.(4). The robustness of

fidelity-to-data can only be evaluated at a configuration, p, for which test data exist. However,
M̃(p, q) can be used to predict behavior at any configuration, p′; the prediction is M̃(p′, q). Of
course p and p′ can be one and the same: predicting behavior at a configuration for which data
exist.

Let Λ(p, p′, q) denote a set of model predictions at configuration p′, based on information obtained
at configuration p. Specifically, based on the info-gap model U(α, M̃), Λ(p, p′, q) is the set of
predictions at p′ of all models which, at configuration p, have fidelity no worse than the fidelity of
M̃(p, q). We have no reason to reject any model, M in Λ(p, p′, q), if fidelity-to-data is used as a
measure of merit. The formal definition of Λ(p, p′, q) is:

Λ(p, p′, q) = U
[
α̂(q, rc; p), M̃(p′, q)

]
(15)
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Λ(p, p′, q) is one particular set in the family of nested sets which constitute the info-gap model of
uncertainty, U(α, M̃), α ≥ 0. Namely, Λ(p, p′, q) is the uncertainty set which is centered on M̃(p′, q)
and whose horizon of uncertainty equals the robustness of M̃(p, q). If Λ(p, p′, q) is a large set then
the range of predictions of fidelity-equivalent models is large: the prediction looseness is great. If
Λ(p, p′, q) is a small set then the prediction looseness is small.

Using a “size” function, ρ(·), with the properties of eqs.(12) and (13), define λ(p, p′, q) as:

λ(p, p′, q) = ρ[Λ(p, p′, q)] (16)

We refer to λ(p, p′, q) as the predictive looseness of the model specified by q, M̃(p, q).
When p′ = p, then λ(p, p′, q) is the looseness in predicting the outcomes, in response to inputs

q, in the configuration at which the model was up-dated. This is the most common situation in
system modelling. When p′ ̸= p then λ(p, p′, q) is the looseness of what is properly called a forecast
from one configuration to another.

4.2 The Theorem

Large fidelity-robustness, α̂(q, rc; p), and small prediction-looseness, λ(p, p′, q), are both desirable.
We will say that robustness and looseness are sympathetic if a change in p or q improves them
both; otherwise they are antagonistic. The following theorem shows that, under fairly weak
conditions, robustness and looseness are always antagonistic. Examples are presented in section 5.

Theorem 2 Fidelity-robustness and prediction-looseness are antagonistic.
Let U(α,M) be an info-gap model which obeys the axioms of nesting, contraction and translation,

and let α̂(q, rc; p) be its robustness function. For any models q⋆ and q′ and any configurations p⋆,
p′ and p:

If α̂(q⋆, rc; p
⋆) > α̂(q′, rc; p

′) (17)

Then Λ(p⋆, p, q⋆) ⊇ Λ(p′, p, q′) + µ (18)

and λ(p⋆, p, q⋆) ≥ λ(p′, p, q′) (19)

where λ and Λ are related by eq.(16) by the ρ(·) function, and µ = M̃(p, q⋆)− M̃(p, q′).

The supposition in relation (17) asserts that model q⋆ is more robust (at configuration p⋆) than
is model q′ (at configuration p′, which may be the same as p⋆). Relations (18) and (19), which
are implied by relation (17), assert that q⋆ makes looser predictions than q′ at any configuration p
(which may be the same as either p⋆ or p′, or may differ from both). In other words, the change
from (q′, p′) to (q⋆, p⋆) enhanced the robustness but decreased the predictive focus at p.
Proof. Define the following concise notation. α⋆ = α̂(q⋆, rc; p

⋆), α′ = α̂(q′, rc; p
′), M⋆ = M̃(p, q⋆),

M ′ = M̃(p, q′).
Supposition (17) and the axiom of nesting, relation (7), imply:

U(α⋆,M⋆) ⊇ U(α′,M⋆) (20)

The axiom of translation, relation (9), implies:

U(α′,M⋆) = U(α′,M ′) + {−M ′}+ {M⋆} (21)

Combining relations (20) and (21) we obtain:

U(α⋆,M⋆) ⊇ U(α′,M ′) + {−M ′}+ {M⋆} (22)
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From eq.(15) we see that Λ(p⋆, p, q⋆) = U(α⋆,M⋆) and Λ(p′, p, q′) = U(α′,M ′). Thus (22) is
precisely (18).

Eq.(22), together with the properties of translation invariance and nesting, eqs.(12) and (13),
imply:

ρ [U(α⋆,M⋆)] ≥ ρ[U(α′,M ′)] (23)

With the definition of predictive looseness in eq.(16), this implies eq.(19). This completes the
proof.

4.3 The Dilemma

Three quantities are central to the info-gap analysis of modelling and forecasting: fidelity of
the model to the test data, rc; robustness, to model-uncertainty, of the fidelity, α̂(q, rc; p); and
prediction-looseness λ(p, p′, q). Two trade-offs relate these quantities.

• Robustness decreases as fidelity improves: α̂(q, rc; p) gets smaller as rc gets smaller (theorem 1).
• Robustness decreases as looseness improves: α̂(q, rc; p) gets smaller as λ(p, p′, q) gets smaller

(theorem 2).
These trade-offs imply that it is not possible to simultaneously increase the robustness, increase

the fidelity, and decrease the prediction looseness. This is illustrated schematically in fig. 1. The
right quadrant shows the trade-off between robustness to model uncertainty α̂ and fidelity to test
data rc, as asserted by theorem 1: poor fidelity (large rc) implies good robustness (large α̂). The left
quadrant portrays theorem 2. The horizontal axis to the left portrays the predictive looseness λ and
the curve shows that the predictive looseness and the robustness increase together. Poor fidelity
r1 has high robustness α̂1 and large predictive looseness λ1. Good fidelity r2 has low robustness
α̂2 and small predictive looseness λ2. Fidelity rc and predictive looseness λ are sympathetic: they
improve or deteriorate together. But they are both antagonistic to robustness α̂, so that good
(small) values of rc and λ are unreliable when associated with poor (small) values of α̂.

-�

6

? ?
r1λ1

α̂1

? ?
r2λ2

α̂2

α̂

λ rc

Figure 1: Schematic illustration of antagonism between fidelity rc, robustness α̂ and predictive
looseness λ.

High fidelity (small rc) of model M̃(p, q) implies that the model is true to the measurements,
which adds warrant to the model. Low fidelity means that the model is not responsive to the
measurements.

Large robustness (large α̂(q, rc; p)) of model M̃(p, q) means that a wide selection of models
M(p, q) around the model M̃(p, q) have fidelity to the test data no worse than rc. That is, M̃(p, q)
could be modified greatly without diminishing the fidelity. Hence, if rc represents high fidelity,
then large robustness strengthens belief in the validity of the model, M̃(p, q), because the fidelity
of M̃(p, q) is immune to errors and imperfections in its formulation. A small value of robustness
impugns the model because, even if rc corresponds to high fidelity, this trueness to the data may
be the accidental result of the specific erroneous structure of the model. In a perfect world, free of
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info-gaps, robustness would not be important. The importance of robustness, for warrant of model
M̃(p, q), derives from the analyst’s info-gaps which induce a lack of confidence that the structure of
M̃(p, q) is fundamentally correct. If M̃(p, q) is robust, then its imperfections, whatever they may
be, are only marginally important since they do not seriously diminish the model’s fidelity to the
data.

Small predictive looseness (small λ(p, p′, q)) implies that all the models which are equivalent
to M̃(p, q) in terms of satisficing the fidelity to the test data, also agree in their predictions of
the system behavior in configuration p′. A large value of looseness means that fidelity-equivalent
models strongly disagree in their predictions of the system behavior.

The dilemma. ‘Truth’ is a difficult philosophical concept. Nonetheless, at least from a pragmatic
point of view, fidelity to data is necessary (though not sufficient) for trueness of the model.
Robustness to model uncertainty indicates trueness of fidelity. Looseness of model prediction
increases as fidelity-robustness to model-uncertainty improves.

The dilemma results from the conflict between two uncertainties: spread of the data (calibration
and measurement errors, and the experimental variability due to lack of control of the experiment)
and epistemic limitation (imperfect understanding of the process). The need for fidelity arises
from spread of the data, while the need for robustness arises from epistemic uncertainty about the
structure of the model. We explore this dilemma further in section 6.

The dilemma may be resolved, in practical applications, by making value judgments of various
sorts. The question ‘How robust is robust enough?’ calls for judgments like those elicited by the
question ‘How safe is safe enough?’. Those value judgments can be based on formal tools such
as analogical reasoning (Ben-Haim, 2006, chapter 4), by appeal to guidelines, or with informal
reasoning. Determination of acceptable fidelity may be assisted by probabilistic considerations if
the fidelity relates to aleatory uncertainty of the measurements. Determining acceptable prediction
looseness will often be supported by the implications of prediction error. Finally, judgments must
balance the three attributes. A vast array of tools are available for these judgments, including
formal reasoning (Fagin et al. 1995), artificial intelligence (Lawry, 2006), and expert elicitation
(Meyer and Booker, 2001). Further exploration of these issues is beyond the scope of this paper.

5 Example: A Non-Linear System

In this section we will consider a system which is modelled as a linear input-output relation in which
uncertain quadratic terms are ignored. The model may represent a mechanical force-displacement
relation, or an economic Phillips curve relating inflation to unemployment, or the biological relation
between the rate of flow of river water and the spawning success of fish, and so on. The example
will demonstrate the trade off asserted by theorem 2, and the violation of the trade off when the
conditions of the theorem are not satisfied.

5.1 Formulation

Consider a multi-input single-output system subject to a vector p = (p1, . . . , pK)T of inputs. The
scalar output is y. Our current best estimate of the input-output relation is a linear model M̃(p, q)
where q represents system properties. Specifically, M̃(p, q) = pT q where q = (q1, . . . , qK)T is a
vector of model coefficients.

Let us consider unmodelled quadratic terms which may in fact be present in the input-output
relation:

M(p, q) = M̃(p, q) +
K∑
i=1

Qip
2
i = pT q + πTQ (24)
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where π = (p21, . . . , p
2
K)T and Q = (Q1, . . . , QK)T .

We have no direct data on Q for the system of interest, but evidence from other somewhat
similar systems indicates that Q is typically small on average but can vary substantially. Let us
define S−1 as a real, symmetric, positive definite matrix specifying a K-dimensional ellipsoid which
approximates the cluster of the observed or suspectedQ vectors of the related systems. For instance,
S−1 may be the inverse of the population covariance matrix S of observed Q vectors. Alternatively,
S−1 may be chosen to approximate experts’ opinions of the dispersion of the Q vectors. In any
case, since the data are very scarce, and not derived from the system which is actually of interest,
it is possible that values of Q well outside this ellipsoid can occur for the system being analyzed.
Furthermore, the evidence is insufficient to verify the choice of a probability distribution for Q.

In light of these considerations we represent the uncertainty in the input-output relation, arising
from the uncertain quadratic terms, by the following ellipsoid-bound info-gap model:

U(α, M̃) =
{
M(p, q) = pT q + πTQ : QTS−1Q ≤ α2

}
, α ≥ 0 (25)

This info-gap model is an unbounded family of nested sets U(α, M̃), α ≥ 0, where each U(α, M̃) is
a set of input-output models M(p, q). Two levels of uncertainty are entailed in this info-gap model.
At any horizon of uncertainty, α, the specific realization Q is unknown. In addition, the horizon of
uncertainty, α, is unknown.

The info-gap model U(α, M̃) in eq.(25) obeys the axioms of nesting and contraction. Note that
π depends on p. Thus U(α, M̃) obeys the axiom of translation only if the configuration p is fixed.
Consequently we can apply theorem 2 only if we hold p constant. That is, for the current example,
theorem 2 implies that, if model q⋆ is more robust than model q′ in the same configuration p, then
the prediction looseness of model q⋆ exceeds the prediction looseness of model q′. In this example
we will simplify our notation and define λ(p, q) = λ(p, p, q) and Λ(p, q) = Λ(p, p, q).

5.2 Prediction Looseness

In the present example the set Λ(p, q), defined in eq.(15), is the interval from the least to the
greatest predicted values, as the model M(p, q) varies continuously on the uncertainty set whose
horizon of uncertainty equals the robustness, U [α̂(q, rc; p), M̃ ]. As in eq.(14), the following function
satisfies eqs.(12) and (13):

λ(p, q) = max
M∈Λ(p,q)

M − min
M∈Λ(p,q)

M (26)

We are thus entitled to adopt this function as the predictive looseness in this example. It is readily
shown, using Lagrange optimization, that the looseness is:

λ(p, q) = 2α̂(q, rc; p)
√
πTSπ (27)

As anticipated by theorem 2, the looseness and robustness are antagonistic (at fixed p): any change
in the model coefficients q which improves the robustness (makes α̂ larger) causes the prediction
looseness to deteriorate (makes λ larger as well).

Eq.(27) indicates that a plot of λ vs. α̂ is a line of positive slope through the origin, generated
by varying the model characteristics q, as shown in fig. 2. The slope, 2

√
πTSπ, can be thought

of as the cost (in terms of lost predictive focus) of a unit increase in robustness. A large slope
means that a small improvement in robustness to uncertainty entails a large increase in the range
of predictions of models whose fidelity to the test data is no worse than rc.

The slope in fig. 2 is large if π, the squared inputs, are large, or if the population covariance
matrix S, is large. ‘Large S’ means, roughly, that the measurements are widely dispersed. Large
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Figure 2: Prediction looseness λ vs. robustness α̂.

measurement variability makes the attainment of robustness to epistemic uncertainty very costly
in terms of predictive focus.

Also interesting is the interaction between π and S and its influence on the trade-off between
looseness and robustness. Let s1 and sK be the least and greatest eigenvalues of S. (s1 > 0 since
S is positive definite.) Then one finds that:

s1 ≤
πTSπ

∥π∥2
≤ sK (28)

This demonstrates how the inputs π and model-uncertainty S combine to determine the trade-off
between prediction-looseness and robustness. Squared-input vectors π which are oriented along
eigenvectors of S with large eigenvalues (near sK) will entail large slope of λ vs. α̂. On the other
hand, input vectors which “activate” relatively certain modes of S (those with small eigenvalues
near s1) will induce lower looseness-costs for model-robustness.

Relations (28) have practical implications for modelling the behavior of the system. Let V1 be the
sub-space spanned by eigenvectors of S having small eigenvalues, and let V2 be the complementary
sub-space. If the relevant inputs lie in V1, then the model can be robustified more than if the
relevant inputs lie in V2, at the same level of prediction looseness. This implies that the analyst’s
judgments regarding achievable robustness and its cost in prediction-looseness, will be influenced
by prior judgments about the range of anticipated inputs. This in turn may influence the choice of
the model, q.

5.3 Sympathetic Robustness and Looseness

As noted above, the info-gap model in eq.(25) does not obey the axiom of translation if the input
vector p varies. Consequently, theorem 2 does not apply to changes in the input vector. In
fact, we will show that, in a simple realization of the current example, prediction-looseness and
robustness can be sympathetic with respect to changes in the input: a change in p which improves
the robustness (causes α̂ to increase), may also improve the prediction looseness (causes λ to
decrease).

For simplicity, let p and q be scalars, so a single input p is applied to a system with coefficient q
(which we assume is positive). In the info-gap model of eq.(25) Q is a scalar and S−1 = 1/s2 where
s is an estimate of the variation of the Q values. Define R̃ = 1

N

∑N
i=1(yi − pq)2, which is the mean

squared error of the nominal model, M̃ = pq. Define F = 1
N

∑N
i=1(yi − pq), which is the average

error of M̃ .
The robustness, defined in eq.(4), is found to be:

α̂(q, rc; p) =


1

sp2

(
−|F |+

√
F 2 − R̃+ rc

)
if R̃ ≤ rc

0 else
(29)
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In the particularly simple case that only a single measurement, y, is available, so that N = 1
and F 2 = R̃, the positive part of eq.(29) becomes:

α̂(q, rc; p) =
1

sp2
(−|pq − y|+

√
rc) (30)

Combining this with eq.(27) we find that the prediction looseness is:

λ(p, q) = 2(−|pq − y|+
√
rc) (31)
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Figure 3: Robustness α̂ and prediction
looseness λ vs. flexibility q.

Figure 4: Robustness α̂ and prediction
looseness λ vs. input p.

Comparing eqs.(30) and (31) we see that robustness α̂ and looseness λ are antagonistic with
respect to the model parameter q: a change in q which augments robustness also increases the
looseness, as anticipated by theorem 2. This is illustrated in fig. 3, where we see that the slopes of
α̂ and λ always have the same sign. The difference in the magnitudes of these slopes determines
the trade-off cost: how much robustness must be relinquished in order to reduce the prediction
looseness, or vice versa.

If the conditions of theorem 2 are not satisfied, then robustness and looseness can be sympathetic
with respect to change in the input p. This means that there is a range of p values for which a
change in p improves both the robustness and the looseness: augments α̂ and diminishes λ. Fig. 4
shows that the slopes of α̂ and λ have opposite signs for p > y/q. However, if p < y/q then
robustness and looseness are antagonistic with respect to p; the slopes of α̂ and λ have the same
sign. Once again the difference between the slopes determines the trade-off cost.

6 Conclusion: Methodological Issues

In this section we will raise some methodological issues related to the problems of measurement,
modelling and prediction which are dealt with in this paper. In section 6.1 we discuss the relation
between our results and the legacy of scientific positivism. In section 6.2 we identify some questions
which our results motivate regarding induction, warrant and prediction.

6.1 Positivism, Prediction and Uncertainty

In this paper we have dealt with severe uncertainty and its implications for modelling and predicting
complex behavior. We have stressed that models err not only because the test data with which
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they are calibrated are noisy, but because our choice of model structure is based on incomplete or
even fallacious understanding of the processes being modelled.

Knight recognized uncertainty of this sort in economics, calling it “true uncertainty” as opposed
to probabilistic risk for which test data and understanding are more extensive (Knight, 1921).
Knightian uncertainty is characteristic of highly complex and dynamic systems.

The sort of complex dynamism which induces Knightian uncertainty was identified by Popper as
causing ‘indeterminism’. For Popper, indeterminism arises in intelligent learning systems (Popper,
1982, pp.62–63). By ‘intelligence’ is meant the ability to adapt behavior to experience, regardless
of whether this is done willfully or not. By ‘learning’ is meant the discovery of facts or situations
which previously were unknown. A discovery tomorrow cannot be known today. Consequently, the
behavior tomorrow of an intelligent learning system cannot be entirely predicted today because
of the behavioral impact of tomorrow’s discoveries. Hence, all intelligent learning systems are
accompanied by an inherent indeterminism, an inherent recalcitrance to law-like or predictive
modelling. Shackle writes similarly of the “dissolution of rational determinacy” (Shackle, 1972,
chap. 22).

Hayek also focussed on the limitations of human understanding of complex systems, especially
highly dispersed systems such as, but not limited to, economic markets. It is possible, Hayek
contended, to predict tendencies or trends, and to identify principles governing these patterns.
However, it is impossible to consistently and reliably forecast or explain the detailed evolution of
such systems (Caldwell, 2004, pp. 339–340, 346). Poole concurs with Hayek’s scepticism and with
Shackle-Popper indeterminism:

[A]nyone interested in monetary policy should spend less time on economic forecasts
and more time on implications of forecast surprises. . . . [P]olicy needs to be informed
by the best guesses incorporated in forecasts and by knowledge of forecast errors. . . .
And the surprises that create forecast errors also create the need for policy changes that
cannot be anticipated in advance because the surprises cannot be anticipated. (Poole,
2004, pp. 1, 4)

Our example in section 5 illustrates these limitations in forecasting power for a class of models used
widely in engineering, economics and elsewhere.

The upshot of Hayek’s position is a rejection of the strong scientific optimism which characterized
much activity in social and technological disciplines in the 19th and 20th centuries. This optimism,
sometimes referred to as positivism, is the conviction that thorough application of scientific under-
standing will lead to better control and utilization of any system—technical or human—whatever
the goals may be. Positivism underlies activities such as central economic planning over the full
gamut from socialism to the modern welfare state, and deferential acceptance of technological and
medical prognostication. Knight’s uncertainty, Popper’s indeterminism and Hayek’s scepticism all
stand in stark challenge to the positivists’ optimism about the predictive power of models.

There is no doubt that quantitative models sometimes do make impressively accurate and useful
predictions concerning highly irregular occurrences. For instance, Bayesian models have been used
to anticipate severe forest fires (Beckage and Platt, 2004). Severe events are, by definition, rare
and unusual, and the ability to use historical data to predict seasons or years in which severe
fires will occur is a welcome success of advanced modelling technique. By identifying patterns in
related meteorological events, the model predicts with admirable accuracy the propensity for greatly
abnormal fires in subsequent periods of 3 to 12 months. However, in contrast to this successful
prediction of a tendency, forecasting the precise acreage of fire devastation is far from reliable. As
Hayek anticipated, identification of the main factors governing a complex phenomenon (e.g. forest
fires) leads to useful predictions of trends, but not to successful detailed quantitative forecasts.
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The theorems presented in this paper have a decidedly Hayekian flavor, and are based on info-
gap quantification of Knightian uncertainty. Models can be faithful to experience and can indicate
future trends. However, complex processes may be incompletely comprehended. When this is the
case, theorem 1 states that model-fidelity is lost as we increase the robustness to our ignorance of
that complexity. Furthermore, theorem 2 asserts that, as we enhance our robustness to ignorance,
we lose predictive focus; models whose fidelity is reliable will tend to be poor predictors if info-
gaps accompany our understanding. Combining these constraints we find that, for complex and
imperfectly understood processes, we will face challenges when models are expected to do more
than to predict general trends. Hayekian scepticism about optimistic positivism seems well founded
in light of our theoretical results. On the other hand, the robustness and loosesness functions
developed in this paper provide quantitative tools for assisting the analyst in identifying models
which have adequate fidelity, robustness and predictive focus.

6.2 Induction, Warrant and Prediction

Hume and the problem of induction. The conflict between robustness, fidelity and prediction
looseness is reminiscent of Hume’s critique of empirical induction (Hume, 1777). Our analysis
shows that past measurements, accompanied by incomplete understanding of the measured process,
cannot unequivocally establish true predictions of the behavior of the system. However, the issue is
not inherently temporal. The problem is not that past measurements do not logically bind future
behavior. The problem is epistemic. We use test data to select a model of system behavior. But data
alone are insufficient for the selection process, which depends also on the analyst’s understanding
of the measured process. Experience shows that this understanding is incomplete. Also, like Hume,
we claim that no amount of data can confirm the contention that no aspect of the process has been
overlooked.

Hume’s critique is clearly related to the antagonism between robustness and prediction looseness.
However, can this antagonism be reduced to the classical problem of scientific induction? To explore
this question further we consider the issue of warrant for a proposition.

Haack, warrant and prediction. Our main result, theorem 2, establishes general conditions
under which a physical model can be highly warranted by virtue of high fidelity to test data and
high robustness to epistemic uncertainty, only by limiting its predictive power. The questions we
wish to raise (but not answer) are: Is ‘warrant’ overrated as a tool for model selection? Philosophers
have been greatly interested in model selection in natural science. Is model selection in natural
science fundamentally different from model selection in utilitarian disciplines such as engineering,
economics, medicine, or law? Robust fidelity is anti-correlated with predictive power. Can concepts
of warrant for a model be modified to correlate better with predictive power?

Our only contribution to these questions is to explain that robust fidelity can be understood at
least partially as a type of warrant within the context of one of the most attractive of contemporary
epistemological theories of warrant.

Susan Haack, in expounding her epistemological theory of ‘foundherentism’ (Haack, 1993), ex-
plains that

how warranted an empirical claim is depends on how well it is supported by experi-
ential evidence and background beliefs, how reasonable those background beliefs are,
independent of the belief in question, and how much of the relevant evidence the evi-
dence includes.

. . . Briefly and very roughly, how well evidence supports a claim depends on how well
the claim is explanatorily integrated with the evidence. (Haack 2001, p.11)
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The relation between foundherentism as a holistic theory of warrant, and info-gap robust-
satisficing as a methodology for severely testing hypotheses, is not simple or unambiguous (Ben-
Haim, 2006), pp.332–333]. However, the following claims seem reasonable:

• If physical model M̃ has high fidelity to the test data, then it is “supported by experiential
evidence”. All “relevant evidence” has been included if any outliers in the data have been excluded
as irrelevant only on substantive evidential grounds.

• The concept of “background beliefs” can be interpreted in the present context to refer to the
array of competing models which collectively represent the universe of potential and actual under-
standings of the processes involved. Consequently, if the robustness of M̃ to epistemic uncertainty
is large, meaning that M̃ could be modified in many ways without significantly diminishing its
fidelity, then M̃ is “supported by . . . background beliefs”.

• The physical models M contained in the info-gap model U(α, M̃) at low α are quite similar to,
and thus “dependent” on, M̃ . However, at large horizon of uncertainty, the set U(α, M̃) contains an
infinity of models which differ greatly from the “centerpoint” model M̃ . Thus, at high robustness,
many models lie in the universe of discourse that are highly unrelated to, and thus “independent”
of, M̃ .

When modelling imperfectly understood processes, the upshot of all this is that a model that is
warranted by large robustness at high fidelity, seems to satisfy Haack’s criteria for epistemological
warrant. But high fidelity at high robustness is anti-correlated with high predictive power (under
the stipulations of theorem 2). What good is robust fidelity in particular, and epistemological
warrant in general, if predictive power is not only not entailed, but in fact counter-indicated?
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