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Abstract

We illustrate the generic properties of info-gap robustness analysis by studying the design and
data-based modeling of a Hertzian contact. We begin with an example of choosing the load and
other operational parameters, to achieve a specified mechanical response, given uncertainty in the
material properties of the system. We then study the updating of a mathematical model, based
on data, given uncertain similarity of the measured system to the future operational system. We
illustrate the universal trade off between outcome-quality and robustness to uncertainty, and we
discuss the implications of this trade off for modeling and design decisions.

1 Overview of Info-Gap Concepts

Models are used by engineers to support design and planning decisions. We validate models in
order to augment the confidence in the subsequent decisions that are made. Engineers view their
empirical or science-based models differently from how models (or theories) are viewed by natural
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and physical scientists. The engineer has a utilitarian attitude: truth is useful, but usefulness does
not require truth. This epistemological distinction between engineering and scientific modeling is
particularly important in model validation under severe uncertainty. ‘Severe uncertainty’ refers to
situations where the underlying processes are imperfectly understood, or where final-use shapes,
loads and environmental conditions may differ substantially from those known at the time of design
and testing. Under severe uncertainty, models must be validated while taking account of the
disparities between what is known by the analyst, and what the analyst would need to know in
order to make a fully confident design. Robustness to ignorance, to error and to surprise is cardinal
in validating engineering models under severe uncertainty.

In this paper we will use info-gap decision theory for validating engineering models under severe
uncertainty. The following main points will emerge through discussing an example of modeling the
Hertzian contact between solid spheres under compressive loading.

Info-gaps. Info-gap theory is a methodology for supporting model-based decisions under severe
uncertainty (Ben-Haim, 2006). An info-gap is a disparity between what is known, and what needs
to be known in order to make a comprehensive and reliable decision. The future may differ from the
past, so our models may err in ways we cannot know. Our data may lack evidence about surprises:
catastrophes or windfalls. Our scientific and technical understanding may be incomplete. These
are info-gaps: incomplete understanding of the system being managed.

Info-gaps arise in all areas of activity, and they are resolved only when a surprise occurs, or a
new fact is uncovered, or when our knowledge and understanding improve. We know very little
about the substance of an info-gap. For instance, we rarely know what unusual event will delay
the completion of a task. Even more strongly, we cannot know what is not yet discovered, such as
tomorrow’s news, or future scientific theories or technological inventions. The ignorance of these
things are info-gaps.

An info-gap is a Knightian uncertainty (Knight, 1921) since it is not characterized by a proba-
bility distribution. A probability distribution may exist, but it is unknown, or imperfectly known,
to the analyst. Non-parametric statistical tools are available for handling some such situations (De-
Groot, 1986). In some situations one can use robust statistical methods (Huber, 1981). However,
in some situations the assumptions needed to justify these statistical tools—such as large samples
or independence of measurements—are not valid.

An info-gap model of uncertainty is axiomatically distinct from a probability distribution (Ben-
Haim, 1999). For instance, the absence of a probability density function (pdf) is not equivalent to
assuming a rectangular (equal weight) pdf, as discussed in (Ben-Haim, 2006, section 2.2).

Nonetheless, info-gap and probabilistic methods can be combined in various ways. For instance,
uncertainty in probability distributions can be quantified using non-probabilistic info-gap models of
uncertainty (Ben-Haim, 2006; Burgman et al., 2010). Info-gap is particularly useful when modelling
uncertain parameters or uncertain functional relations in the absence of probabilistic information,
as will be illustrated in this paper.

Outcome-quality and robustness against uncertainty. Modeling and design decisions
have two attributes: the quality of the outcomes, and the robustness of that quality to deviation
between reality and the design-base models. The former attribute is sometimes over-emphasized.
In particular, a common design strategy is to use the best available model to find the design with
the best predicted outcome. This best-model optimization strategy may ignore severe uncertainty,
even if the models are themselves probabilistic.

Trade off between outcome-quality and robustness. Higher quality is better than lower
quality, when all else is the same. However, a basic theorem in info-gap theory asserts that higher
quality is achieved only by accepting lower robustness against uncertainty. That is, outcome-quality
trades off against robustness to severe uncertainty.

This trade off also holds for model fidelity. An important attribute of validated models is their
fidelity to experimental data. Higher fidelity is better than lower fidelity, when all else is the same.
However, a model constructed to have high fidelity to data will have low robustness to error in
the model form or in the data structure. That is, fidelity trades off against robustness to severe
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uncertainty.
Zeroing. Models are used to predict outcomes. However, model errors may be transmitted to

the predictions. A basic info-gap theorem asserts that predicted outcomes have zero robustness to
error in models or data upon which the predictions are based.

Preference reversal. As noted above, designs have two attributes: quality of the outcome, and
robustness against uncertainty. We also noted that these attributes trade off, one against the other.
These two attributes of a design can be expressed differently. A design’s nominal performance is the
outcome-quality obtained if the design-base assumptions, models and data are correct. A design’s
cost of robustness expresses how much the outcome-quality must be reduced in order to augment
the robustness against uncertainty. A situation of particular importance is where the nominal
performance is great, but the cost of robustness is high. In this case, the designer may prefer a
nominally sub-optimal design whose cost of robustness is low.

This paper will illustrate these properties of the info-gap robust-satisficing strategy for modeling
and design through a series of examples in sections 2–4. Section 5 discusses some generic issues.

2 Hertzian Contact of Spheres

Given two spheres in contact under axial load f , with radii r1 and r2, Young’s moduli E1 and E2,
and Poisson ratio ν. Define:

E =
2E1E2

E1 + E2
(1)

1

r
=

1

r1
+

1

r2
(2)

The magnitude of the maximum normal compressive stress and the depth of penetration are (Beitz
and Küttner, 1994):

σ =
1

π

(
1.5fE2

r2(1− ν2)2

)1/3

(3)

g =

(
2.25(1− ν2)2f2

E2r

)1/3

(4)

g is the sum of compression of both spheres in the region of contact.
Eqs.(3) and (4) depend on several assumptions: (a) The geometry and material properties are

known. (b) The material is homogeneous and isotropic. (c) Hooke’s law holds. (d) Only normal
forces act at the surface. (e) Deformations are small in relation to the radii of the spheres.

3 Uncertainty and Its Representation

Let us consider various uncertain or unknown violations of the assumptions underlying the Hertzian
model described in section 2.

3.1 Excess Stiffness

Suppose that the materials have undergone phase change, perhaps due to thermal cycling, making
them stiffer than expected to an unknown degree. Then we expect the combined Young’s modulus
to be larger than anticipated to an unknown degree. The functional form of eqs.(3) and (4) remain
the same, but the coefficients change. In the present case the change is in the combined Young’s
modulus E.

Ẽ is the estimated combined modulus before stiffening. A fractional-error info-gap model for
uncertainty in E after stiffening, which reflects the asymmetric uncertainty about the true value of

3



E, is:

U(h) =
{
E : 0 ≤ E − Ẽ ≤ Ẽh

}
, h ≥ 0 (5)

Like all info-gap models of uncertainty, eq.(5) is an unbounded family of nested sets of possible
realizations (values of E in this example). No worst case is known, and the uncertainty is represented
without probability distributions. This info-gap model illustrates the properties of nesting and
contraction. The sets are nested and become more inclusive as h grows. This gives h its meaning
as an horizon of uncertainty. In the absence of uncertainty, when h = 0, the sets contract to a
singleton set containing the estimate, Ẽ.

Let’s consider a slightly different example. Suppose we have an estimate, s, of the magnitude of
error of Ẽ, though we do not regard this as an actual upper limit of the error. The info-gap model
of eq.(5) would be modified as:

U(h) =
{
E : 0 ≤ E − Ẽ ≤ sh

}
, h ≥ 0 (6)

In this info-gap model the horizon of uncertainty is calibrated in units of the estimated error, unlike
eq.(5) where h is a fractional error with respect to the estimated value itself.

Finally, suppose we have an estimate, p̃(E), of the pdf of the Young’s modulus, but the true
pdf, p(E), is unknown. A fractional-error info-gap model for this uncertainty is:

U(h) =
{
p(E) : p(E) ≥ 0,

∫ ∞

0
p(E) dE = 1, |p(E)− p̃(E)| ≤ p̃(E)h

}
, h ≥ 0 (7)

The uncertain entity is a pdf, p(E), but the uncertainty expressed by the info-gap model is non-
probabilistic: no measure function describes the disparity between what we know (the estimate,
p̃(E)) and what we would like to know (the true pdf, p(E)).

There are many other info-gap models of uncertainty (Ben-Haim, 2006). The choice of an info-
gap model is a crucial judgment made by the analyst, based on the extent of, as well as perceived
limitations to, existing information and knowledge.

3.2 Heterogeneity

Now let us consider uncertain heterogeneity of one or both spheres. In particular, suppose that the
materials in the immediate region of contact have the anticipated Young’s moduli, but adjacent
regions are stiffer by an unknown amount.

A plot of force, f , vs. compression, g, would follow eq.(4) for values of compression which do not
yet significantly reach the stiffer domain. However, larger compression will require greater force.
Thus the true shape of the entire curve, f(g), will lie on or above the theoretical relation, f̃(g),
obtained by inverting eq.(4), and may display a kink when the compressed region reaches the stiffer
region.

An info-gap model for uncertain shape of the force-compression relation, obtained in analogy to
eq.(5), is:

U(h) =
{
f(g) : 0 ≤ f(g)− f̃(g) ≤ f̃(g)h

}
, h ≥ 0 (8)

Suppose we have an estimate, s(g), of the magnitude of error of f̃(g), though we do not regard
this as an actual upper limit of the error. For instance, we may know that the stiffer inclusion will
be reached at a compression no less than a value go. One might then choose s(g) = 0 for g < go
and s(g) = 1 for g ≥ go. That is, the deviation between f(g) and f̃(g) is “turned on” only for
g ≥ go. The info-gap model of eq.(8) would be modified, in analogy to eq.(6), as:

U(h) =
{
f(g) : 0 ≤ f(g)− f̃(g) ≤ s(g)h

}
, h ≥ 0 (9)

There are many other info-gap models which can be formulated. For instance, one can impose
a monotonicity constraint on the functions f(g).
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4 Robustness

We now consider two examples which illustrate the info-gap robustness analysis. In section 4.1 we
choose the load and other operational parameters, to achieve a specified critical compression, given
uncertainty in the stiffness of the Hertzian contact. In section 4.2 we update the Hertzian model
based on data, given uncertain fidelity of the test system with the future operational system.

4.1 Choosing the Load Given Uncertain Young’s Modulus

4.1.1 Formulation

Let g(f,E) denote the compression, eq.(4), with load f and Young’s modulus E. We wish to
choose the load, f , so that the total compression, g, exceeds a critical value gc. That is, the
outcome requirement is:

g(f,E) ≥ gc (10)

Consider uncertainty in the Young’s modulus as represented by the info-gap model of eq.(6).
By choosing the materials from which the spheres are composed we can choose the estimate, Ẽ, of
this info-gap model. Thus Ẽ can be a design variable.

We may also be able to choose how well the Young’s modulus is estimated, meaning that we
can choose the value of the error estimate s.

The robustness of design (f, Ẽ, s) is the greatest horizon of uncertainty, h, up to which all
realizations of the true modulus, E, result in compression no less than gc:

ĥg(gc) = max

{
h :

(
min

E∈U(h)
g(f,E)

)
≥ gc

}
(11)

We will sometimes denote the design variables explicitly by writing ĥg(gc, f, Ẽ, s).
Let µg(h) denote the inner minimum in eq.(11). µg(h) decreases as h increases because the sets

of the info-gap model become more inclusive as h increases. This means that the robustness is the
greatest value of h at which µg(h) = gc. In other words, µg(h) is the inverse of the robustness

function: a plot of h vs µg(h) is the same as a plot of ĥg(gc) vs gc. Stating this explicitly:

µg(h) = gc if and only if ĥg(gc) = h (12)

From examination of eq.(4) we see that µg(h) occurs when E takes its maximal value at horizon
of uncertainty h: E = Ẽ + sh. Thus:

µg(h) = c

(
f

Ẽ + sh

)2/3

(13)

where:

c =

(
2.25(1− ν2)2

r

)1/3

(14)

Equating µg(h) to gc and solving for h yields the robustness:

ĥg(gc) =
1

s

((
c

gc

)3/2

f − Ẽ

)
(15)

or zero if this is negative.
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4.1.2 Properties of the Robustness Function

Eq.(15) illustrates the basic properties of all info-gap robustness functions.
Zeroing. The estimated compression is:

g̃(f) = c

(
f

Ẽ

)2/3

(16)

This is the best model-based estimate of the compression, so one might be inclined to use this
relation to choose f for achieving specified compression. However, from eq.(15) we see that the
robustness equals zero if the demanded compression, gc, equals the estimated compression, g̃:

ĥg(g̃) = 0 (17)

Achieving the predicted outcome, g̃(f), has zero robustness to error in the model. This illustrates
the general info-gap theorem that predicted outcomes have zero robustness to error in models or
data upon which the predictions are based. Eq.(16) cannot be used directly for selecting the load
to achieve predicted compression. Rather, we must consider the robustness to model uncertainty.

Trade off. Robustness decreases as greater compression is demanded. That is, ĥg(gc) decreases
as gc increases. This illustrates the info-gap theorem that higher quality is achieved only by
accepting lower robustness against uncertainty. In other words, outcome-quality trades off against
robustness to uncertainty.

Cost of robustness. The robustness curve—ĥg vs gc—decreases monotonically, expressing
the trade off between robustness and outcome. A steep slope implies that the robustness can be
increased substantially in exchange for small decrease in the demanded compression. A shallow
slope implies that large decrease in gc is required in order to obtain a substantial increase in
robustness. A steep slope implies a low cost of robustness. Conversely, a shallow slope implies a
high cost of robustness.

Preference reversal. Consider the choice between two options, (f1, s1) and (f2, s2) where:

f1 > f2 and
s1
f1

>
s2
f2

(18)

In the first design, (f1, s1), greater force is applied and the modulus is less accurately estimated.
Which design is preferred, assuming that both designs satisfy the outcome requirement if the
estimated modulus is correct?

The estimated outcomes are ranked as:

g̃(f1) > g̃(f2) > gc (19)

The first design is estimated—based on Ẽ—to satisfy the outcome requirement by a larger margin
than the second design. One might therefore tend to prefer the first design.

However, we know from the zeroing property that the robustness of estimated outcomes is zero,
suggesting that eq.(19) is not a reliable basis for prioritizing the designs. From the trade off property
we know that only less demanding outcomes—lower values of gc—have positive robustness. From
eq.(15) we see that the cost of robustness is determined by the ratio f/s. A large value of f/s
implies a low cost of robustness. Thus, from the specification in eq.(18), we find that the robustness
curve for the second design is steeper than for the first design. Consequently the cost of robustness
is lower for the second design. These considerations show that the robustness curves cross one
another at g×:

g× = c

(
s2f1 − s1f2

(s1 − s2)Ẽ

)2/3

(20)

Design 1 is more robust than design 2 for gc > g×, and design 2 is more robust than design 1
otherwise. Thus the robust preference between the designs depends on our outcome requirement,
gc.
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Crossing of robustness curves, and reversal of preference between the designs, can occur with
fixed error estimate, s, and different forces and combined moduli. Specifically, crossing occurs if:

f1 > f2 and
f1

Ẽ1

<
f2

Ẽ2

(21)

Crossing of the robustness curves occurs if the force is greater in the first design and the combined
modulus of the first design is dis-proportionately greater.
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Figure 1: Robustness vs critical
compression [microns].

Figure 2: Robustness vs criti-
cal compression [microns] for two
different designs.

Figure 3: Robustness vs criti-
cal compression [microns] for two
different designs.

4.1.3 Example

We illustrate the properties discussed in section 4.1.2 using the robustness function of eq.(15) from
section 4.1.1.

Consider Hertzian contact between a steel and a bronze sphere, with estimated Young’s moduli
of 200GPa and 110GPa respectively, and radii of 0.01m and 0.04m respectively. The combined
estimated modulus is Ẽ = 141.9GPa. The Poisson ratio is 0.3.

Fig. 1 shows a robustness curve for force f = 1000N with error estimate s = 0.1Ẽ = 14.19GPa.
The trade off and zeroing properties are illustrated in this figure. The horizontal intercept equals
the estimated compression, which from eq.(16) is g̃ = 22.6 microns.

Fig. 2 shows robustness curves for two choices of f and s with the same moduli as in fig. 1.
(f1, s1) = (1000, 0.1Ẽ) which is the case portrayed in fig. 1. (f2, s2) = (950, 0.05Ẽ), so the conditions
for preference reversal in eq.(18) are satisfied. The robustness curves cross one another, implying
reversal of preference between these two designs, depending on the critical compression.

Fig. 3 shows robustness curves for two choices of f , Ẽ and s, so now we are considering different
materials. The first design is the same steel and bronze spheres as in fig. 1, so f = 1000N,
Ẽ = 141.9GPa, and s = 0.1Ẽ = 14.19GPa. The second design uses wrought iron and aluminium
spheres, with estimated Young’s moduli of 110GPa and 69GPa respectively, and radii of 0.01m
and 0.04m respectively. The combined estimated modulus is Ẽ = 84.8GPa. The moduli are more
variable and less accurately estimated, so s = 0.15Ẽ = 12.72GPa. The Poisson ratio is 0.3. The
robustness curves cross one another as expected from eq.(21).

4.2 Choosing the Load Given Data for
Estimating the Uncertain Young’s Modulus

4.2.1 Formulation

N observations have been made of the relation between load, f , and total compression, g. Denote
these data (ϕ̃i, γ̃i), i = 1, . . . , N , where the ϕ̃i’s are the observed loads and the γ̃i’s are the
corresponding observed compressions. The vectors of observed forces and compressions are ϕ̃ and
γ̃. Arbitrary vectors of loads and compressions are denoted ϕ and γ.
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We want to use these data to estimate the combined Young’s modulus, E, which we could do
using eq.(4) and the method of least squares estimation. We want to use the estimate of E to
choose a load, f , so that future applications will result in compression no less than gc. That is, our
outcome requirement for the loading is eq.(10).

However, we are uncertain that the modulus for these test data is the same as the modulus that
will be encountered in practice. In fact, as in section 4.1, we believe that the actual future modulus
could be greater—by an unknown amount—than the value which holds for the test data. We will
use the info-gap model of eq.(6) to represent this uncertainty in the future modulus.

Likewise, we expect that greater forces would be required—on future real specimens—to produce
the compressions that we have observed in the tests. In other words, the available test data
are biased—in comparison to future real applications—by having forces that are too low for the
corresponding compressions. Consider an observed pair, (ϕ̃i, γ̃i). We expect that, for any future
compression equal to γ̃i, the corresponding force could exceed ϕ̃i by an unknown amount. So let
us define the following info-gap model for uncertain bias of the N observed forces, corresponding
to the N observed compressions, analogous to eq.(8):

F(h) =
{
ϕ : 0 ≤ ϕi − ϕ̃i ≤ ϕ̃ih, , i = 1, . . . , N

}
, h ≥ 0 (22)

For any choice of the modulus, E, the squared error of data (ϕ, γ) is:

S(E;ϕ, γ) =
N∑
i=1

[γi − g(ϕi, E)]2 (23)

where g(ϕi, E) is calculated from eq.(4).
If we believed that the observations (ϕ̃, γ̃) were representative of future applications, then we

would choose E to minimize S(E; ϕ̃, γ̃). However, we believe that the data are biased to an unknown
amount as expressed by the info-gap model of eq.(22).

We will therefore choose E to make the squared error acceptably small—though perhaps not
minimal—for a wide range of realizations of the forces corresponding to the observed compressions.
We denote the chosen modulus by Eest.

Let Sc be an acceptably small value of the squared error. This might be chosen as a value not
too much larger than the nominal value of the least squared error. We want to choose Eest so that
S(Eest;ϕ, γ̃) is less than Sc for a wide range of realizations of ϕ in the info-gap model U(h). Our
outcome requirement for the estimation is:

S(Eest;ϕ, γ̃) ≤ Sc (24)

The robustness—to force uncertainty—of estimated modulus Eest, is the greatest horizon of
uncertainty in force vectors, ϕ, up to which the squared error satisfies the requirement in eq.(24):

ĥe(Eest, Sc) = max

{
h :

(
max

ϕ∈F(h)
S(Eest;ϕ, γ̃)

)
≤ Sc

}
(25)

Note that eq.(25) uses the observed compressions, γ̃. The forces, ϕ, are uncertain. The observed
forces, ϕ̃, appear only as the end points of the info-gap model F(h) in eq.(22). A large value of
ĥe(Eest, Sc) implies that this estimate of E has adequate fidelity to a wide range of data that is less
biased than our actual observations. A large value of ĥe is preferable over a small value of ĥe.

However, we also want to select the load, f , and the error-estimate s, to satisfy the outcome
requirement in eq.(10). That is, we have to make three decisions: an estimate of E based on the
observations, and a choice of f and s based on this estimate of E. We want these decisions to have
high fidelity to truly representative data (which is unknown) as expressed by eq.(24), and we want
these decisions to satisfy the compression requirement of eq.(10).
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To consider both requirements, and all three decisions, we combine the robustness functions of
eqs.(11) and (25):

ĥeg(Eest, f, s, Sc, gc) = max

{
h :

(
max

ϕ∈F(h)
S(Eest;ϕ, γ̃)

)
≤ Sc,

(
min

E∈U(h,Ẽ)

g(f,E)

)
≥ gc

}
(26)

The righthand side contains three symbols for the modulus: E, Ẽ and Eest. The latter denotes the
estimated modulus that we must choose, and it appears in the squared error function, S(Eest;ϕ, γ̃).
The endpoint in the info-gap model U(h, Ẽ) of eq.(6) uses the nominal estimate, Ẽ, based on eq.(1).
The term E represents the uncertain modulus in the argument of g(f,E) and the elements of the
info-gap model U(h, Ẽ).

4.2.2 Evaluating the Robustness

The robustness ĥeg(Eest, f, s, Sc, gc) in eq.(26) is the greatest horizon of uncertainty, h, at which
both of the requirements are satisfied. The first requirement—on Sc—appears in the robustness
function ĥe(Eest, Sc) in eq.(25), so ĥe(Eest, Sc) is the greatest h which satisfies the first requirement.
The second requirement appears in the robustness function of eq.(11), ĥg(f, s, gc), which is the

greatest h that satisfies the second requirement. Hence ĥeg(Eest, f, s, Sc, gc) is the lesser of the two

robustnesses, ĥe(Eest, Sc) and ĥg(f, s, gc):

ĥeg(Eest, f, s, Sc, gc) = min
[
ĥe(Eest, Sc), ĥg(f, s, gc)

]
(27)

An explicit expression for ĥg(f, s, gc) appears in eq.(15).

Evaluating the inverse of ĥe(Eest, Sc). Let µe(h) denote the inner maximum in eq.(25), which
is the inverse of ĥe(Eest, Sc). Combining eqs.(16) and (23) we obtain:

µe(h) = max
ϕ∈F(h)

N∑
i=1

[
γ̃i − c

(
ϕi

Eest

)2/3
]2

(28)

This maximum occurs when each term in the sum is maximal. Each term is maximal when its
value of ϕi is replaced by either ϕ̃i or (1 + h)ϕ̃i. Each term is maximized independently. Adopting
a convenient notation, we can write µe(h) as:

µe(h) =
N∑
i=1

max
‘or’

γ̃i − c

(
{1 or (1 + h)}ϕ̃i

Eest

)2/3
2 (29)

Suppose we want to plot ĥeg(Eest, f, s, Sc, gc) vs gc with Sc fixed and with the decision

variables Eest, f, s fixed. We will denote this ĥeg(gc|Sc, Ẽ, f, s). From eq.(27) we can express this
as:

ĥeg(gc|Sc, Eest, f, s) =

 ĥg(f, s, gc) if ĥg(f, s, gc) ≤ ĥe(Eest, Sc)

ĥe(Eest, Sc) if ĥg(f, s, gc) > ĥe(Eest, Sc)
(30)

where ĥe(Eest, Sc) is a fixed number since Eest and Sc are fixed. Thus a plot of ĥeg(gc|Sc, Eest, f, s)

vs gc will increase as gc decreases, following the curve ĥg(f, s, gc) vs gc, until ĥg(f, s, gc) reaches

the value ĥe(Eest, Sc). For all smaller values of gc, ĥeg(gc|Sc, Eest, f, s) is held at ĥe(Eest, Sc). The

plot of ĥeg(Eest, f, s, Sc, gc) vs gc will be flat for small values of gc, reach a kink and then decrease
for larger values of gc as in figs. 4–6 which will be discussed shortly.

Eq.(30) depends on explicit knowledge of ĥe(Eest, Sc), while we are only able to evaluate its in-
verse, µe(h), eq.(29). It is thus more convenient to use an expression for the inverse of ĥeg(gc|Sc, Eest, f, s),
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for fixed Sc. µg(h) denotes the inverse of ĥg(f, s, gc), for which eq.(13) is an explicit expression.

The inverse of ĥeg(gc|Sc, Eest, f, s) vs gc, for fixed Sc, Ẽ, f and s is:

µeg(h|Sc, Eest, f, s) =

{
µg(h) if µe(h) ≤ Sc

−∞ if µe(h) > Sc

(31)

The upper and lower lines of eq.(31) correspond to the upper and lower lines of eq.(30).
Suppose we want to plot ĥeg(Eest, f, s, Sc, gc) vs Sc with gc fixed and with the decision

variables Eest, f, s fixed. We will denote this ĥeg(Sc|gc, Eest, f, s). From eq.(27) we can express this
as:

ĥeg(Sc|gc, Eest, f, s) =

 ĥe(Eest, Sc) if ĥe(Eest, Sc) ≤ ĥg(f, s, gc)

ĥg(f, s, gc) if ĥe(Eest, Sc) > ĥg(f, s, gc)
(32)

where ĥg(f, s, gc) is a fixed number since f, s and gc are fixed. Thus a plot of ĥeg(Sc|gc, Eest, f, s)

vs Sc will increase as Sc increases, following the curve ĥe(Eest, Sc) vs Sc, until ĥe(Eest, Sc) reaches
the value ĥg(f, s, gc). For all larger values of Sc, ĥeg(Sc|gc, Eest, f, s) is held at ĥg(f, s, gc). The plot
will thus have a kink.

4.2.3 Example

run Ẽfac Ẽest S(Eest)
N GPa µm2

7 1 141.94 2.8409
6 1.01 143.35 3.1195

9 1 141.94 2.6841
10 1.01 143.35 3.3361

12 1 141.94 3.2364
13 1.01 143.35 3.7201

Table 1: Data for runs. f = 1000N, r1 =
0.01m, r2 = 0.04m, E1 = 200GPa, E2 =
110GPa, Ẽ = 141.94GPa, g(Ẽ) = 22.61µm,
gfrac = 0.03, sfrac = 0.1, s = 14.19GPa,
Scfrac = 5, ν = 0.3.

22.3 22.4 22.5 22.6
0

0.02

0.04

0.06

0.08

0.1

Critical compression

R
o
b
u
st

n
es

s

= 1.01
Eest/Ẽ
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= 1.01 = 1

Figure 4: Robustness vs criti-
cal compression [microns]. Run
7 (—), run 6 (– –).

Figure 5: Robustness vs criti-
cal compression [microns]. Run
9 (—), run 10 (– –).

Figure 6: Robustness vs critical
compression [microns]. Run 12
(—), run 13 (– –).

Figs. 4–6 show pairs of robustness curves, ĥeg(gc|Sc, Eest, f, s) vs gc in eq.(30), for runs specified
in table 1. The design load, f , is the same in each case. In each simulated experimental run, 8 loads,
ϕ̃i, are applied, equally spaced from 600N to 1200N. The 8 corresponding nominal compressions are
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calculated from eq.(4), and denoted g(ϕ̃i). The noisy simulated compressions, γ̃i, are calculated by
adding zero-mean normal noise to each nominal compression with standard deviation gfracg(ϕ̃i):

γ̃i = g(ϕ̃i) + εi, εi ∼ N [0, (gfracg(ϕ̃i))
2] (33)

The value of gfrac, shown in table 1, is 0.03. The 2 curves in each figure are calculated with the
same force-compression data. The data changes from figure to figure, which explains the differences
of the robustness curves between the figures.

The critical squared error, Sc, is chosen as 5 times the estimated squared error based on Ẽest:

Sc = 5S(Eest, ϕ̃, γ̃) (34)

The estimated squared errors are shown in table 1 in the column S(Eest).
The solid curves in figs. 4–6 use the nominal combined modulus, Ẽ from eq.(1), as the estimated

combined modulus, Eest. The dashed curves use an estimated modulus which is 1% larger: Eest =
1.01Ẽ. From eq.(16) we see that the estimated compression is less for the dashed than for the solid
curves.

The robustness curves in figs. 4–6 cross one another, which we now explain. The robustness at
the kink of any robustness curve depends on the squared error. We can understand this as follows.
ĥg(gc) increases as gc decreases. According to eq.(27), the kink occurs at the value of gc for which

ĥg(gc) = ĥ(Sc). Sc is fixed throughout each curve, but it depends on the data and other parameters

of the run through eq.(34). The dashed curves have larger squared error, S(Eest, ϕ̃, γ̃), because they
use a sub-optimal stiffness estimate, Eest. Thus the kink in the dashed curves occurs at greater
robustness than in the solid curves. Since the solid curves intersect the horizontal axis further to
the right, the robustness curves intersect. This intersection implies the potential for reversal of
preference between the corresponding designs.

5 Discussion

Robustness. ‘Robustness’ has many meanings. As we have used it, the concept of robustness
derives from a prior concept of non-probabilistic uncertainty. Knight (1921) distinguished between
‘risk’ based on known probability distributions and ‘true uncertainty’ for which probability distribu-
tions are not known. Similarly, Ben-Tal and Nemirovski (1999) are concerned with uncertain data
within a prescribed uncertainty set, without any probabilistic information. Likewise Hites et al.
(2006, p.323) view “robustness as an aptitude to resist to ‘approximations’ or ‘zones of ignorance’ ”,
an attitude adopted also by Roy (2010). We also are concerned with robustness against Knightian
uncertainty. Info-gap theory has been used to model and manage uncertainty in probability distri-
butions, but it is not based on an explicitly statistical approach to robustness as studied by Huber
(1981) and many others. The concepts developed here are related to the idea of probability bounds
(Ferson and Tucker, 2008), and to the concept of coherent lower previsions, as discussed elsewhere
(Ben-Haim et al. 2009).

Many engineering researchers, beginning in the 1960s, developed estimation and control algo-
rithms for linear dynamic systems based on sets of uncertain inputs. Schweppe (1973) for instance
develops inference and decision rules based on assuming that the uncertain phenomenon can be
quantified in such a way as to be bounded by an ellipsoid, with no probability function involved.

The concept of robustness in this paper is in the tradition of ideas that we have described.
Optimizing and satisficing. To ‘satisfice’ means “To decide on and pursue a course of action

that will satisfy the minimum requirements necessary to achieve a particular goal.” (Oxford English
Dictionary). Simon was the first to use the term in this technical sense, which is an old alteration of
the ordinary English word “satisfy”. Simon (1956) wrote “Evidently, organisms adapt well enough
to ‘satisfice’; they do not, in general, ‘optimize’.”

In the context of engineering design, ‘satisficing’ is the same as ‘satisfying a design specification’.
Designers routinely satisfy specified bounds on performance outcomes (e.g. deflection, weight,
rigidity, etc.), rather than optimize (e.g. minimize or maximize) these quantities.
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The putative reason for satisfying design specs is that they specify what constitutes acceptable
performance, and that is, by definition, good enough. But there is a deeper motivation for designing
to spec—rather than optimizing—that we can appreciate from info-gap theory.

A satisficing outcome is not, usually, the best possible performance. It is sub-optimal in per-
formance, meeting a specified criterion (or perhaps several criteria). But sub-optimal performance
can usually be achieved by alternative designs. The designer who satisfices (rather than optimizes)
thus has an additional degree of freedom in choosing the design. This freedom is exploited to max-
imize the robustness of the system against uncertainty, ignorance, and surprise. This is precisely
the info-gap robust-satisficing strategy. The satisficer does not shirk the potential for doing better.
Satisficing, when linked to robustness, is a means of maximizing the immunity to uncertainty for
achieving critical performance.

Maximizing the robustness. A robustness function, such as in eqs.(11), (25) and (26), de-
pends on both design and performance parameters. The robustness is monotonic in the performance
parameters, as seen in figs. 1–6. This monotonicity expresses the trade off between robustness and
performance discussed in section 1. The robustness function is not, in general, monotonic in the
design parameters. The maximization of robustness referred to in the previous paragraph is with
respect to the design parameters. This maximization is usually also subject to constraints on
feasible designs.

Info-gap robustness and min-max. Wald (1945) studied the problem of statistical hypoth-
esis testing based on a random sample whose probability distribution is not known, but whose
distribution is known to belong to a given class of distribution functions. Wald states that “in
most of the applications not even the existence of . . . an a priori probability distribution [on the
class of distribution functions] . . . can be postulated, and in those few cases where the existence
of an a priori probability distribution . . . may be assumed this distribution is usually unknown.”
(p.267). Wald introduced a loss function expressing the “relative importance of the error commit-
ted by accepting” one hypothesized subset of distributions when a specific distribution in fact is
true. (p.266). He notes that “the determination of the [loss function] is not a statistical question
and is considered here as given.” (p.266). Wald developed a decision procedure which “minimizes
the maximum . . . of the risk function.” (p.267). Thus was born, in its modern form, the method
of min-max.

The relation between min-max and info-gap robust-satisficing has been discussed at length
elsewhere (Ben-Haim et al. 2009). The two methods have much apparent similarity, though also
important differences. Most significantly, they depend on different prior information, and can
lead to different solutions. Briefly, min-max requires knowledge of a worst case. In contrast, the
horizon of uncertainty of an info-gap model is unknown and unbounded, thus deliberately avoiding
the specification of a worst case. On the other hand, the info-gap robustness does require the
analyst to specify the worst acceptable outcome, which in engineering design is usually a design
specification.

Opportuneness: The other side of uncertainty. The info-gap robustness function is a
tool for protecting against pernicious surprises. But some surprises are propitious. The info-gap
opportuneness function enables the designer to explore the propitious side of uncertainty, and to
incorporate the potential for favorable surprise into the design process (Ben-Haim 2006).

Value of information. Information (including knowledge and understanding) is valuable to
the extent that it enhances the robustness of the designer’s decisions against uncertainty and
surprise. Information is not valuable in its own right, disconnected from the end use which employs
the information. One implication is that separation of the modeler from the decision maker may
lead to poor—unreliable—decisions. The value of information is illustrated in fig. 2 where we see
robustness curves for two different levels of precision in estimating the Young’s modulus. The
relative error in the dashed case, s2/f2, is less than in the solid case. These two curves cross one
another, so the robust preference for the more precise estimate (dash) depends on the required
compression, gc. Better estimation is not automatically preferred. The value of the increment of
information, as expressed by the increment in robustness, depends on the outcome requirement.
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Other applications of info-gap robustness. Info-gap theory has been applied to many prob-
lems in engineering analysis and design, including fault diagnosis, reliability assessment, structural
dynamics, fatigue, and so on. Info-gap theory is particularly suited for modeling and managing the
uncertainty in functional shape, as well as uncertainty in the values of parameters. For instance,
many applications deal with uncertainty in the shape of constitutive relations, or uncertainty in
the tails of a probability distribution. Info-gap theory has also been applied widely outside of en-
gineering, in biological conservation, economics, medicine, project management, homeland security
and other areas (http://info-gap.com).
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7 Notation

Symbol Meaning

E Young’s modulus

Ẽ Nominal Young’s modulus
Eest Estimated Young’s modulus
f Force
g Compression
g̃ Estimated compression
gc Critical compression
h Horizon of uncertainty

ĥ Robustness
p Probability, probability density
r radius
s Error estimate
S Squared error
Sc Critical squared error
U(h) Info-gap model of uncertainty
γ Vector of observed compressions
µ Inverse of robustness function
ϕ Vector of applied loads
σ Stress

Table 2: Notation.
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