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Doing Our Best: Optimization and the Management of Risk

Yakov Ben-Haim1

Abstract Tools and concepts of optimization are widespread in decision-making, design and
planning. There is a moral imperative to ‘do our best’. Optimization underlies theories in
physics and biology, and economic theories often presume that economic agents are optimizers.
We argue that, in decisions under uncertainty, what should be optimized is robustness rather
than performance. We discuss the equity premium puzzle from financial economics, and explain
that the puzzle can be resolved by using the strategy of satisficing rather than optimizing. We
discuss design of critical technological infrastructure, showing that satisficing of performance
requirements—rather than optimizing them—is a preferable design concept. We explore the
need for disaster recovery capability and its methodological dilemma. The disparate domains—
economics and engineering—illuminate different aspects of the challenge of uncertainty and of
the significance of robust-satisficing.

Keywords: optimizing, satisficing, robustness, uncertainty, info-gap, financial investment, eq-
uity premium puzzle, technological infrastructure, moral hazard, disaster recovery

1 Introduction

We admire excellence in all areas of endeavor: art, sport, science, business, and risk man-
agement. The fastest runner wins the race and our admiration. The lowest-risk design—all
else being equal—is preferred. ‘Better’, by definition, is ‘more desirable’ and—by the logic of
preference—the best is most preferred. The logic of preference is so compelling that there is a
moral imperative to do our best. Optimization also has deep roots in the physical and natural
realms. The laws of physics can be derived from optimization principles.(1) Biological evolution
is a process of selection of the better over the less good leading—all else being stable—to opti-
mal morphologies. Mathematical economics was quick to adopt the imperative of optimization,
which underlies modern theories of economic dynamics.

Decision makers often face severe uncertainties. This has profound implications for any
attempt to optimize the outcome of their decisions. In this essay we first discuss a paradox
from financial economics that belies the cardinality of performance-optimization by economic
agents. We contrast performance-optimization with a strategy of robustly achieving critical
goals. We then apply this concept to technological risk analysis, and consider the schematic
design of a critical but risky infrastructure. Finally, we discuss the importance of disaster
recovery as an integral part of risk management. Our goal is to understand the utility as well as
the limitation of performance-optimization. The consideration of diverse domains—economics
and engineering—facilitates the generality of that understanding.

2 Financial Economics and Optimization

Economic agents are optimizers according to standard economic theories. Rational behavior
is maximization in the pursuit of self interest. Firms try to maximize profits, households try
to maximize utility, governments try to maximize social welfare.(2,3) Those who fall short of
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the optimum are weeded out by competition. Optimization has its own moral imperative: we
should all do our best, and if we don’t, then it’s the other guy’s turn at bat.

Is this true? Should we rely on economic models that adopt maximization as an axiom?
Biological evolution is a powerful metaphor for economics. Consider a squirrel nibbling

acorns, and noticing a stand of fine oaks in the distance. There are probably better acorns
there, but also other squirrels and predators. How long should the squirrel forage here before
moving there? What strategy should guide the decision? The squirrel needs a critical amount
of energy to survive the night. Maximizing caloric intake is not necessary. Maximizing the
reliability of achieving the critical intake is necessary. What is maximized is not the substantive
“good” (calories), but confidence in satisfying a critical requirement.(4)

Fifty years ago Herbert Simon (Nobel Prize in economics, 1978) advanced the idea that
economic agents lack information, understanding, and the ability to process data. These defi-
ciencies, which he called their “bounded rationality”, force agents to look for solutions that are
good enough, though not necessarily optimal. The optimum may exist but it cannot be known
by the resource- and information-limited agent. “Satisficing” is what Simon called this strategy
of settling for a solution that is good enough, as opposed to optimizing.(5)

But academic economists seem to take scarce notice of Simon’s work.(2,3) Like Twain’s quip
about the weather, they all talk about it (either weather or satisficing) but they don’t do a
damn thing. Rationality, we learn, is optimization of profit or utility.

This very conventional attitude to rationality may be related to the long list of unresolved
economic paradoxes. One example began with an article by Mehra and Prescott (the latter
won the 2004 Nobel Prize in economics) entitled “The equity premium: A puzzle”.(6) A decade
later Kocherlakota published “The equity premium: It’s still a puzzle”.(7) There are many
theoretical explanations of the equity premium puzzle (EPP),(8,9) but no consensus. In fact,
not all economists agree that a long-term equity premium even exists.

What is the EPP, and what can we learn about optimization in economics, and beyond?
Stocks are riskier than US government bonds, so the average return to stocks should be

higher. Otherwise who would look at stocks? This is sound common sense, and many economists
have shown that the annual return to stocks is higher than to bonds, typically by 7%, sometimes
by as much as 20% or as little as 0.3%. Does this “risk premium” for stocks make sense in
terms of rational (read: maximizing) behavior? The puzzle (assuming the premium is real) is
that standard asset pricing models can explain the size of the risk premium only by assuming
that investors are much too averse to risk. The observed behavior of investors in other risky
settings would suggest that they would be willing to accept a much lower equity premium for
stocks.

There are, as noted, many insightful attempts to resolve the EPP, including that it is a
statistical chimera. But what these explanations have usually not challenged is the assumption
of optimization. Explanations of the EPP usually assume that investors try to maximize their
returns rather than trying to achieve adequately large returns (e.g., larger than the competition).

Robustness to uncertainty is the key to understanding the role of satisficing in explaining the
EPP as shown in detail elsewhere.(10, sec.11.5) The same is true of another financial conundrum,
the home-bias paradox.(11)

Suppose we hear that a new start-up offers higher returns than anyone else, though many
risks are involved. While such large returns would be great, the investor would be satisfied
with lower returns. The investor has a fixed budget with which to construct an investment
portfolio by choosing from among a large number of assets. Usually only one portfolio has
maximum expected return. However, for any specified increment below this maximum, many
different portfolios will have the same expected return at this specified value. This means that
by relinquishing the goal of maximizing (even on average), the investor is able to choose among
more alternative portfolios, all of which are adequate in terms of expected average return. This
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is an algebraic result with a simple geographical analogy. A mountain usually has only one
summit, but it has an infinity of points at any fixed distance below the summit.

Accepting a sub-optimal but adequate investment is an example of what Simon called sat-
isficing, and it also motivates the idea of robustness. The investor who satisfices (rather than
maximizes) can choose the alternative that would yield the required return over the greatest
range of uncertain future scenarios. That is, the investor foregoes some aspiration for profit in
exchange for some robustness against unacceptably low returns. In other words, satisficing is
more robust to uncertainty than optimizing. Hence this strategy is called robust-satisficing. If
satisficing—rather than maximizing—is in some sense a better bet, then it will tend to persist
under uncertain competition.

Now we can understand that equity premia should be lower than predicted by theories
which assume that investors try to maximize their returns. Satisficers have to satisfy their
requirements (or those of their clients). Satisficers tend to survive because they are more likely
to meet critical requirements. And since satisficing entails a preference for less-than-maximal
options, we should expect the market to lower the equity premium for risk.

There is a broader policy implication of the logic of satisficing. Going after critical require-
ments is usually a better bet for “survival”, than going after what seems optimal. This is true
of many decisions under uncertainty in forecasting,(12) engineering,(13) economics, public policy,
homeland security and elsewhere.(10, sec.11.4) We must ask what outcomes are critical, not what
are the best outcomes predicted by our uncertain models, even if those models are probabilistic.
Critical requirements are usually more modest than the best anticipated outcome, so there will
usually be many more ways to achieve them. We should choose the option that will lead to
the required outcome most robustly. We now apply this strategy to the design of a critical and
dangerous infrastructure technology.

3 Sea Walls and Tsunamis

On 11 March 2011 a magnitude 9.0 earthquake struck northeastern Japan, followed by a massive
tsunami. Walls of water flooded the coastal region causing vast damage and tens of thousands
of deaths. The nuclear reactor complex at Fukushima Daiichi was flooded and extensive damage
was done to 3 of the 6 reactors. We will apply the reasoning of robust-satisficing to a schematic
design analysis of the flood protection problem, motivated by the Fukushima incident. Our goal
is to illustrate the motivation for robust satisficing—as distinct from risk-aware performance-
optimizing—in light of the uncertainties inherent in the design.

Let’s start with the uncertainties. Tsunami heights can be enormous. A 1792 eruption
of mount Unzen in Japan is reported to have produced a 100m tsunami. A 1958 landslide in
Alaska’s Lituya Bay caused an earthquake leading to an initial wave 524m high. A 1963 landside
above the Vajont Dam in Italy resulted in a 250m surge.(14) These heights are rare and extreme,
but tsunami heights of several tens of meters are not uncommon. The Fukushima tsunami was
15m high, the tsunami following the 1993 Okushiri earthquake in Hokkaido, Japan, was 30m.
While there clearly is an upper bound to physically possible tsunamis, the upper tail of the
probability distribution is long and fat and highly uncertain.

Let’s now consider risk-informed performance requirements. Performance requirements
may originate in various ways: by legislation, by administrative fiat, by public debate and col-
lective decision making, and so on. Furthermore, multiple constraints of various sorts may be
imposed, such as cost and safety constraints, engendering trade offs. The process by which per-
formance requirements are established and balanced is beyond the scope of this paper. Rather,
we study the implications of two broad classes of requirements: optimizing and satisficing re-
quirements, which we illustrate through example.

Roughly speaking, we want the flood defense system to assure that large damage to the
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nuclear reactor is very rare. The designer is well aware of risks and wants to control them. More
precisely, in our example the designer specifies the largest acceptable probability of unacceptably
large damage. For instance, the designer (or a public commission or the legislature) may require
that the probability of a loss of coolant accident (LOCA) be no greater than one in a million
per year.2

We must note two attributes of a design requirement such as this.
First, while it is perhaps extremely demanding, is not an optimization requirement, but

rather a satisficing requirement. An optimizer would require minimal probability of LOCA. The
satisficer seeks acceptably small probability. Note however that both optimizer and satisficer
attempt to model and manage risk, though in different ways.

Second, it is necessary to know, or reliably estimate, the upper tail of the probability
distribution of tsunami damage in order to operationalize this performance requirement. That
probability distribution is highly uncertain, as we just explained.

These two attributes are linked: the uncertainty of the probability distribution motivates
the satisficing strategy. Reliable minimization of the probability of a LOCA, while desirable,
is not feasible since the probability distribution is imperfectly known. It is therefore a better
strategy to seek an acceptable (and perhaps very demanding) outcome for as wide a range of
probability distributions as possible.

Engineers sometimes use the language of performance optimization. Nonetheless, satisficing
requirements such as the one we have discussed are quite common in engineering. US Dept.
of Defense design specfications (“mil-specs”) and many other design codes routinely specify
required performance thresholds, rather than specifying that the performance must be as good
as possible. We cannot avoid noting the contrast between this tradition in engineering design,
and the axiom of performance optimization that underlies much economic theory.

There are two broad categories of design options in defending against tsunamis. Sea walls
are intended to keep the water—or a significant fraction of it—from reaching vulnerable areas.
The sea wall design is specified by the location, height and durability of the wall. Flood gates
and channels are intended to re-direct the water away from vulnerable areas. The design is
specified by the location of the gates and channels and by their water capacity (volume per
time).

Before discussing the robust-satisficing design of a flood defense system we briefly mention
some of the many concepts of robustness.

Wald(16) studied the problem of statistical hypothesis testing based on a random sample
whose probability distribution is not known, but whose distribution is known to belong to a
given class of distribution functions. Wald states that “in most of the applications not even the
existence of . . . an a priori probability distribution [on the class of distribution functions] . . . can
be postulated, and in those few cases where the existence of an a priori probability distribution
. . . may be assumed this distribution is usually unknown.” (p.267). Wald developed a decision
procedure that “minimizes the maximum . . . of the risk function.” (p.267).

Many engineering researchers, beginning in the 1960s, developed estimation and control al-
gorithms for linear dynamic systems based on sets of inputs. Schweppe(17) for instance develops
inference and decision rules based on assuming that the uncertain phenomenon can be quan-
tified in such a way as to be bounded by an ellipsoid, with no probability function involved.
These robust estimation and control methodologies have flourished in engineering and beyond.

Hansen and Sargent have pioneered the introduction of robustness tools in economics. In
their recent book(18) they quantify model misspecification by taking “a given approximating

2This numerical value is just for illustration. The probabilistic risk analysis of nuclear reactors is complex
and multi-variate. For instance, a report prepared for the US Nuclear Regulatory Commission in 2005(15) cites
mean expert estimates of the frequency of LOCAs in boiling water reactors ranging from 6.4× 10−4 per year for
very small pipe breaks to 6.4× 10−9 per year for very large breaks.
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model and surrounding it with a set of unknown possible data generating processes, one un-
known element of which is the true process . . . . Our decision maker confronts model misspec-
ification by seeking a decision rule that will work well across a set of models for which” the
relative entropy is bounded. “The decision maker wants a single decision rule that is reliable
for all [emphasis in original] models . . . in the set” (p.11). They explain that “‘Reliable’ means
good enough, but not necessary optimal, for each member of a set of models.” (footnote 21,
p.11). They then “maximize [an] intertemporal objective over decision rules when a hypothet-
ical malevolent nature minimizes that same objective . . . . That is, we use a max-min decision
rule.” (p.12).

Many other concepts of robustness are to be found, including P -boxes for managing un-
certainty in probability distributions in many applications,(19−22) imprecise probabilities,(23,24)

info-gap theory(10) and others.
This essay does not attempt to compare or contrast these methodologies (some comparison is

found elsewhere(25)), all of which have been usefully applied. The info-gap concept of robustness
will be implicit in our discussion,(10) though similar conclusions would be reached by posing the
analysis within other robustness frameworks.

We now sketch out the robust design of the flood defense system. In our hypothetical and
schematic design problem we imagine that the designer identifies a suite of design alternatives.
Borrowing the language of portfolio theory, we say that a fixed budget must be allocated
among design options so that the total effect satisfies the design requirement. For instance,
heightening the seawall reduces the available budget for floodgates, but together they must
achieve the required probability of failure.

The designer has access to models of earthquakes, tsunamis, coastal hydrodynamics, nuclear
reactor cooling, and so on. The models include probability distributions as well as deterministic
models. These are the best available models, but they still contain imperfections, errors, and
uncertainties due to the vast complexity of the processes. Next year’s models will be better,
but design decisions must be made today.

The strategy of performance optimization would proceed as follows. Use the best avail-
able models to predict the outcomes of each budgetarily feasible design. The models may be
probabilistic, and predicted outcomes may be probabilities of LOCA or other events, or other
risk-weighted performance functions with means, variances or quantile terms. The best-model
performance-optimizer adopts the design whose predicted risk-informed outcome is best.

A performance-optimizer would advocate using the best risk-informed model to identify the
design with the best predicted performance, even though the models are uncertain. Our analysis
of the equity premium puzzle suggests that this is not a reliable strategy, as we now explain.

Suppose the designer has identified two budget-feasible designs, A and B, both of which
satisfy the performance requirement (e.g., probability of LOCA less than one in a million).
Moreover, the best available models predict that the probability of a LOCA for design A is less
than for any other budget-feasible design.

The performance-optimizer would choose design A, and this might indeed be the design
of choice. However, we must first ask the robustness question: how wrong can the models be
(including the probabilistic models whose tails may be poorly known), and the performance of
the design is still acceptable? We would like to know the true probability of LOCA, and the
best-model estimate is only an approximation to the truth.

The central point is that a design has two attributes: its best-model predicted behavior, and
the sensitivity of its predicted behavior against error in the best models. Its predicted behavior
is evaluated from one type of calculation (applying the models to the design in question), and
its sensitivity to error is evaluated by a different calculation (a robustness analysis of one sort
or another).

Predicted behavior, and robustness-to-model-error of predicted behavior, are distinct and
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independent attributes of a design. It is not true that good predicted outcome implies large
robustness to model error, even when the model is risk-based. Model predictions of the best
risk-informed outcome may be very sensitive to uncertainty in the sense that small changes in
estimates or assumptions may cause much worse outcomes. The idea of robustness quantifies
this intuition. The robustness is a “rate of change” attribute of the design: how “fast” does the
performance change as the models change? The predicted outcome, in contrast, is evaluated
from a specific realization of the models (which may be probabilistic and risk-informed).

A graphical analogy will illustrate the difference between performance optimization and
robustness optimization. A straight line has two independent attributes: a slope (rate of change)
and an intercept (specific value). An infinity of lines have the same intercept and different slopes,
and a different infinity of lines have the same slope and different intercepts. In the same way,
the predicted behavior and the robustness-to-model-error of predicted behavior, are distinct
and independent attributes of a design. The predicted best design is not necessarily the most
robust to uncertainty, even when the model itself involves risk-based terms.

Let’s return to the decision between designs A and B, where A is the best-models’ predicted
optimal design. If both designs are predicted to satisfy the risk-based performance require-
ment, and if A’s predicted behavior is also more robust to model-error than B, then both the
optimizer and the satisficer will choose A over B. Optimizer and satisficer agree in this case,
but for different reasons. The optimizer chooses A over B because it is the putative optimum.
The satisficer chooses A over B because A is more robust than B for satisfying the design
requirement.

It is clear that the optimizer and the satisficer will not always agree. Even though A is pre-
dicted (based on the best models) to out-perform B, it can and does happen that B satisfies the
performance requirement over a larger range of models (surrounding the best available models)
than A. Both A and B are predicted to be satisfactory, and B is predicted to be satisfactory
over a larger range of model-deviations from the best available models. The satisficer argues
that—since the best models are wrong in unknown ways—it is a better bet to choose the more
robust design.

This conclusion—that robust-satisficing may or may not agree with best-model performance-
optimization—is reminiscent of the resolution of the equity premium puzzle that we discussed
earlier. Practical decision makers—squirrels, financial investors, or engineers—face the conse-
quences of their decisions. When those consequences are fatal in some sense, less successful
decision makers (or their decision strategies) tend to be removed from the game. Survival
depends on robustness to ignorance in achieving critical goals.

The decision-maker who maximizes robustness-to-uncertainty in seeking critical outcomes
is indeed optimizing something: robustness. Both the performance-optimizer and the robust-
satisficer employ the concepts and tools of optimization in attempting to manage risk. But
there is a conceptual difference between their strategies, and their decisions may disagree. Both
strategies employ the best available models. The performance-optimizer chooses the design
whose best-model risk-informed predicted behavior is best. The robust-satisficer picks the
design whose behavior is satisfactory for the widest range of deviation from the best models.

4 Disaster Recovery

The distinction between robust-satisficing and performance-optimizing has implications for our
attitudes towards disaster recovery.

The failure of critical technologies can be disastrous. The crash of a civilian airliner can
cause hundreds of deaths. The meltdown of a nuclear reactor can release highly toxic isotopes.
Failure of flood protection systems can result in vast death and damage. Society therefore
insists that critical technologies be designed, operated and maintained to extremely high levels
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of reliability. We benefit from technology, but we also insist that the designers and operators
“do their best” to protect us from their dangers.

Industries and government agencies who provide critical technologies almost invariably act
in good faith for a range of reasons. Morality dictates responsible behavior, liability legislation
establishes sanctions for irresponsible behavior, and economic or political self-interest makes
continuous safe operation desirable.

The language of performance-optimization—not only doing our best, but also achieving the
best—may tend to undermine the successful management of technological danger. A probabil-
ity of severe failure of one in a million per event is exceedingly—and very reassuringly—small.
When we honestly believe that we have designed and implemented a technology to have van-
ishingly small probability of catastrophe, we can honestly ignore the need for disaster recovery.

Let’s contrast this with an ethos that is consistent with robust-satisficing. We now acknowl-
edge that our predictions are uncertain, perhaps highly uncertain on some specific points. We
attempt to achieve very demanding outcomes—for instance vanishingly small probabilities of
catastrophe—but we recognize that our ability to reliably calculate such small probabilities is
compromised by the deficiency of our knowledge and understanding. We robustify ourselves
against those deficiencies by choosing a design that would be acceptable over a wide range of
deviations from our current best understanding. Not only does “vanishingly small probability
of failure” still entail the possibility of failure, but our predictions of that probability may err.

Acknowledging the need for disaster recovery capability (DRC) is awkward and uncomfort-
able for designers and advocates of a technology. We would much rather believe that DRC
is not needed, that we have in fact made catastrophe negligible. But let’s not conflate good-
faith attempts to deal with complex uncertainties, with guaranteed outcomes based on full
knowledge. Our best models are in part wrong, so we robustify against the designer’s bounded
rationality. But robustness cannot guarantee success. The design and implementation of DRC
is a necessary part of the design of any critical technology, and is consistent with the concept
of robust-satisficing.

One final point: moral hazard and its dilemma. The design of any critical technology entails
two distinct and essential elements: failure prevention and disaster recovery. What economists
call a ‘moral hazard’ exists since the failure prevention team might rely on the disaster-recovery
team, and vice versa. Each team might, at least implicitly, depend on the capabilities of the
other team, and thereby relinquish some of its own responsibility. Institutional provisions are
needed to manage this conflict.

The alleviation of this moral hazard entails a dilemma. Considerations of failure prevention
and disaster recovery must be combined in the design process. The design teams must be aware
of each other and even collaborate in the design process because a single coherent system must
emerge. But we don’t want either team to relinquish any responsibility. On the one hand
we want the failure prevention team to work as though there is no disaster recovery, and the
disaster recovery team should presume that failures will occur. On the other hand, we want
these teams to collaborate on the design.

The presence of this moral hazard and its dilemma does not obviate the need for both
elements of the design. It highlights the special challenge of high-risk critical technologies:
design so failure cannot occur, and prepare to respond to the unanticipated.
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