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Redundancy and Robustness, Or, When is Redundancy Redundant?
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Abstract

The redundancy of a structure refers to the extent of degradation which the structure can suffer
without losing some specified elements of its functionality. However, since future structural degra-
dation is unknown during design and analysis, it is evident that structural redundancy is related to
robustness against uncertainty. We propose a quantitative and widely applicable concept of “strong
redundancy” and show its relation to the info-gap robustness of the structure. In particular, one of
our propositions establishes general conditions in which the strong redundancy is equivalent to the
robustness. We also define a concept of “weak redundancy” and present propositions which relate
it to the strong redundancy and the robustness. We illustrate our results with several heuristic and
engineering examples.
Keywords: Robustness, redundancy, info-gap, uncertainty, structural integrity, structural degrada-
tion.

1 Introduction

The concept of redundancy in structures is central in many design philosophies, and its importance
has long been recognized by structural engineers. Several definitions of redundancy have been pro-
posed, for example in terms of the collapse load, the number of plastic hinges, the probability of
system failure, etc. However, the definition of redundancy still remains controversial. This paper
presents a definition and a quantitative measure of redundancy. Then, using info-gap theory, we
provide a measure of robustness and relate it to the concept of redundancy.

Roughly speaking, the redundancy of a structure refers to the extent of degradation which the
structure can suffer without losing some specified elements of its functionality. For example, design
in a seismically active region may require that life-protecting functionality be preserved after an
earthquake, but not necessarily inhabitability of the structure. Or, in contrast, a structure is not
considered as being redundant if the failure of one structural component immediately causes the
failure of the entire structure and loss of all functional attributes. This paper proposes a precise
rendition of this intuitive idea and connects it to robustness against uncertainty.

Survey. Probably the most classical measure of the redundancy of a truss or frame, the degree
of static indeterminacy , is defined by:

s = N − rankH, (1)

where H ∈ ℜd×N is the equilibrium matrix (relating external forces to axial forces, shears and
bending moments in the elements), N is the number of internal forces, and d is the number of
degrees of freedom of displacements. Although s is called the degree of redundancy by some authors,
it has been pointed out by Frangopol and Curley (1987) and Pandey and Barai (1997) that s is not
always suitable for assessing the performance of the entire structural system.

Frangopol and Curley (1987) defined the strength redundant factor r as

r =
lintact

lintact − ldamaged
, (2)
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where lintact is the ultimate strength of the intact (undamaged) structure, and ldamaged is that of
the damaged structure. For example, Ohi et al. (2004) considered the plastic limit load factor to
assess the ultimate strength of the structure, and used the inverse of r to represent the effect of the
deficiency of a structural component; in this setting, ldamaged is the limit load factor after a member is
removed from a structure. The redundancy measure in eq.(2) has also been extended for probabilistic
uncertainty by Fu and Frangopol (1990) and Okasha and Frangopol (2009):

r =
P (D)− P (C)

P (C)
,

where P (C) is the probability of the system collapse, and P (D) is the probability of the failure of
a structural component. Hendawi and Frangopol (1994) define P (C) and P (D) as the probability
of collapse of the intact structure and the probability that any first-member-yielding occurs in the
intact structure, respectively.

The residual strength index is defined by Feng and Moses (1986) as:

li
lu
, (3)

where lu is the ultimate strength of the structural system, and li is the strength of the structural
system after the ith structural component has failed. Specifically, for a frame structure, the decrease
of the linear buckling factor due to deficiency of members was investigated numerically by Shafer
and Bajpai (2005). Husain and Tsopelas (2004) define the redundancy-strength index as the inverse
of eq.(3), i.e., lu/ly, where ly is the strength of the structure at the point of the first “significant
yielding”. A redundancy measure based on a sensitivity coefficient proposed by Pandey and Barai
(1997) is:

vi
(∂gj(p)/∂pi)

,

where gj is the structural response, p = (pi) is the vector of design variables, and vi is the volume of
the ith structural component.

For the earthquake-resistant design of frame structures, the number of plastic hinges which emerge
when the structure collapses is used for evaluating the redundancy by Bertero and Bertero (1999)
and Tesfamariam and Saatcioglu (2010).

Paliou, Shinozuka and Chen (1990) used the conditional probability P (S|E) to assess the redun-
dancy, which is defined as the (conditional) probability that the structure will eventually survive
(S), given the event E, which is the (simultaneous) failure of some members. For assessing the
redundancy against earthquakes, the uniform redundancy factor was proposed by Liao, Wen and
Foutch (2007) and Wen and Song (2003) based on the probability of incipient collapse. Redundancy
measures based on Shannon’s information entropy are discussed by Hoshiya and Yamamoto (2002,
2003), Au (2003), and Žiha (2000). Hendawi and Frangopol (1994) considered the gap between the
load at which the member begins to collapse and the load when the entire structure collapses.

Aim. This paper proposes an intuitive and quantitative concept of redundancy which is relevant
to a wide range of structures and applications. Our development has two specific goals.

The first aim relates to the management of uncertainty. Redundancy is evaluated with respect
to failure of structural components. For example, high redundancy often means that the structure
suffers only small degradation of performance when a structural component fails. However, for a
real-world structure we do not know in advance how many and which components will fail. In other
words, redundancy is related to robustness against uncertainty. We will establish a quantitative
connection between redundancy and robustness against uncertainty.

The second goal of this paper relates to the performance requirements of a structure. A structure
has large redundancy if a performance requirement is satisfied for any of a range of possible failures.
Thus the notion of a constraint—a performance requirement—over a set of contingencies is central
to the idea of redundancy. The concept of redundancy developed in this paper is applicable to a very
broad range of performance requirements.
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Organization. In section 2 we define a concept called strong redundancy and discuss its intuitive
meaning. In section 3 we define a concept of robustness to uncertainty. In section 4 we explore the
relation between strong redundancy and robustness, proving two propositions. The first establishes
that the strong redundancy is bounded below by the robustness, and the second establishes, under
somewhat stricter but still fairly general conditions, that in fact strong redundancy and robustness
are identical. Sections 5 and 6 discuss two engineering examples of strong redundancy. In section 7
we introduce a concept called weak redundancy and prove two propositions which establish relations
between weak redundancy, strong redundancy and robustness. We conclude in section 8. All proofs
appear in section 9.

2 Strong Redundancy

2.1 The System and Its Performance Requirement

Consider a system whose performance g(p) depends on a vector p which specifies the system. Let T
denote the class of all p values of relevant or possible realizations of the system. A small value of
g(p) is preferred over a large value. The performance requirement is that g(p) not exceed a critical
or maximal allowed value, g:

g(p) ≤ g (4)

Define |p| =
∑N

i=1 |pi| and let p ≤ p′ mean that pi ≤ p′i for i = 1, . . . , N . When p ≤ p′ we
will say that the system represented by p is no stronger (usually, actually weaker) than the system
represented by p′.

Example 1 Consider a collection of nodes between which can be connected up to N bars with
frictionless joints to form a truss with specified boundary conditions. Let p be a binary indicator
vector whose elements equal either 0 or 1: pi = 1 means that the ith bar is present while pi = 0
means that the ith bar is absent, for i = 1, . . . , N . Let T denote this set of possible trusses. The
value of g(p) expresses whether or not the system is statically stable. A small value of g(p) implies
stability.

Example 2 As in example 1, consider a collection of nodes between which can be connected up to
N bars with frictionless joints to form a truss with specified boundary conditions. Let p ∈ ℜN

+ be a
non-negative real vector whose ith element is the cross-sectional area of the ith bar. Let T denote
this set of possible trusses. The value of g(p) is the compliance of the system. A small value of g(p)
is desirable.

2.2 Strong Redundancy: Definition

We now define a concept of “strong redundancy”. To do this we first introduce a “deficiency set”. Let
D(α, p̃) be the set of all structures which are deficient, by an amount α, with respect to the nominal
structure p̃. The systems in D(α, p̃) have suffered a decrement in structural integrity, with respect
to the designed system p̃, by an amount α. Because we do not know the extent of structural damage
which will occur in the future we will be refer to α as the horizon of uncertainty. Let us consider
several examples of deficiency sets before presenting a formal definition of strong redundancy.

Example 3 In continuation of example 1 let the deficiency set D(α, p̃) be the set of all trusses in T
which differ from the nominal design by removing exactly α bars:

D(α, p̃) = {p : p ∈ T , p ≤ p̃, |p− p̃| = min[α, |p̃|]} , α = 0, 1, 2, . . . (5)

Note that, when the horizon of uncertainty equals or exceeds the norm of p̃, (which equals the number
of bars in the nominal structure), then exactly |p̃| components are lacking from p̃ so the truss is now
completely empty. Consequently D(α, p̃) remains constant for all α ≥ |p̃|. In fact, this deficiency set
will contain only the zero element.
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Example 4 In a simple modification of example 3 we consider both the possible removal or addi-
tion of bars. This is relevant if both missing as well as additional bars can potentially reduce the
performance of the structure. Thus the deficiency sets of eq.(5) become:

D(α, p̃) = {p : p ∈ T , |p− p̃| = min[α, dim(p̃)]} , α = 0, 1, 2, . . . (6)

Note that, when the horizon of uncertainty equals or exceeds the dimension of the vectors p, then
exactly dim(p̃) elements differ between p and p̃. In other words, D(α, p̃) remains constant for all
α ≥ dim(p̃). In fact, this deficiency set will contain only one element: the binary complement of p̃.

Example 5 In continuation of example 2 let the deficiency set D(α, p̃) be the set of all structures
in T in which one cross section is extremal (either its nominal or its minimal value) and all others
are within the range of values at that horizon of uncertainty.

The strong redundancy of design p̃ is the greatest deficiency which can be tolerated at any
place in the structure, without violating the performance requirement, eq.(4). Whatever the specific
form of the deficiency set, the strong redundancy is defined as:

σ(p̃, g) = max

{
α :

(
max

p∈D(α,p̃)
g(p)

)
≤ g

}
(7)

We define σ(p̃, g) = 0 if the set of α values in eq.(7) is empty.
For notational convenience we sometimes denote σ(p̃, g) as σ. D(σ, p̃) is the deficiency set eval-

uated at the horizon of uncertainty which equals the strong deficiency. By definition of strong
deficiency, all elements of D(σ, p̃) satisfy the performance requirement, eq.(4). Furthermore, for any
α > σ there is at least one element of D(α, p̃) which does not satisfy eq.(4). However, the definition
of strong redundancy does not stipulate anything about how many elements of deficiency sets D(α, p̃)
satisfy eq.(4) for α < σ. For instance, D(0, p̃) will usually be defined to contain only the nominal
structure and it may or may not satisfy eq.(4). More generally, it can happen that the performance
displays “non-monotonic” behavior: adding a bar can reduce the performance. We will define mono-
tonicity later (definition 2), and present an example of non-monotonicity in section 4.4. In summary,
the composition of D(α, p̃) changes as α increases from 0 to σ. At any given α < σ the structures in
D(α, p̃) may or may not all satisfy eq.(4).

3 Info-Gap Uncertainty and Robustness

Let p̃ denote the nominal design specification of the system. The true value, p, which represents the
real physical structure, is uncertain due to wear, aging, negligence, manufacturing variability, etc.
The uncertainty is represented by an info-gap model, U(α, p̃), which is a family of nested sets of p
values. There are many types of info-gap models (see Ben-Haim 2006), but all info-gap models have
two properties. Contraction asserts that, in the absence of uncertainty, the nominal design is the
only possibility:

U(0, p̃) = {p̃} (8)

Nesting asserts that the range of possible realizations of p increases as the horizon of uncertainty, α,
increases:

α < α′ implies U(α, p̃) ⊆ U(α′, p̃) (9)

We will assume that the sets of our info-gap models are closed. This is not necessary in principle,
though it does not exclude any info-gap models which are important in practice, and it does simplify
our proofs.

Example 6 In continuation of example 1 consider the following info-gap model for uncertainty. Let
us consider a specific truss design, denoted p̃. We are concerned about possible absences of bars from
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this design. (We are not worried about possible additional bars.) We don’t think that any bars are
missing, since p̃ is the official (nominal) design, but an unknown number of bars might be missing
due to damage or negligence, etc. In short, we consider uncertainty about the possible absence of
bars. We define an info-gap model with a discrete horizon of uncertainty as follows. U(α, p̃) is the
set of all trusses in T from which no more than α bars are missing:

U(α, p̃) = {p : p ∈ T , p ≤ p̃, |p− p̃| ≤ α} , α = 0, 1, 2, . . . (10)

Example 7 In a simple modification of example 6 we consider both the possible removal or addi-
tion of bars. This is relevant if both missing as well as additional bars can potentially reduce the
performance of the structure. Thus the info-gap model of eq.(10) becomes:

U(α, p̃) = {p : p ∈ T , |p− p̃| ≤ α} , α = 0, 1, 2, . . . (11)

Example 8 In continuation of example 2, we are concerned about possible corrosion, abrasion or
cracking of bars resulting in reduced cross-sectional area. The uncertainty is now continuous and
represented in various ways, depending on the type of prior information available.

One info-gap model is a direct continuous extension of the info-gap model in eq.(10), the only
difference being that now the true design vector p and the horizon of uncertainty α are continuous
variables:

U(α, p̃) = {p : 0 ≤ p ≤ p̃, |p− p̃| ≤ α} , α ≥ 0 (12)

U(α, p̃) now contains all trusses whose cumulative degradation with respect to the design, p̃, is no
greater than α which is continuous.

A slightly more subtle extension of the discrete info-gap model in eq.(10) is:

U(α, p̃) =

 p :

∑N
i=1 ti > N − α− 1, ti ∈ {0, 1}

0 ≤ di ≤ 1− ti,
∑N

i=1 di ≤ α

pi = (1− di)p̃i, i = 1, . . . , N

 , α ≥ 0 (13)

As an example, suppose α = 0.1. The first row,
∑N

i=1 ti > N − 1.1, means that at most one bar can
have ti = 0. Denote this bar by i⋆. All other bars have ti = 1. The second row states 0 ≤ di⋆ ≤ 0.1
while all other bars have di = 0. The third row states that 0.9p̃i⋆ ≤ pi⋆ ≤ p̃i⋆ while all other bars
have pi = p̃i. When the horizon of uncertainty, α, is restricted to integer values, then the info-gap
model of eq.(13) reverts to the info-gap model of eq.(10).

Note that, for arbitrary continuous α in eq.(13), the number of damaged bars increments discretely
(1st row). However, among damaged bars the degree of damage is continuous (2nd and 3rd rows).

One can also formulate an info-gap model in which the uncertain degradation of each bar is
specified separately. The following fractional-error info-gap model is commonly used:

U(α, p̃) =
{
p : 0 ≤ p, 0 ≤ p̃i − pi

p̃i
≤ α for all i

}
, α ≥ 0 (14)

Robustness. For any info-gap model of uncertainty, the robustness is the greatest horizon of
uncertainty up to which the performance requirement, eq.(4), is satisfied:

α̂(p̃, g) = max

{
α :

(
max

p∈U(α,p̃)
g(p)

)
≤ g

}
(15)

We define α̂(p̃, g) = 0 if the set of α values in eq.(15) is empty.
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Example 9 We evaluate the robustness function for the info-gap model of eq.(11). The horizon of
uncertainty is discrete so the robustness also takes only non-negative integer values. We will assume
that T , the set of possible structures, includes all possible combinations of N bars where N = 5. Let
the nominal structure be p̃ = (1, 0, 1, 1, 0). The performance function is linear, g(p) = ψT p, where
ψ = (5, 3, 1, −2, −4). Adding a bar can either improve or reduce performance (lower or raise g(p),
respectively) because ψ has both negative and positive elements. This performance function is thus
not monotonic in the sense to be defined subsequently in definition 2.

Let µ(α) denote the inner maximum in the definition of the robustness, eq.(15). The robustness
is the greatest integer value of α for which µ(α) ≤ g. We note that µ(α) increases as α increases due
to the nesting of the sets, U(α, p̃), of the info-gap model. This means that the robustness is actually
the greatest integer value of α for which µ(α) ≤ g. In other words, a plot of α vertically vs µ(α)
horizontally is the same as a plot of α̂(p̃, g) vertically vs g horizontally. In short, µ(α) is the inverse
of α̂(p̃, g) at fixed p̃. We will derive an expression for µ(α).

When α = 0 we can only choose p = p̃ so µ(0) = 5 + 1 + (−2) = 4.
When α = 1 we can choose at most one element of p to differ from p̃. We maximize ψT p by

choosing p = (1, 1, 1, 1, 0) so µ(1) = 5 + 3 + 1 + (−2) = 7.
When α = 2 we can choose at most two elements of p to differ from p̃. We maximize ψT p by

choosing p = (1, 1, 1, 0, 0) so µ(2) = 5 + 3 + 1 = 9.
When α > 2 we choose the same structure, p = (1, 1, 1, 0, 0), so µ(α) = 9.
The robustness function is obtained by plotting α vertically vs µ(α) horizontally as shown in

fig. 1. The robustness curve thus has the following structure, as shown by the heavy line in fig. 1:
α̂(p̃, g) = 0 for g in (−∞, 7).
α̂(p̃, g) = 1 for for g in [7, 9).
α̂(p̃, g) = ∞ for g in [9, ∞).

-
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Figure 1: Robustness curve for example 9.

4 Redundancy and Robustness

The intuitive connection between redundancy and robustness to uncertainty is fairly obvious, as
suggested in section 1. In this section we establish two propositions which quantify this relation and
reveal some of its subtleties.

4.1 Strong Redundancy is Bounded by Robustness

Comparing the definitions of strong redundancy and robustness in eqs.(7) and (15) we see a marked
formal similarity. The following proposition establishes a relation between strong redundancy and
robustness. Later propositions will establish stronger relations, which depend on stronger assump-
tions.
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Proposition 1 If the deficiency set belongs to the info-gap model then the strong redundancy is
never less than the robustness.
If:

D(α, p̃) ⊆ U(α, p̃) for all α ≥ 0 (16)

Then:
σ(p̃, g) ≥ α̂(p̃, g) (17)

All proofs appear in section 9.

Example 10 We now illustrate the strong redundancy for the deficiency sets D(α, p̃) in eq.(6). We
will use the performance function and nominal structure introduced in example 9. Let ϕ(α) denote
the inner maximum in the definition of the strong redundancy, eq.(7). Thus ϕ(α) is the greatest
value of ψT p when exactly α bars are changed (either added or missing) from the nominal structure.
We proceed as in example 9, though an important difference will emerge.

When α = 0 we can only choose p = p̃ so ϕ(0) = 5 + 1 + (−2) = 4 which equals µ(0).
When α = 1 we must choose exactly one element of p to differ from p̃. We maximize ψT p by

choosing p = (1, 1, 1, 1, 0) so ϕ(1) = 5 + 3 + 1 + (−2) = 7, which equals µ(1).
When α = 2 we must choose exactly two elements of p to differ from p̃. We maximize ψT p by

choosing p = (1, 1, 1, 0, 0) so ϕ(2) = 5 + 3 + 1 = 9, which equals µ(2).
When α = 3 we must choose exactly three elements of p to differ from p̃. We maximize ψT p by

choosing p = (1, 1, 0, 0, 0) so ϕ(3) = 5 + 3 = 8, which is less than µ(3).
When α = 4 we must choose exactly four elements of p to differ from p̃. We maximize ψT p by

choosing p = (1, 1, 0, 0, 1) so ϕ(4) = 5 + 3 + (−4) = 4, which is less than µ(4).
When α = 5 we must choose exactly five elements of p to differ from p̃. We maximize ψT p by

choosing p = (0, 1, 0, 0, 1) so ϕ(4) = 3 + (−4) = −1, which is less than µ(5).
When α > 5 we choose the same structure, p = (0, 1, 0, 0, 1), so ϕ(α) = −1.
We notice that, in all cases, ϕ(α) ≤ µ(α). This is directly related to the inequality which is

asserted by proposition 1.
What does the strong redundancy function, σ(p̃, g), look like, as a function of the critical perfor-

mance, g? The strong redundancy at g is the greatest value of α at which ϕ(α) ≤ g. Hence, from
the above values of ϕ(α), we see that:

σ(p̃, g) = 0 for g < −1, because ϕ(α) < −1 for no value of α so the set of α values in eq.(7) is
empty.

σ(p̃, g) = ∞ for g ≥ −1, because ϕ(α) = −1 for all α ≥ 5, so the maximum such α is infinite.
Comparing this with the robustness function in example 9 we find:

σ(p̃, g) = α̂(p̃, g) for g < −1 (18)

σ(p̃, g) > α̂(p̃, g) for − 1 ≤ g < 9 (19)

σ(p̃, g) = α̂(p̃, g) for 9 ≤ g (20)

This of course is consistent with proposition 1.

4.2 Coherence, Monotonicity and Unsaturation

In this section we define three central concepts in preparation for the equivalence theorem in sec-
tion 4.3.

In many cases the deficiency set D(α, p̃) is the “outer layer” or boundary of U(α, p̃), as for example
eqs.(5) and (10). This leads us to define the following common property of the info-gap model and
the deficiency set of a system.

Definition 1 The info-gap model, U(α, p̃), and the deficiency set, D(α, p̃), of a system are coherent
if:

U(α, p̃) =
α∪

x=0

D(x, p̃) (21)
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This definition applies to both discrete and continuous horizon of uncertainty, α. The union in eq.(21)
must be interpreted accordingly.

Definition 2 The performance function g(p) is monotonic in the uncertain vector p if g(p) improves
(gets smaller) as p gets larger:

p′ ≤ p implies g(p′) ≥ g(p) (22)

Definition 3 An info-gap model U(α, p̃) does not saturate up to horizon of uncertainty αmax if, for
all α < α′ where α′ ≤ αmax, and for each p ∈ U(α, p̃), there is a p′ ∈ U(α′, p̃) − U(α, p̃) such that
p′ ≤ p.

Non-saturation of an info-gap model means that, as the horizon of uncertainty increases (up to
some limiting value αmax), new structures are introduced which are no stronger (in fact, usually
weaker) than previously included structures. This means, approximately, that more uncertainty al-
ways entails the possibility of worse (weaker) structures, up to some limiting horizon of uncertainty.
Most of the info-gap models encountered in this paper do saturate at some finite horizon of uncer-
tainty, usually when all physically meaningful or possible structural decrements are included. Larger
horizons of uncertainty are not of interest (usually, no additional structures exist).

Finally, let us define the set of all maximizing p’s in a specified info-gap model at horizon of
uncertainty α:

P (α) =

{
p ∈ U(α, p̃) : g(p) = max

p′∈U(α,p̃)
g(p′)

}
(23)

4.3 An Equivalence Theorem

The info-gap robustness, α̂(p̃, g) in eq.(15), is the greatest horizon of uncertainty in the structure up
to which the performance requirement, eq.(4), is guaranteed to be satisfied. The strong redundancy,
σ(p̃, g) in eq.(7), is the greatest decrement in structural integrity which can be tolerated without
violating the performance requirement. The following proposition states that, if the performance
function is monotonic, if the info-gap model does not saturate, and if the deficiency sets are coherent
with the info-gap model, then robustness and strong redundancy are equivalent.

Proposition 2 Strong redundancy, eq.(7), and info-gap robustness, eq.(15), are equivalent if mono-
tonicity, coherence and non-saturation hold.
Given:

• g(p) is monotonic.
• U(α, p̃) and D(α, p̃) are coherent.
• U(α, p̃) does not saturate up to horizon of uncertainty αmax.
• P (α) is non-empty for all α ≥ 0.
• And g is such that:

α̂(p̃, g) ≤ αmax and σ(p̃, g) ≤ αmax (24)

Then:
α̂(p̃, g) = σ(p̃, g) (25)

Proposition 1 establishes that the strong redundancy is bounded below by the robustness, with
almost no assumptions. Proposition 2, in contrast, establishes conditions—still quite general—under
which the strong redundancy and the robustness are identical.
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Figure 2: An example in which the performance function g(p) is not monotonic with respect to p.

Table 1: The vector of the design variables p and the corresponding displacement vector u of the
truss in fig. 2.

p p′

member (1) 10.0 10.0
member (2) 0.1 0.1
member (3) 10.0 0.0

u1 0.09904 0.10000
u2 0.09631 0.00000

4.4 Example of Non-Monotonic Performance

The equivalence between strong redundancy and robustness, proposition 2, depends on the perfor-
mance function being monotonic, definition 2. Examples 9 and 10 were a hypothetical illustration of
a non-monotonic performance function. We now show a simple mechanical structure which violates
monotonicity.

Consider the 3-bar truss in fig. 2(a). A horizontal external load f = 1.0 is applied at the free
node. Young’s modulus is 1.0, and the lengths of the horizontal and vertical members are 1.0. The
vector of the member cross-sectional areas, given in table 1, is the design vector p.

The vertical displacement of the free node is the performance function g(p):

g(p) = u2. (26)

We define the design p′ by removing the member (3) from p, as illustrated in fig. 2(b). The vertical
displacement in structure p′ is less than in p, as seen in table 1. That is, the performance function
for this class of structures is not monotonic according to definition 2 because a decrement of the
structure results in an improvement in the performance function:

p′ ≤ p, g(p′) < g(p). (27)

Thus the performance function in this example—the displacement constraint—does not satisfy the
monotonicity in definition 2. Since the member stress is a linear function of the displacement, the
stress constraint is also non-monotonic in this example.

This example demonstrates that the monotonicity which is posited in proposition 2 does not hold
for all structures or all performance functions.
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5 Example: Strong Redundancy with Stability Constraint

(a) Nominal truss A (b) Nominal truss B

Figure 3: Two nominal truss designs with N = 25.

(a) truss A (b) truss B

Figure 4: Examples of p ∈ U(α, p̃) which violates the stability constraint for the trusses in fig. 3.

In this example we consider the strong redundancy of a truss concerning the stability constraint
treated in example 1. The deficiency of bars from the nominal designs is defined according to
example 3.

Consider the two nominal truss designs shown in fig. 3, where these trusses consist of N = 25
bars and a common collection of nodes. In the deficiency model in example 3, p ∈ D(α, p̃) means that
p corresponds to a situation in which exactly α bars are missing from p̃ in fig. 3. The performance
requirement in eq.(4) is defined as the stability constraint. Specifically, the strong redundancy σ(p̃, g)
is the maximal number of bars such that the truss is still stable if any set of σ(p̃, g) bars is missing.

The nominal truss A becomes unstable if a particular bar is removed, as shown in fig. 4(a), while
after removing any single bar from nominal truss B it is still stable. From this observation, it is
intuitively natural to consider the truss B as being more redundant than the truss A. Note that those
two trusses share the same degree of static indeterminacy s = 9. The strong redundancy of truss A
is σ(p̃A, g) = 0, while that of the truss B is σ(p̃B, g) = 2. Indeed, if a particular set of three bars
is missing, then the truss B becomes unstable, as shown in fig. 4(b). Thus the value of the strong
redundancy function is consistent with the intuitive notion of redundancy.

6 Example: Strong Redundancy with Compliance Constraint

(a) Nominal truss A (b) Nominal truss B

Figure 5: Two nominal truss designs for the example of compliance constraint, section 6.

We consider the strong redundancy of a truss associated with the compliance constraint intro-
duced in example 2. The deficiency of bars from the nominal designs is defined according to D(α, p̃)
introduced in example 3.

Consider the two nominal truss designs shown in fig. 5, where the trusses A and B consist of
N = 30 bars and N = 26 bars, respectively. Suppose that a downward vertical load of 1.0 and a
rightward horizontal load of 0.5 are applied to the lower rightmost node. Young’s modulus is 1.0, and
the lengths of the horizontal and vertical members are 1.0. We consider the compliance constraint as
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Figure 6: The variation of σ(p̃, ḡ) with respect to ḡ for the compliance constraint. ‘—–’: Truss A;
‘– – –’: Truss B.

the performance requirement, i.e., g(p) in eq.(4) denotes the compliance, while ḡ is the upper bound
for the compliance.

Suppose that the cross-sectional area of each undeficient member is 1.0 for both truss A and
truss B. The deficiency set D(α, p̃) is defined by eq.(5). The variation of the strong redundancy
σ(p̃, ḡ) with respect to ḡ is depicted in fig. 6. It is observed that these redundancy curves cross at
σ(p̃, ḡ) = 2. This has important design implications as we shall see.

The nominal preference between the two structures, based on their estimated compliances, is
B ≻ A, because B has lower estimated compliance than A: 33.0 = g(p̃B) < g(p̃A) = 33.8. However,
the redundancies for the estimated compliances are precisely zero. That is:

σ[A, g(p̃A)] = 0 = σ[B, g(p̃B)] (28)

In other words, aspiring to compliance as small as g(p̃B) for truss B is unreliable in the sense that
the truss has no structural redundancy for supplying this compliance. The situation is the same
regarding truss A.

It is thus important to consider the value of the redundancy function when assessing a truss with
respect to any specified complicance requirement. More redundancy is preferable to less redundancy,
so—when considering their redundancy—one would prefer design p̃ over design p̃′ if the former has
more redundancy:

p̃ ≻ p̃′ if σ(p̃, g) > σ(p̃′, g) (29)

We note however that the inequality on the right may depend on the required compliance, g. In
other words, the redundancy-preference between the designs may change as the required compliance
changes.

This is precisely what happens in the current example. From fig. 6 we see that design B is
preferred over design A, according to the preference relation in eq.(29), for the following values of g:

B ≻ A for g ∈ (61, 65) ∪ (130, 175) (30)

However, the redundancy preferences are reversed for a higher range of g values:

A ≻ B for g ∈ (254, 967) (31)

For all other values of critical compliance, g, the redundancies of the two structures are the same,
and the designer would be indifferent between then, as far as redundancy is concerned.
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7 Weak Redundancy

The strong redundancy defined in eq.(7) is the greatest horizon of uncertainty, α, at which all
structures in the deficiency set D(α, p̃) satisfy the performance requirement, eq.(4).

We will now define a concept of weak redundancy and show its relationship to strong redundancy.
The weak redundancy of order n is the greatest horizon of uncertainty at which at least n structures
in the deficiency set satisfy the performance requirement, eq.(4). Formally:

σn(p̃, g) = max {α : g(p) ≤ g for at least n elements of D(α, p̃)} (32)

For notational convenience we sometimes denote σn(p̃, g) as σn. By definition, at least n elements
of D(σn, p̃) satisfy eq.(4). Furthermore, only fewer than n elements of D(α, p̃) satisfy eq.(4) for all
α > σn. However, the definition of weak redundancy does not stipulate anything about how many
elements of deficiency sets D(α, p̃) satisfy eq.(4) for α < σn. For instance, no more than one element
of D(0, p̃) can satisfy eq.(4) because D(0, p̃) is defined to contain only the nominal structure. If α is
discrete then the size of D(α, p̃), denoted |D(α, p̃)|, is also an integer and may vary up and down as
α increases, depending on how the deficiency sets are defined. If α is continuous then |D(α, p̃)| will
be infinite for all α > 0. For both discrete and continuous α, the composition of D(α, p̃) changes as
α increases from 0 to σ. The number of structures in D(α, p̃) which satisfy eq.(4) may vary up and
down as α increases between 0 and σn.

The following proposition establishes elementary relations between weak and strong redundancy.
We first define two parameters:

n̂σ = |D (σ(p̃, g), p̃)| (33)

n̂α = |D (α̂(p̃, g), p̃)| (34)

n̂σ is the size of the deficiency set evaluated at the strong redundancy. n̂α is the size of the deficiency
set evaluated at the robustness. If the horizon of uncertainty, α, is discrete then n̂σ and n̂α are finite.
If the horizon of uncertainty is continuous and if σ(p̃, g) > 0 then n̂σ is infinite. Likewise, if the
horizon of uncertainty is continuous and if α̂(p̃, g) > 0 then n̂α is infinite.

The weak redundancy is the quantification of a different intuition about redundancy than the
intuition which underlies the strong redundancy. Proposition 3 demonstrates some basic relations
between these concepts. In addition, it plays a role in the proof of proposition 4.

Proposition 3 The weak redundancy decreases with increasing order and, for continuous α, is never
less than the strong redundancy and never less than the robustness if the deficiency set is included in
the info-gap model.
It is asserted that, for any finite n:

σn(p̃, g) ≥ σn+1(p̃, g) (35)

σn̂σ
(p̃, g) ≥ σ(p̃, g) (36)

and, for continuous α and any finite n:

σn(p̃, g) ≥ σ(p̃, g) (37)

Also, if:
D(α, p̃) ⊆ U(α, p̃) for all α ≥ 0 (38)

Then:

σn̂α
(p̃, g) ≥ α̂(p̃, g) (39)

and, for continuous α and any finite n:

σn(p̃, g) ≥ α̂(p̃, g) (40)
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Examination of the proofs of eqs.(35)—(37) in section 9 shows that these equations do not depend
on the supposition in eq.(38).

Our final proposition is motivated by the following question: Will removal of an element from the
structure reduce the strong redundancy? More precisely, what is a sufficient condition, under which,
removal of an element will reduce the strong redundancy? The following proposition shows, for a
specific type of deficiency set, that a sufficient condition is equality between the strong redundancy
and the weak redundancy of order 1.

As in example 1 and elsewhere, we again use p as a binary indicator vector where each element
pi is either 0 or 1 to indicate absence of presence, respectively, of the ith structural component.
However, algebraic operations on binary vectors are defined in the usual real vector field ℜN . Thus,
when p and p′ are binary vectors, the elements of p−p′ take the values −1, 0 or 1. Finally, the vector
norm used in the following proposition is:

|p| =
N∑
i=1

|pi|. (41)

Proposition 4 Removal of an element reduces the strong redundancy if the strong redundancy equals
the weak redundancy of order 1.
Given:

• g(p) is monotonic.
• The deficiency set D(α, p̃) is defined by eq.(5).
• The following equality holds:

σ1(p̃, ḡ) = σ(p̃, ḡ) (42)

Then:
σ(p̃′, ḡ) < σ(p̃, ḡ) (∀p̃′ : p̃′ ≤ p̃, p̃′ ̸= p̃). (43)

The following example demonstrates a simple structure which satisfies the condition of eq.(42) in
proposition 4.

(1)

(2)

(3)

(4)

(5)
(6)

(7)

Figure 7: A truss satisfying the condition in Proposition 4 with respect to the stability constraint.

Example 11 Consider the truss illustrated in fig. 7. Members (2) and (4) are parallel, and mem-
bers (3) and (6) are parallel. We consider the stability constraint introduced in Example 1.

The truss in fig. 7 is still stable after removing any single member. However, the truss becomes
unstable by removing members (1) and (2). Therefore, σ(p̃, ḡ) = 1. Indeed, the truss becomes
unstable after removing any set of two members. Therefore, σ1(p̃, ḡ) = 1.

8 Discussion

Summary. Redundancy is a measure of the amount of damage that a structure can sustain without
losing some specified elements of its functionality. Robustness is a measure of the amount of environ-
mental uncertainty against which a structure will be able to maintain specified functionality. These
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ideas are opposite sides of the same coin. Roughly speaking, redundancy measures the structure
while robustness measures the environment. Obviously, the two concepts are intimately connected,
though subtleties are revealed when one quantifies the relationship. In this paper we have defined
two concepts of redundancy—strong, eq.(7), and weak, eq.(32)—and a concept of robustness, eq.(15),
and we have explored the relations between them.

Proposition 1 establishes that, if all structural deficiencies against which the redundancy is evalu-
ated are also environmental contingencies against which the robustness is evaluated, then the robust-
ness is a lower bound for the strong redundancy. Significantly, the strong redundancy can actually
exceed the robustness as demonstrated by examples 9 and 10. The conditions of proposition 1 are
not sufficient to make strong redundancy and robustness equivalent; they each reveal a somewhat
different aspect of structural durability.

Proposition 2, however, establishes quite general conditions—stronger than those of proposi-
tion 1—in which the strong redundancy and the robustness are in fact numerically identical. When
these conditions hold, one simply does not need both functions; either one of them is redundant.
Propositions 1 and 2 quantify and delimit the intuition that redundancy and robustness are inti-
mately connected.

However, even though the conditions of proposition 2 apply to a wide range of mechanical struc-
tures, the example in section 4.4 shows a simple truss which violates the conditions of proposition 2.
For these situations the strong redundancy and the robustness reveal different aspects of the struc-
ture.

Even when the strong redundancy and the robustness are equivalent, they still do not reflect all
aspects of survivability after structural degradation. One can define redundancy in different ways
to reflect different aspects of these phenomena, even while keeping to a generic format applicable to
virtually any mechanical system and any type of functionality. We have defined a weak redundancy
in eq.(32) and explored its relation to strong redundancy and robustness. Proposition 3 establishes
ranking relations among the three functions—robustness and strong and weak redundancy—which
hold under very general conditions. Proposition 4 establishes, for an important class of applica-
tions, a sufficient condition (involving both strong and weak redundancy) in which any degradation
necessarily reduces the strong redundancy.

Future directions. Our discussion of robustness and strong and weak redundancy suggests that
no single measure of redundancy reflects all the subtleties of survival in uncertain environments. This
paper has developed a generic framework for quantifying the intuitions of redundancy and robustness
and for exploring the relations between these quantifications. Much remains to be explored. Other
concepts of redundancy can be formulated to reflect other aspects of the processes of degradation and
survival. For instance, we have not considered dynamic problems, though we believe that the concepts
here are applicable to such situations. Also, the design implications of robustness and strong and
weak redundancy can be explored, both on an abstract methodological level and for specific classes
of structures.

9 Proofs

Proof of proposition 1. For notational convenience we denote σ(p̃, g) as σ, and we denote α̂(p̃, g)
as α̂.

By the definition of robustness, all elements of U(α̂, p̃) satisfy eq.(4). By the inclusion in eq.(16)
all the elements of D(α̂, p̃) satisfy eq.(4). Hence, by the definition of strong redundancy, σ ≥ α̂ which
is eq.(17).

The following two results, lemma 1 and 2, are needed in the proof of proposition 2.

Lemma 1 If g(p) is montonic and if U(α, p̃) does not saturate up to horizon of uncertainty αmax,
then any increase in horizon of uncertainty introduces new maximizing structures p.
Given:

• g(p) is monotonic.
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• U(α, p̃) does not saturate up to horizon of uncertainty αmax.
• P (α) is non-empty for all α ≥ 0.

Then, for all α ≤ αmax:
α < α′ implies P (α′)− P (α) ̸= ∅ (44)

Proof of lemma 1. We prove the lemma for continuous α. An analogous proof holds for discrete
α.

(1) Let p be any element in P (α). By non-saturation, there exists a p′ ∈ U(α′, p̃)− U(α, p̃) such
that:

p′ ≤ p (45)

By monotonicity, this implies:
g(p′) ≥ g(p) (46)

(2) Suppose this p′ ∈ P (α′). Then eq.(44) results because p′ ̸∈ U(α, p̃) by non-saturation.
(3) Suppose this p′ ̸∈ P (α′). Then, because P (α′) is not empty, there exists p⋆ ∈ P (α′) such that:

g(p⋆) > g(p′) (47)

But eq.(46) implies:
g(p⋆) > g(p) (48)

Thus p⋆ ̸∈ U(α, p̃) which implies eq.(44).

Lemma 2 If g(p) is montonic, if D(α, p̃) and U(α, p̃) are coherent, and if uncertainty does not
saturate up to horizon of uncertainty αmax, then the maximum of g(p) on U(α, p̃) equals the maximum
of g(p) on D(α, p̃).
Given:

• g(p) is monotonic.
• U(α, p̃) and D(α, p̃) are coherent.
• U(α, p̃) does not saturate up to horizon of uncertainty αmax.
• P (α) is non-empty for all α ≥ 0.

Then, for α ≤ αmax:
max

p∈U(α,p̃)
g(p) = max

p∈D(α,p̃)
g(p) (49)

Proof of lemma 2. We prove the lemma for continuous α. An analogous proof holds for discrete
α.

By coherence, U(0, p̃) = D(0, p̃), which proves eq.(49) for α = 0. We now need only consider
0 < α ≤ αmax.

Coherence implies:
U(α, p̃) = U(α− dα, p̃) ∪ D(α, p̃) (50)

Lemma 1 assures the existence of a structure p′ such that:

p′ ∈ P (α)− P (α− dα) (51)

Clearly:
p′ ̸∈ U(α− dα, p̃) and p′ ∈ U(α, p̃) (52)

Thus, by coherence, eq.(50):
p′ ∈ D(α, p̃) (53)

which implies eq.(49).
Proof of proposition 2. Let σ denote σ(p̃, g) and let α̂ denote α̂(p̃, g).

(1) From the definition of strong redundancy in eq.(7) we see that:(
max

p∈D(σ,p̃)
g(p)

)
≤ g (54)
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This and lemma 2 imply: (
max

p∈U(σ,p̃)
g(p)

)
≤ g (55)

From the definition of robustness in eq.(15) we conclude that:

α̂(p̃, g) ≥ σ(p̃, g) (56)

(2) From the definition of robustness in eq.(15) we see that:(
max

p∈U(α̂,p̃)
g(p)

)
≤ g (57)

This and lemma 2 imply: (
max

p∈D(α̂,p̃)
g(p)

)
≤ g (58)

From the definition of strong redundancy in eq.(7) we conclude that:

σ(p̃, g) ≥ α̂(p̃, g) (59)

(3) Eqs.(56) and (59) imply eq.(25).
Proof of proposition 3. The proof is valid for both discrete and continuous α except regarding
eqs.(37) and (40) treated in items (3) and (5) below. For notational convenience we denote σn(p̃, g)
as σn, we denote σ(p̃, g) as σ, and we denote α̂(p̃, g) as α̂.

(1) To prove eq.(35): By definition of weak redundancy of order n + 1, there are at least n + 1
elements of D(σn+1, p̃) which satisfy eq.(4). Hence there are at least n elements of D(σn+1, p̃) which
satisfy eq.(4). This implies that σn ≥ σn+1 which is eq.(35).

(2) To prove eq.(36): By the definition of strong redundancy, all of the n̂σ elements of D(σ, p̃)
satisfy eq.(4). Hence at least n̂σ elements of D(σ, p̃) satisfy eq.(4). Thus σn̂σ

is at least as large as σ,
which is eq.(36).

(3) To prove eq.(37): n̂σ = ∞ for continuous α so eq.(35) implies that σn ≥ σn̂σ
for finite n. This

with eq.(36) imply (37).
(4) To prove eq.(39): σ ≥ α̂ by proposition 1. This and eq.(36) imply eq.(39).
(5) To prove eq.(40): n̂α = ∞ for continuous α so eq.(35) implies that σn ≥ σn̂α

for finite n. This
with eq.(39) imply (40).
Proof of proposition 4. We will denote σ(p̃, g) by σ. We will argue by contraposition, that is, it
is sufficient to prove:

∃p̃′ ≤ p̃ (p̃′ ̸= p̃) : σ(p̃′, ḡ) ≥ σ(p̃, ḡ) ⇒ σ1(p̃, ḡ) > σ(p̃, ḡ) (60)

where, from proposition 3, we know that σ1(p̃, ḡ) ≥ σ(p̃, ḡ).
The assertion σ(p̃′, ḡ) ≥ σ(p̃, ḡ) implies that there exists a p̌ ∈ T satisfying

p̌ ≤ p̃′, |p̌− p̃′| ≥ σ, g(p̌) ≤ ḡ. (61)

From p̃− p̃′ ≥ 0 and p̃′ − p̌ ≥ 0 we obtain:
p̃ ≥ p̌ (62)

and:

|p̌− p̃| =
N∑
i=1

|p̃i − p̌i| (63)

=
N∑
i=1

(p̃i − p̌i) (because p̃ ≥ p̌) (64)
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=
N∑
i=1

(p̃i − p̃′i) +
N∑
i=1

(p̃′i − p̌i) (65)

=
N∑
i=1

|p̃i − p̃′i|+
N∑
i=1

|p̃′i − p̌i| (because p̃ ≥ p̃′, p̃′ ≥ p̌) (66)

= |p̃− p̃′|+ |p̃′ − p̌|. (67)

Furthermore, p̃′ ≤ p̃ and p̃′ ̸= p̃ imply
|p̃′ − p̃| > 0, (68)

while in (61) we have that
|p̃′ − p̌| ≥ σ. (69)

Substitution of (68) and (69) into (67) yields

|p̌− p̃| > σ, (70)

Combining this with eq.(62), we can revise eq.(61) to:

p̌ ≤ p̃, |p̌− p̃| > σ, g(p̌) ≤ ḡ, (71)

Observe that (71) implies:
∃σ̌ > σ : p̌ ∈ D(σ̌, p̃), g(p̌) ≤ ḡ. (72)

It follows from the definition of the weak redundancy, eq.(32), and eq.(72) that:

σ1(p̃, ḡ) ≥ σ̌ > σ,

which concludes the proof of the eq.(60), and this concludes the proof that eq.(42) implies eq.(43).

10 References

1. Au, S.K. (2003). Discussion of “Redundancy Index of Lifeline Systems” by Masaru Hoshiya
and Kinya Yamamoto, Journal of Engineering Mechanics (ASCE), 129, 1104.

2. Ben-Haim Y. (2006). Info-Gap Decision Theory: Decisions Under Severe Uncertainty, 2nd
edition, Academic Press, London.

3. Bertero R.D., Bertero V.V. (1999). Redundancy in earthquake-resistant design, Journal of
Structural Engineering (ASCE), 125, 81–88.

4. Feng, Y.S., Moses, F. (1986). Optimum design, redundancy and reliability of structural systems.
Computers & Structures, 24, 239–251.

5. Frangopol D.M., Curley J.P. (1987). Effects of damage and redundancy on structural reliability,
Journal of Structural Engineering (ASCE), 113, 1533–1549.

6. Fu, G., Frangopol, D.M. (1990). Balancing weight, system reliability and redundancy in a
multiobjective optimization framework. Structural Safety, 7, 165–175.

7. Hendawi, S., Frangopol, D.M. (1994). System reliability and redundancy in structural design
and evaluation. Structural Safety, 16, 47–71.

8. Hoshiya, M. Yamamoto, K. (2002). Redundancy index of lifeline systems. Journal of Engi-
neering Mechanics (ASCE), 128, 961–968.

9. Hoshiya, M. Yamamoto, K. (2003). Closure to “Redundancy Index of Lifeline Systems” by
Masaru Hoshiya and Kinya Yamamoto. Journal of Engineering Mechanics (ASCE), 129, 1105.

17



10. Husain, M., Tsopelas, P. (2004). Measures of structural redundancy in reinforced concrete
buildings. I: redundancy indices. Journal of Structural Engineering (ASCE), 130, 1651–1658.

11. Liao, K.-W., Wen, Y.-K., Foutch, D.A. (2007). Evaluation of 3D steel moment frames un-
der earthquake excitations. II: reliability and redundancy. Journal of Structural Engineering
(ASCE), 133, 471–480.

12. Ohi, K., Ito, T., Li, Z.-L (2004). Sensitivity on load carrying capacity of frames to member
disappearance. Proceedings of Council on Tall Building and Urban Habitat (CTBUH) Seoul
Conference—Tall Buildings in Historical Cities: Culture & Technology for Sustainable Cities,
Seoul.

13. Okasha, N.M., Frangopol, D.M. (2009). Lifetime-oriented multi-objective optimization of struc-
tural maintenance considering system reliability, redundancy and life-cycle cost using GA.
Structural Safety, 31, 460–474.

14. Paliou, C., Shinozuka, M., Chen, Y.-N. (1990). Reliability and redundancy of offshore struc-
tures. Journal of Engineering Mechanics (ASCE), 116, 359–378.

15. Pandey, P.C., Barai, S.V. (1997). Structural sensitivity as a measure of redundancy. Journal
of Structural Engineering (ASCE), 123, 360–364.

16. Schafer, B.W., Bajpai, P. (2005). Stability degradation and redundancy in damaged structures.
Engineering Structures, 27, 1642–1651.

17. Tesfamariam, S., Saatcioglu, M. (2010). Seismic vulnerability assessment of reinforced concrete
buildings using hierarchical fuzzy rule base modeling. Earthquake Spectra, 26, 235–256.

18. Wen, Y.K., Song, S.-H. (2003). Structural reliability/redundancy under earthquakes. Journal
of Structural Engineering (ASCE), 129, 56–67.
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