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Abstract

We consider forecasting in systems whose underlying laws are uncertain, while contextual in-
formation suggests that future system properties will differ from the past. We consider linear
discrete-time systems, and use a non-probabilistic info-gap model to represent uncertainty in the
future transition matrix. The forecaster desires the average forecast of a specific state variable to
be within a specified interval around the correct value. Traditionally, forecasting uses a model with
optimal fidelity to historical data. However, since structural changes are anticipated, this is a poor
strategy. Our first theorem asserts the existence, and indicates the construction, of forecasting
models with sub-optimal fidelity to historical data which are more robust to model error than
the historically optimal model. Our second theorem identifies conditions in which the probability
of forecast success increases with increasing robustness to model error. The proposed method-
ology identifies reliable forecasting models for systems whose trajectories evolve with Knightian
uncertainty for structural change over time. We consider various examples, including forecasting
European Central Bank interest rates following 9/11.

Keywords. Forecasting, decision support, info-gaps, robustness, model uncertainty.
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Processing (MDS)

93B35 Sensitivity (robustness), 93B51 Design techniques (robust design), 93E10 Estimation
and detection.

1 The Challenge of Forecasting

A popular Danish saying asserts that “prediction is always difficult, especially of the future”.
Variation is the only constant: “as they step into the same rivers, different and still different
waters flow” as Heraclitus is reported to have said. Both the importance and the difficulty of
forecasting result from things changing.

Planning and preparedness for an avian flu pandemic has been a major concern recently. “The
nub of the problem lies in the inherent variability of the virus, which makes prediction difficult.”
(Smith, 2006, p.392). In space travel, accurately predicting the genetic damage from cosmic
radiation on the long trip to Mars is difficult due to incomplete understanding of mechanisms by
which cells might be able to repair accumulated damage (Parker, 2006).

In econometrics, “the [data] generating process is unknown and evolutionary” (Hendry, 1995,
p.xxix). Furthermore, in “the forecasting context . . . the degree of data congruence or non-
congruence of a model is neither necessary nor sufficient for forecasting success or failure.” (Clements
and Hendry, 1999, p.xxiv). These authors develop auto-regressive forecasting models which use
difference data, and non-causal variables, showing that such models can out-perform historically
calibrated and causally-relevant models.

In macro-economic modelling

there is genuine uncertainty about how good a model is, even within the sample. More-
over, since the economy is evolving, we can take it for granted that the data gener-
ation process will change in the forecast period, causing any model of it to become
mis-specified over that period, and this is eventually the main problem in economic
forecasting. (Bardsen et al, 2005, p.246)

Bardsen et al (2005) build on the work of Clements and Hendry (1999), showing the advantage of
difference models in forecasting the behavior of non-stationary systems.

The current paper studies the situation where contextual understanding indicates that funda-
mental structural change may occur in the future, but these changes are not yet manifested in
the data. Adaptive or learning strategies will not reveal future structural breaks. For instance, in
section 5 we consider forecasting European Central Bank interest rates after the 9/11 Al Qaida
terror attacks but before the Central Bank has revised its lending policy. We use info-gap models
for uncertainty in the future transition matrix of linear time-varying systems. Info-gap models are
non-probabilistic and particularly suited to modelling major structural change for which historical
data provide no evidence.

We address these questions: Why, and in what sense, is fidelity to data an insufficient criterion
for forecast success? What characteristics of forecasting models are indicative of forecast success?
How can the forecaster use contextual information which suggests that the system properties will
change fundamentally but in ways which are not yet manifested in historical data?

Two foci of uncertainty are present in forecasting with uncertain models: noisy data as well
as fundamental errors in model structure. The classical paradigm of optimality — maximize the
fidelity of the model to the data by minimizing an error function — is not directly applicable to
this situation because this paradigm addresses only one focus of uncertainty: data noise. In this
paper we show how both foci of uncertainty can be managed.

A basic theorem of info-gap theory (Ben-Haim, 2006) asserts the irrevocable trade-off between
enhancing fidelity of a model to data, and ameliorating the structural errors in the model itself.
Robustness to model error decreases as the analyst demands greater fidelity to the data; maximal
fidelity entails minimal robustness to model mis-specification. Treating both data-noise and model-
error requires a compromise.

What this means is that forecasts cannot, realistically, be as good as the data themselves
suggest, when models are wrong in unknown ways. Thus the key insight of Gauss and Legendre
when they invented least-squares estimation — let the data themselves dictate the fidelity to the
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model — is inappropriate when the model structures which underlie the forecast are uncertain.
The implication is that fidelity to data should be satisficed rather than optimized when formulating
a forecasting model. Satisficed (sub-optimal) fidelity rarely entails a unique forecasting algorithm,
so there remains an additional degree of freedom in the forecasting process which can be devoted
to maximizing the robustness to model uncertainty. Our first theorem asserts the existence of
sub-optimal models which are better forecasters than optimal-fidelity models. Our second theorem
asserts that the info-gap robustness function (which is calculable with very limited information) is
a good proxy for the probability of forecast success (which cannot be calculated without knowning
probability distributions). Info-gap theory thus provides a tool for selecting good models for
forecasting, and for understanding why models that optimally fit historical data may be poor
models for forecasting.

Our general results are developed in section 2, illustrated with a 1-dimension example in sec-
tion 3, and explored for an N -dimensional system in section 4. A simple financial example is
discussed in section 5, and our results are summarized in section 6. All proofs appear in section 7.

2 Forecasting with Info-Gap Uncertainty

2.1 The Estimated System and its Uncertainty

Consider a system whose state is characterized by yt ∈ <N and whose average behavior evolves as:

yt = Atyt−1 (1)

Zero-mean, additive, random disturbances are ignored and all other inputs are incorporated in the
multi-dimensional state vector yt.

The solution of this system is:

yT+k =

(
k∏

i=1

AT+i

)
yT (2)

where the product operator is defined as lefthand matrix multiplication:
∏k

i=1 AT+i = AT+k

∏k−1
i=1 AT+i.

Historical data indicate that the coefficient matrix At is constant for t ≤ T . The best-estimate
of this constant matrix is Ã. It is anticipated that At will remain constant, though auxiliary
information and understanding — economic reasoning, engineering judgment, medical intuition,
etc. — suggest that its elements could vary systematically. The uncertainty in the future values of
the elements of At, for t > T , is represented by an info-gap model (Ben-Haim, 2006), U(α, Ã),
α ≥ 0, which is an unbounded family of nested sets of coefficient matrices A. Info-gap models obey
two axioms:

Nesting: α < α′ implies U(α, Ã) ⊂ U(α′, Ã) (3)

Contraction: U(0, Ã) = {Ã} (4)

‘Nesting’ implies that the uncertainty set U(α, Ã) becomes more inclusive as α increases, which
endows α with its meaning of an horizon of uncertainty. ‘Contraction’ implies that, in the absence
of uncertainty (α = 0), only the estimated matrix Ã occurs. The horizon of uncertainty is unknown
so α can take any non-negative value.

A common info-gap model, among many possibilities, is the fractional-error model:

U(α, Ã) =
{

At, t > T : Ãij − αvij ≤ [At]ij ≤ Ãij + αwij , i, j = 1, . . . , N
}

, α ≥ 0 (5)

where vij and wij are known non-negative “uncertainty weights” which might be chosen from
boundaries of confidence intervals. If our anticipation of future stability of At is correct, so that
α = 0, then At remains at the estimated value Ã. However, as the horizon of uncertainty, α,
increases, the coefficients at each time step can vary in possibly asymmetric intervals defined in
eq.(5). These intervals are of unknown size since the horizon of uncertainty, α, is unbounded.
There are many other types of info-gap models of uncertainty, all obeying the axioms of nesting
and contraction.
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2.2 Forecasting with Slope Adjustment

The analyst is concerned that, while the estimate of At in eq.(1) is historically stable, contextual
and other knowledge suggest that At might tend to vary systematically in the future, as expressed
by an info-gap model such as eq.(5). We do not know, however, by how much the coefficients may
vary, or how that variation would emerge over time. Despite this uncertainty, we need to forecast
the future values of some of the state variables.

As compensation for potential future variation in the coefficients one might consider the fol-
lowing “slope-adjusted” predictor:

ys
t = Bys

t−1 (6)

where B is a constant matrix which we are free to choose. The question is: how to choose B?
The vector of average forecast errors of this forecast model for time t = T + k (ignoring zero-

mean, additive, random disturbances), based knowledge of yT , is:

ηk(B,At) = ys
T+k − yT+k =

(
Bk −

k∏

i=1

AT+i

)
yT (7)

Judicious choice of B can reliably compensate for deviation of AT+i from Ã, as we will show.
Specifically, we will prove two theorems. Theorem 1 asserts the existence of sub-optimal forecast
models, such as eq.(6), which are more robust to future uncertainty in the system, than the
optimally-estimated model Ã. Theorem 2 specifies very general conditions in which the probability
of forecast success increases with increasing robustness of the forecast model. Combining these
theorems shows when forecast will be more reliable (against future surprises) with sub-optimal
than with optimally-estimated forecast models.

2.3 Definition of the Robustness Function

We require that the absolute error of the average forecast of the mth state variable, k time steps
after the last measurement, not exceed εc:

|ηk,m(B, At)| ≤ εc (8)

That is, ignoring zero-mean, additive, random disturbances, we wish to satisfice the average forecast
error of yT+k,m at the value εc. We are willing to accept some bias in the forecast, but no more
than εc. Likewise, we are willing to accept fluctuation in the forecast error (due to fluctuation in
the coefficient matrices), but again no more than εc.

The info-gap robustness of a forecast with coefficient matrix B in eq.(6) is the greatest
horizon of uncertainty α up to which all realizations of the actual coefficients AT+i in an info-gap
model U(α, Ã) satisfice the forecast error at εc:

α̂(B, εc) = max

{
α :

(
max

AT+i∈U(α,Ã)

i=1, ..., k

|ηk,m(B, At)|
)
≤ εc

}
(9)

We define α̂(B, εc) = 0 if the set of α-values in eq.(9) is empty.

2.4 1-Step and k-Step Forecast

From eq.(2) we see that a k-step process can be viewed as a 1-step process with coefficient matrix
A(k) =

∏k
i=1 AT+i. If the individual matrices AT+i belong to an info-gap model, then the product

matrix A(k) also belongs to an info-gap model, as asserted in the following lemma. All proofs for
this section appear in section 7.1.

Lemma 1 Let U(α, Ã) be an info-gap model for square matrices A, that is, the sets U(α, Ã) obey
the nesting and contraction axioms, eqs.(3) and (4). Define the following family of sets of matrices:

Uk(α, Ã
k
) =

{
A =

k∏

i=1

Ai : Ai ∈ U(α, Ã)

}
, α ≥ 0 (10)
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Uk(α, Ã
k
) obeys the nesting and contraction axioms and is therefore an info-gap model.

What this lemma implies is that the k-step evolution of a system with info-gap-uncertain
matrices can be treated as a 1-step system with a different info-gap model for the uncertain
matrices.1 In particular, any conclusion about the 1-step forecast robustness which depends only
upon the generic properties of info-gap models — nesting and contraction — holds for k-step
forecasts for any value of k. In other words, we need only consider 1-step forecasts as long as we
consider completely generic info-gap models for uncertainty in the coefficient matrices. On the
other hand, a result which depends for instance on the explicit interval-bound structure of the
info-gap model in eq.(5), would not necessarily hold for k-step forecasts, since the info-gap model
in eq.(10) does not possess interval-bound structure if it is derived from the 1-step matrices in
eq.(5).

2.5 Evaluating the Robustness Function

In this section we derive the 1-step robustness function for a generic info-gap model. The results
of this section apply also to the robustness of k-step forecast if B, Ã and U(α, Ã) are replaced by

Bk, Ã
k

and Uk(α, Ã
k
), as explained in section 2.4.

The robustness in eq.(9) can be written:

α̂(B, εc) = max

{
α :


 max

AT+1∈U(α,Ã)

η1,m(B,AT+1)


 ≤ εc

and


 min

AT+1∈U(α,Ã)

η1,m(B,AT+1)


 ≥ −εc

}
(11)

The 1-step forecast error for the mth state variable, from eq.(7), is:

η1,m(B, AT+1) =
N∑

n=1

[B − Ã]mnyT,n

︸ ︷︷ ︸
δ

−
N∑

n=1

[AT+1 − Ã]mnyT,n (12)

which defines the quantity δ, which can be either positive or negative and is controlled by the
analyst through the choice of the forecast matrix B.

The concepts of ‘coherence’ and ‘anti-coherence’ will arise subsequently, in definition 2 and the
discussion preceding it. We now introduce two functions which will be used extensively. Define:

θc(α) = max
AT+1∈U(α,Ã)

N∑
n=1

[AT+1 − Ã]mnyT,n (13)

θa(α) = − min
AT+1∈U(α,Ã)

N∑
n=1

[AT+1 − Ã]mnyT,n (14)

A large value for θc(α) implies a ‘coherence’ between the fluctuations of AT+1 and the elements of
yT . Likewise, a large value for θa(α) implies an ‘anti-coherence’ between these entities. Note that
the contraction axiom implies that θa(0) = θc(0) = 0. The nesting axiom then implies that θa(α)
and θc(α) are non-negative and monotonic for all α ≥ 0.

Now, from eqs.(12)–(14), the robustness for 1-step forecast of the mth state variable, eq.(11),
is:

α̂(B, εc) = max {α : δ + θa(α) ≤ εc and − δ + θc(α) ≤ εc} (15)

This can be used to conveniently evaluate the robustness function, once the functions θa(α) and
θc(α) are known. Define:

ε(α) = max {δ + θa(α), −δ + θc(α)} (16)

A plot of α vs. ε(α) is the same as a plot of α̂(B, εc) vs. εc. This is illustrated schematically in
fig. 1. The vertical axis is α or α̂(B, εc), while the horizontal axis is ε(α) or εc.

1The complexity of the info-gap models Uk(α, Ã
k
) increases greatly with increasing k. This can be exploited for

artistic purposes as illustrated in (Ben-Haim, 1997).
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Figure 1: Robustness function based on eqs.(15) and (16).

2.6 Crossing of Robustness Curves and the Advantage of Sub-Optimal
Models

If the analyst is correct in the anticipation that At will be constant at Ã in the future, then the
k-step prediction error for the mth state variable is:

ηk,m(B, Ã) =
N∑

n=1

(
Bk − Ã

k
)

mn
yT,n

︸ ︷︷ ︸
ε?

(17)

Since we are free to choose the matrix B, one is tempted to choose B = Ã in order to minimize
the anticipated prediction error ε?.

However, recall the definition of δ in eq.(12), for the k-step case so that B and Ã are replaced

by Bk and Ã
k

as explained at the beginning of section 2.5. We note that δ = ε?. The robustness
(to uncertainty in At) vanishes for prediction error εc equal to or less than δ for any choice of B, as
implied by eq.(15) and illustrated in fig. 1 (unless θa(α) = θc(α) = 0 for α > 0). This means that
prediction error as low as δ, for any choice of B, cannot be reliably attained. We must “migrate
up” the robustness curve, to larger prediction error, in order to achieve positive robustness against
the unknown future values of the coefficient matrix At.

We need a definition before we can state our first main result.

Definition 1 Given a non-negative εc and the functions θa(α) and θc(α) defined in eqs.(13) and
(14), define δ×(εc) and α×(εc) from:

θa(α×) + δ× = θc(α×)− δ× (18)
θa(α×) + δ× = εc (19)

δ×(εc) is the value of δ at which the intersection of θa(α) + δ with θc(α) − δ occurs at εc =
θa(α) + δ = θc(α)− δ.

The forecasting model based on Ã is optimal in the sense of having maximal fidelity to historical
data, and being maximally reliable if the future system is the same as the past system. However, we
are studying situations in which the future behavior of the system may deviate from the past. The
following theorem asserts that any positive forecast error can be achieved with greater robustness
against uncertainty in At with particular sub-optimal forecasters, B 6= Ã, than with the historically
optimal forecaster B = Ã.

Theorem 1 There exist sub-optimal models for 1-step forecasting which are more robust than
optimal models.
Given: yT is not identically zero. U(α, Ã) is an info-gap model for uncertainty in the coefficient
matrix in eq.(1). θc(α) and θa(α), defined in eqs.(13) and (14), are continuous, at least one is
unbounded, and either θc(α) ≥ θa(α) or θa(α) ≥ θc(α) for all α > 0.

Then: for any εc > 0 for which δ×(εc) 6= 0, there is a B 6= Ã such that:

α̂(B, εc) > α̂(Ã, εc) (20)

where these are robustness functions for 1-step forecast.
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We will consider examples in sections 3 and 4.
Lemma 1 implies that theorem 1 holds for the robustness functions of k-step forecasts. If U(α, Ã)

is an info-gap model for uncertainty in the coefficient matrix in eq.(1), then define Uk(α, Ã
k
) as

in eq.(10), which is an info-gap model according to lemma 1. Now define θc(α) and θa(α) in

eqs.(13) and (14) with respect to Uk(α, Ã
k
). k-step forecasts are now 1-step forecasts with a more

complicated info-gap model, and theorem 1 applies.

2.7 Robustness and Probability of Forecast Success

We have demonstrated, in theorem 1, that there exist forecasting models which are more robust
to model-uncertainty than the historically optimal forecasting model. That is, there exist sub-
optimal models whose forecast error is within a specified interval for a wider range of future
transition matrices, than the optimal forecast model. This, in itself, is a definite advantage of
these sub-optimal forecasters. However, this greater robustness does not necessarily imply that
the probability that the forecast error is within a specified interval is greater for the sub-optimal
forecaster. However, ‘greater robustness’ does imply ‘greater probability’ if there is sufficient
coherence between the info-gap model of uncertainty (which is non-probabilistic but based on
fragmentary contextual understanding), and the probability distribution of the model error (which
is unknown). We develop the concept of coherence in this section, and present a theorem which
establishes sufficient conditions for greater robustness to imply greater probability of successful
forecast.

We first derive an expression for the probability of 1-step forecast success, and then connect it
to the robustness of the forecasting model in eq.(6). Our results are applicable to k-step forecasting

if B, Ã and U(α, Ã) are replaced by Bk, Ã
k

and Uk(α, Ã
k
), as explained in section 2.4.

The 1-step forecast of the mth state variable is successful if the forecast errs no more than εc,
which is eq.(8) with k = 1. From eq.(7) this forecast error is:

η1,m(B,AT+1) =
N∑

n=1

[B −AT+1]mn yT,n (21)

The condition for forecast success, |η1,m| ≤ εc, can be written explicitly as:

−εc +
N∑

n=1

[B − Ã]mnyT,n ≤
N∑

n=1

[
AT+1 − Ã

]
mn

yT,n

︸ ︷︷ ︸
u

≤ εc +
N∑

n=1

[B − Ã]mnyT,n (22)

which defines the variable u. Recalling the definition of δ in eq.(12), the condition for forecast
success in eq.(22) becomes:

δ − εc ≤ u ≤ δ + εc (23)

Ã and yT are known when the 1-step forecast is made, but AT+1 and u are unknown. Let
F (·) denote the unknown cumulative probability distribution (cpd) of u, with probability density
function (pdf) f(·). Eq.(23) implies that the probability of 1-step forecast success, with forecasting
model based on B, is:

Ps(B) = F (δ + εc)− F (δ − εc) (24)

Differentiating this we obtain:

dPs(B)
dδ

> 0 if and only if f(δ + εc) > f(δ − εc) (25)

δ can be changed by altering the matrix B of the forecasting model. Roughly speaking, eq.(25)
asserts that the probability of 1-step forecast success is increased by increasing δ if and only if f(u)
is skewed to values above δ as compared to values below δ. Likewise, the probability of forecast
success increases by decreasing δ if and only if f(u) is skewed to the left around δ.

Recall the definitions of θc(α) and θa(α) in eqs.(13) and (14). These functions are known before
the forecast model is chosen and the forecast is made. θc(α) and θa(α) depend on the info-gap
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model of uncertainty, U(α, Ã). The info-gap model is chosen by the analyst to reflect contextual
understanding about how the transition matrix might vary in the future. For instance, in section 5
we will consider uncertainty in an interest rate whose future value is unknown, but for which eco-
nomic understanding suggests the direction in which it might vary. If this contextual understanding
is sufficiently realistic, then the info-gap model reveals something about the future fluctuations.
Specifically, the functions θc(α) and θa(α) reveal something about the random fluctuation of the
variable u, as we now explain.

If θc(α) > θa(α) for all α > 0, then the info-gap model U(α, Ã) implies that fluctuations of
AT+1 around Ã will tend to be coherent with the signs of the elements of the last observed state
vector, yT . If the info-gap model is sufficiently realistic, then this implies that the random variable
u, defined in eq.(22), will tend to be positive rather than negative. In other words, the probability
density, f(u), will tend to be increasing around u = 0.

If θc(α) < θa(α) for all α > 0, then fluctuations of AT+1 around Ã will tend to be anti-coherent
with the signs of the elements of the last observed state vector, yT . This implies that f(u) will
tend to be decreasing around u = 0.

In other words, if the info-gap model is sufficiently realistic, then the functions θc(α) and θa(α)
reveal something about the probability distribution of the random variable u. This motivates the
following definition.

Definition 2 The info-gap model U(α, Ã) and the cpd F (u) are coherent at (δ, εc) given state
vector yT if:

[θc(α)− θa(α)] [f(δ + εc)− f(δ − εc)] ≥ 0 for all α > 0 (26)

with strict inequality for at least one value of α.
The info-gap model U(α, Ã) and the cpd F (u) are anti-coherent at (δ, εc) given state vector

yT if:
[θc(α)− θa(α)] [f(δ + εc)− f(δ − εc)] ≤ 0 for all α > 0 (27)

with strict inequality for at least one value of α.

From our discussion of the relations θc(α) > θa(α) and θc(α) < θa(α) just before definition 2, we
see that we should expect realistic info-gap models to be coherent with the cpd of u for values of
δ near the origin.

We now state the following theorem, which asserts that, if U(α, Ã) and F (u) are coherent, then
the probability of success for 1-step forecasts is increased by increasing the info-gap robustness.
As explained at the beginning of this section, this theorem also holds for k-step forecasts with the
appropriate notational changes.

Theorem 2 The probability of 1-step forecast success increases with increasing robustness of the
forecast model, for coherent info-gap models. Robustness and forecast success are inversely related
for anti-coherent info-gap models.

Given: yT is not identically zero, εc is non-negative, δ×(εc) is non-zero, and the functions
θa(α) and θc(α) are continuous and at least one of them is unbounded.

If U(α, Ã) and F (u) are coherent at εc for some |δ| < |δ×(εc)|, and α̂(B, εc) > 0 for this δ and
εc, then:

dα̂(B, εc)
dδ

> 0 if and only if
dPs(B)

dδ
> 0 (28)

If U(α, Ã) and F (u) are anti-coherent at εc for some |δ| < |δ×(εc)|, and α̂(B, εc) > 0 for this
δ and εc, then:

dα̂(B, εc)
dδ

> 0 if and only if
dPs(B)

dδ
< 0 (29)

3 Example: 1-Dimensional System

The system. Consider a scalar system whose average behavior evolves as:

yt = λtyt−1 (30)
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where the historical data indicate that the growth coefficient λt is constant for t ≤ T . The best-
estimate of this constant coefficient is λ̃, which is positive. It is anticipated that λ will remain
constant, though auxiliary information and understanding suggest that it could drift upwards. The
uncertainty in the future values of λt, for t > T , is represented by a fractional-error info-gap model:

U(α, λ̃) =

{
λt, t > T : 0 ≤ λt − λ̃

λ̃
≤ α

}
, α ≥ 0 (31)

This means that, if our anticipation is correct so that α = 0, then λt remains at the value λ̃.
However, as the horizon of uncertainty, α, increases, the coefficient at each time step can vary in
the interval [λ̃, (1 + α)λ̃]. The value of α is unknown. Eq.(31) is a special case of eq.(5)

The slope-adjusted forecaster. As a rough compensation for potential future increase in
the growth coefficient one might consider the following slope-adjusted predictor, where ` ≥ λ̃:

ys
t = `ys

t−1 (32)

The robustness of k-step forecast with growth coefficient `, defined in eq.(9) and derived in
section 7.2, is:

α̂(`, εc) =





0 if εc ≤ (`k − λ̃
k
)yT

(
εc + `kyT

λ̃
k
yT

)1/k

− 1 else
(33)

Crossing of robustness curves. For this example one can readily show that:

θa(α) = min[λ̃, αλ̃]yT (34)

θc(α) = αλ̃yT (35)

Hence, if yT 6= 0, the conditions of theorem 1 are satisfied. Thus sub-optimal coefficients, `, can
be found whose robustness curves cross the robustness curve for the model with the estimated
coefficient, λ̃. We will see examples.

Robustness and probability of success. If yT 6= 0 and if the info-gap model is coherent
with F (u), then the conditions of theorem 2 are satisfied and the robustness is equivalent to the
probability of forecast success.

Furthermore, if yT > 0 and if λT+k in fact cannot be less than λ̃, then the info-gap model
is necessarily coherent with F (u), as we now explain. From eqs.(34) and (35) we conclude that

θc(α) ≥ θa(α). Furthermore, note that δ = (`k − λ̃
k
)yT for k-step forecast. Thus eq.(33) shows

that positive robustness implies that δ − εc < 0. The random variable u is non-negative because
λT+k ≥ λ̃, so f(δ − εc) = 0. Hence if f(u) > 0 for all u ≥ 0, then f(δ + εc) > f(δ − εc). Thus the
info-gap model is necessarily coherent with F (u).

Numerical example. Fig. 2 shows numerical evaluation of the robustness function for the
slope-adjusted forecasting model, eq.(33). The left frame is for 1-step prediction, k = 1, the middle
frame predicts 2 steps ahead, k = 2, and the left frame predicts 3 steps, k = 3. The lowest curve
in each frame is the robustness of the nominal forecaster, ` = λ̃ = 1.05. The slope-adjusted growth
parameter ` increases by 0.05 with each higher curve. The horizontal axis is the satisficed forecast
error, εc, normalized to the nominal forecast value, λ̃

k
yT .

In all three frames we observe the curve-crossing phenomenon. The nominal optimal predictor
has greater robustness than the sub-optimal predictors at low error (small εc), while the sub-optimal
predictors have greater robustness than the nominal predictor at higher error. The analyst must
choose a suitable predictor by considering the trade-off between robustness and forecast-error. In
other words, the analyst must choose between a model with higher robustness at larger εc, or a
model with nonzero robustness at smaller εc.

In the 1-step forecast shown in the left frame, the slope-adjusted predictors are far more robust
than the nominal predictor for all levels of forecast error εc except for very small values. For
instance, consider 5% fractional forecast error, εc/λ̃

k
yT = 0.05. For k = 1 we find that α̂(1.05, εc) =

0.050 (bottom curve), and α̂(1.2, εc) = 0.19 (top curve). That is, at 5% forecast error, the slope-
adjusted forecaster with ` = 1.2 is robust to 19% error in actual realization of the growth coefficient

9



α̂(`, εc)

εc/λ̃yT εc/λ̃
2
yT εc/λ̃

3
yT

Figure 2: Robustness vs. normalized forecast error, eq.(33), for ` = 1.05, 1.1, 1.15, 1.2 from bottom to

top curve. λ̃ = 1.05, yT = 1. k = 1 (left), 2(mid), 3(right).

λT+1, while the nominal forecaster is robust to only 5% error. The slope-adjusted predictor is about
4 times more robust than the nominal predictor.

The middle and right frames show that the robustness premium of the slope-adjusted forecaster,
` > λ̃, compared to the nominal predictor, ` = λ̃, becomes smaller as the horizon of the prediction
increases. For instance, consider the 2-step forecast at normalized prediction error εc/λ̃

k
yT = 0.5.

The robustnesses are α̂(1.2, εc) = 0.34 compared against α̂(1.05, εc) = 0.22. That is, the slope-
adjusted predictor is 50% more robust, but only at 50% prediction error.

The robustness premium of the slope-adjusted predictor is even lower at k = 3. With nor-
malized prediction error εc/λ̃

k
yT = 2.4, we have robustnesses α̂(1.2, εc) = 0.57 compared against

α̂(1.05, εc) = 0.50. The slope-adjusted predictor is only 14% more robust, and only at 240%
prediction error.

4 Multi-Dimensional System

System and uncertainty model. The average system behavior is described by eq.(1), and the
coefficient matrix At is estimated up to time T to be Ã. The uncertainty in future values of At is
represented by the fractional-error info-gap model of eq.(5).

Crossing of robustness curves. For the info-gap model of eq.(5) one can readily derive
θc(α) and θa(α), defined in eqs.(13) and (14). Let sn = 1 if yT,n ≥ 0 and sn = 0 otherwise. Then:

θc(α) = α

N∑
n=1

[vmn(1− sn) + wmnsn] |yT,n|
︸ ︷︷ ︸

τc

(36)

θa(α) = α

N∑
n=1

[wmn(1− sn) + vmnsn] |yT,n|
︸ ︷︷ ︸

τa

(37)

τc and τa are non-negative and determined by the info-gap model and the known value of the last
observed state vector yT . We know their values when the forecast is made, but we cannot influence
them. τc expresses a “coherency” between the info-gap uncertainty about AT+1 and the state
vector yT : the sum in eq.(36) matches upper-envelope weights, wmn, with positive elements of yT ,
and lower-envelope weights, vmn, with negative elements of yT . τa expresses an “anti-coherency”:
wmn’s are matched with negative elements of yT ; vmn’s with positive elements.

10



The conditions of theorem 1 are satisfied if yT 6= 0, so sub-optimal forecast models, eq.(6), exist
whose robustness curves cross the robustness curve of the estimated model. We will demonstrate
this explicitly.

Robustness and probability of forecast success. The info-gap model U(α, Ã) is coherent
with the cpd F (u) at (δ, εc), according to definition 2, if (τc − τa)[f(δ + εc)− f(δ − εc)] > 0. The
further conditions of theorem 2 are guaranteed so that, if coherency holds, then the probability of
forecast success increases with increasing robustness of the forecast model.

For θa(α) and θc(α) in eqs.(36) and (37), and from lemma 2 in section 7.1, we find:

δ×(εc) =
τc − τa

τc + τa
εc (38)

So, if τc 6= τa and if coherency holds, then the probability of forecast success increases with
increasing robustness for |δ| < |δ×|.

Robustness function for 1-step forecast.
We now state explicit expressions for the robustness function for 1-step-forecasts. These results

are derived in section 7.3. Let sgn(x) denote the algebraic sign of x.
δ, defined in eq.(12), depends on the matrix B, it can be positive or negative, and we can

choose its value since we are free to choose B. The sign of δ expresses a coherency between the
last observation, yT , and the difference between the forecasting and estimated models, B and Ã.
δ is positive if Bmn exceeds Ãmn for positive yT,n and if Bmn is less than Ãmn for negative yT,n.
δ will be negative if the reverse correlations dominate.

Define:

τ2 = max{τc, τa}, τ1 = min{τc, τa}, ε× =
τ2 + τ1

τ2 − τ1
|δ|, α̂× =

2|δ|
τ2 − τ1

(39)

-

6

ε×

α̂×

|δ|
0

0

α̂(B, εc)

εc -

6

|δ|
0

0

α̂(B, εc)

εc

Figure 3: Robustness function
of eq.(40).

Figure 4: Robustness function
of eq.(41).

We can now state explicit expressions for the robustness function.
If sgn(δ) = sgn(τc − τa) then (fig. 3):

α̂(B, εc) =





0 εc ≤ |δ|
εc − |δ|

τ1
|δ| ≤ εc < ε×

εc + |δ|
τ2

ε× ≤ εc

(40)

The robustness at the “kink” is α̂×, defined in eq.(39) and shown in fig. 3.
If sgn(δ) 6= sgn(τc − τa) then (fig. 4):

α̂(B, εc) =





0 εc ≤ |δ|
εc − |δ|

τ2
|δ| ≤ εc

(41)

The two solutions converge to one another when τa = τc since the “kink” at (ε×, α̂×) runs out
to infinity.
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-

6

¾ (εs,α̂s)

|δ|

δ=0

δ 6=0

0
0

α̂(B, εc,m)

εc-

6

|δ|

δ=0

δ 6=0

0
0

α̂(B, εc, m)

εc

Figure 5: Robustness function
if sgn(δ) 6= sgn(τc− τa), eq.(41).

Figure 6: Robustness function
if sgn(δ) = sgn(τc− τa), eq.(40).

The advantage of sub-optimal models. Robustness curves are shown again in figs. 5 and 6
for zero and non-zero values of δ. If B is such that sgn(δ) 6= sgn(τc−τa), fig. 5, then the robustness
with δ = 0 (dashed line) exceeds the robustness with B (solid line). Nonetheless, the robustness
vanishes at the anticipated prediction error, which is ε? = 0 for B = Ã. However, we will shortly
see that sgn(δ) 6= sgn(τc − τa) can always be avoided and that greater robustness can always be
obtained.

When B is such that sgn(δ) = sgn(τc − τa), fig. 6, then the robustness curve for δ 6= 0 (thick
lines) crosses the robustness curve for δ = 0 (dashed line). Let (εs, α̂s) denote the point at which
these robustness curves cross. The choice B = Ã will be more robust to future uncertainty in At

than the choice of B whose non-zero δ-value is shown in the figure, for prediction-error aspirations
εc ≤ εs. However, the robustness will also be no greater than α̂s which may be quite small,
depending on the value of δ. If prediction error as small as εs is highly desired and if robustness
no greater than α̂s is adequate, then B = Ã is the predictor of choice. However, a predictor based
on B 6= Ã has greater robustness than B = Ã for any prediction-error εc > εs, and its robustness
will exceed α̂s. Thus, if large robustness is needed and if prediction error in excess of εs (which
may be quite small) can be tolerated, then a sub-optimal forecast model, B 6= Ã, will be preferred.

Finally, let us note that δ is freely chosen, while τa and τc are observed but not controlled.
Comparison of eqs.(40) and (41) shows that, for any εc > |δ|, greater robustness is always obtained
by choosing sgn(δ) = sgn(τc−τa), eq.(40), rather than sgn(δ) 6= sgn(τc−τa), eq.(41). Furthermore,
for any εc > 0, greater robustness is obtained with δ 6= 0 which has been chosen so that εs < εc,
where εs is shown in fig. 6. In short, a sub-optimal forecasting model, B 6= Ã, can always be chosen
with greater robustness than the estimated model, B = Ã. This is the gist of theorem 1.

Date Interest Implied
rate λ

1 Jan 1999 4.50
9 Apr 1999 3.50 0.778
5 Nov 1999 4.00 1.143
4 Feb 2000 4.25 1.063

17 Mar 2000 4.50 1.059
28 Apr 2000 4.75 1.056
9 Jun 2000 5.25 1.105

28 Jun 2000 5.25 1.000
1 Sep 2000 5.50 1.048
6 Oct 2000 5.75 1.045

11 May 2001 5.50 0.957
31 Aug 2001 5.25 0.955

Table 1: Interest rates for overnight loans at the European Central Bank (marginal lending facility).
Source: http://www.ecb.int/stats/monetary/rates/html/index.en.html
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5 Example: European Central Bank Interest Rates

Table 1 shows historical values of interest rates for overnight loans (marginal lending facility) from
the European Central Bank (ECB) to commercial banks for the period from 1999 (when the ECB
started making euro loans) until August 2001. Typically, the ECB changes its rate by 25 basis
points (100 basis points = 1 percent) though changes as large as 50 or 100 basis points are observed.
Furthermore, the 14 months from June 2000 to August 2001 show more than usual stability, with
a mean rate of 5.4% and a standard deviation of only 0.19%.

Now consider the forecasting problem on September 12th, 2001, one day after the al-Qaida
attack in the US and before the next interest-rate announcement. Economic reasoning suggests
that interest rates will go down in order to counteract anticipated economic contraction resulting
from the terror attacks. But by how much? How should the forecaster choose, and justify, the
forecast?

We will describe the evolution of the interest rate with the 1-dimensional system in eq.(30).
The estimated transition coefficient based on the observed behavior of the ECB from June 2000
to August 2001 is λ̃ = 1. Our forecast will be based on the slope-adjusted model of eq.(32). It
is likely that the ECB will reduce the interest rate, so that λT is expected to be less than λ̃ and
the forecast should use a value of ` in eq.(32) less than λ̃. Use the info-gap model of eq.(5) for
uncertainty in λT with w = 0 and v = λ̃:

U(α, λ̃) =
{

λT : (1− α)λ̃ ≤ λT ≤ λ̃
}

, α ≥ 0 (42)

The horizon of uncertainty, α, is the unknown fractional error in λ̃ as an estimate of the transition
coefficient for the next announced interest rate.

The last observed interest rate, yT = 5.25, is positive so we find, from eqs.(36) and (37),
τa = λ̃yT and τc = 0. From eq.(12) we find δ = (`− λ̃)yT < 0. From eq.(39) we have ε× = (λ̃−`)yT

and α̂× = 2(λ̃− `)/λ̃. Eq.(40) applies (note that |δ| = ε×) so the robustness is:

α̂(`, εc) =





0 εc < ε×

εc

λ̃yT

+
λ̃− `

λ̃
ε× ≤ εc

(43)

This robustness function shows the same dis-continuity and curve-crossing behavior observed in
fig. 2. Namely, ` < λ̃ is more robust than λ̃ for positive estimation error.

How should the analyst choose, and explain, the sub-optimal forecast coefficient `? The choice
will depend on both the robustness-to-uncertainty which the analyst requires, α̂d, and the accept-
able estimation error εc.

Table 1 shows values of λ implied by each interest rate change, evaluated as the ratio of new to
previous interest rate.2 The mean and standard deviation of the implied λ over all the observations
are 1.047 and 0.093, while the mean and standard deviation over the past five observations are
1.001 and 0.041. Robustness to 10% variation in λ would seem fairly safe, so one might adopt
α̂d = 0.1.

In order to forecast the next announced interest rate, we invert eq.(43) to find `:

` =
(

1 +
εc

λ̃yT

− α̂d

)
λ̃ (44)

Requiring fractional forecast error εc/λ̃yT = 0.02 and adopting α̂d = 0.1, we choose ` = 0.92
resulting in a forecasted interest rate ys

T+1 = `yT = 4.83. This is a reasonable interest rate,
which an informed observer of the ECB might select based only on contemplation of the out-
of-data evidence (the 9/11 al-Qaida attacks). However, the info-gap robust-satisficing forecast
guarantees that the fractional forecast error will be no greater than 0.02 for errors up to 10% in
the historical estimate of λ. More generally, the analyst chooses the forecasting model (`) in light
of the performance which is required of the forecast (εc and α̂d).

2The announcement intervals are not uniform. This will not impact our analysis which will be based on the last
six announcements which are very nearly constant.
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In fact the ECB announced an interest rate of 4.75 on September 18th, 2001. Thus the fractional
forecast error was |4.83 − 4.75|/5.25 = 0.015. An informed observer of the ECB may well have
predicted this value without any quantitative analysis. The purpose of this simple example is to
illustrate the procedure for constructing an info-gap model and using a robustness function to
make a forecast with specified robustness to uncertainty and specified prediction-error.

6 Summary

We have used info-gap decision theory to implement a robust-satisficing approach to forecasting
the future behavior of a system whose trajectory evolves in unknown ways over time, and about
which some limited out-of-data contextual knowledge is available. We consider linear discrete-time
systems, and use info-gap models to represent uncertainty in the future time-varying transition
matrix. Our theorems are true for general info-gap models, requiring only the properties of nesting
and contraction. The forecaster requires the average forecast of a specific state variable to be
within a specified interval around the correct value.

Our first theorem asserts that models with sub-optimal fidelity to historical data can, as fore-
casters, be more robust to future uncertainty in the system model than models with optimal fidelity
to data. More specifically, for any positive forecast error, εc, there exist sub-optimal models which
can guarantee forecast error no greater than εc for a larger range of future transition matrices than
the historically optimal model. The theorem indicates how such models can be constructed. We
have not explored the important question of finding sub-optimal models with maximum robustness.
Nor have we explicitly considered error in the dimension of the model, but only error in the future
values of the time-varying transition matrix. However, uncertain dimensionality can be analyzed
with our method by allowing uncertain variation of rows and columns which are strictly zero in
the estimated transition matrix. We have not considered uncertain non-linearities.

Our second theorem identifies conditions in which the probability of forecast success increases
with increasing robustness to model error. The theorem is based on the idea of “coherency” between
the info-gap model of uncertainty in the transition matrix, At, and the unknown probability density,
f(u), of a particular scalar function of At. The info-gap model is constructed to represent an infinity
of possible future trends in At. Coherency holds if the sign of θc(α) − θa(α), which depends on
the info-gap model but not on f(u), corresponds to a particular skewness of f(u). That is, the
theorem asserts that, if the info-gap model captures a particular weak feature of the unknown pdf
of At, then info-gap robustness is positively correlated with the probability of forecast success.

Combining these two theorems we see that, in well defined circumstances, we can identify models
which have sub-optimal fidelity to historical data and yet have greater probability of forecast success
than optimal-fidelity models.

7 Proofs

7.1 For Section 2

Proof of lemma 1. (1) U(α, Ã) obeys the nesting axiom so Uk(α, Ã
k
) becomes more inclusive

as α increases. Hence Uk(α, Ã
k
) obeys nesting. (2) U(α, Ã) obeys the contraction axiom so

U(0, Ã) = {Ã}. Hence Uk(0, Ã
k
) = {Ãk} so Uk(α, Ã

k
) obeys contraction.

Lemma 2 Given: a non-negative εc and at least one of the functions θa(α) and θc(α) is contin-
uous and unbounded.

Then δ×(εc) and α×(εc) are finite and satisfy:

εc =
θa(α×) + θc(α×)

2
(45)

δ× =
θc(α×)− θa(α×)

2
(46)

Proof of lemma 2. The assumption about unboundedness and the nesting and contraction
axioms imply that θa(0) = θc(0) = 0 and at least one of them increases with increasing α. Since
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εc ≥ 0 and either θa(α) or θc(α) is continuous and unbounded, there is a non-negative α× which
satisfies eq.(45). With this α×, define δ× from eq.(46). It is readily shown that this α× and δ×
satisfy eqs.(18) and (19).
Proof of theorem 1. We prove the theorem for the case that:

θa(α) ≥ θc(α) (47)

The proof for the reverse inequality is essentially the same.3

The nesting axiom implies that θa(0) = θc(0) = 0. Since εc > 0 and θa(α) and θc(α) are
continuous and at least one is unbounded there is a positive α which satisfies:

θa(α) + θc(α)
2

= εc (48)

Call the largest such value α×. Now define:

δ =
θc(α×)− θa(α×)

2
(49)

which, by eq.(47), is not positive. From lemma 2 we see that δ in eq.(49) equals δ×(εc) which, by
supposition, is not zero. Thus δ < 0. Also: −δ < εc. From the definition of δ in eq.(12), and since
yT 6= 0, we see that one can construct a matrix B, different from Ã, for which the value of δ is
given by eq.(49).

For δ in eq.(49) we find:
δ + θa(α×) = εc = −δ + θc(α×) (50)

Thus from eq.(15) and (50) we find that α̂(B, εc) is the solution for α× of:

δ + θa(α×) = εc (51)

Recall that δ = 0 when B = Ã. Thus, from eqs.(15) and (47) we find that α̂(Ã, εc) is the solution
for α of:

θa(α) = εc (52)

Since εc − δ > εc and θa(α) is continuous and unbounded we conclude that there exist solutions
to eqs.(51) and (52), and that the solution of eq.(51) exceeds the solution of eq.(52). This proves
eq.(20).

Lemma 3 Given: At least one of the functions θa(α) and θc(α) is continuous and unbounded.
Then:

θc(α) ≥ θa(α) for all α > 0 if and only if δ×(εc) ≥ 0 for all εc ≥ 0 (53)

Proof of lemma 3. The lemma results directly from eq.(46).

Lemma 4 Given: yT is not identically zero, εc is non-negative, and the functions θa(α) and
θc(α) are continuous and at least one of them is unbounded. Then, for any δ for which α̂(B, εc)
is positive:

dα̂(B, εc)
dδ

< 0 if δ > δ×(εc) (54)

dα̂(B, εc)
dδ

> 0 if δ < δ×(εc) (55)

Proof of lemma 4. (1) Examination of the definition of δ in eq.(12) shows that, since yT 6= 0,
one can construct a matrix B to obtain any desired value of δ.

From the nesting axiom we see that θa(α) and θc(α) cannot decrease as α increases. That is,
θa(α) and θc(α) have non-negative slopes.

From lemma 2, δ×(εc) and α×(εc) exist. From eqs.(18) and (19) recall that:

θa(α×) + δ× = εc = θc(α×)− δ× (56)
3The differences are minor: δ, defined in eq.(49), is positive and less than εc. Then, use −δ+θc(α×) = εc instead

of eq.(51). Finally, use εc + δ > εc following eq.(52).
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(2) Suppose δ < δ×(εc). Suppose there exists an α1 value for which:

θa(α1) + δ = εc (57)

Since θa(α) has non-negative slope, we see from eq.(56) any such α1 must satisfy:

α1 > α×(εc) (58)

Likewise, from eq.(56) and since θc(α) is continuous with non-negative slope, if there exists an α2

value for which:
θc(α2)− δ = εc (59)

then:
α2 < α×(εc) (60)

Now recall the formulation of the robustness function in eq.(15), and that θa(α) and θc(α) are
continuous. Eqs.(58) and (60) imply that α2 < α1 so that eq.(59) is the binding constraint and
the robustness is the greatest α satisfying:

θc(α)− δ ≤ εc (61)

From this it results that the robustness increases as δ increases because θc(α) has non-negative
slope, which proves eq.(55).

(3) Suppose δ > δ×(εc). Suppose there is an α2 satisfying:

θc(α2)− δ = εc (62)

Since θc(α) has non-negative slope, we see from eqs.(56) and (62) that any such α2 must satisfy:

α2 > α×(εc) (63)

Likewise, from eq.(56) and because θa(α) is continuous with non-negative slope, if there exists a
value of α1 such that:

θa(α1) + δ = εc (64)

then:
α1 < α×(εc) (65)

Recall the robustness function in eq.(15), and that θa(α) and θc(α) are continuous. Eqs.(63) and
(65) imply that α1 < α2 so that eq.(64) is the binding constraint and the robustness is the greatest
α satisfying:

θa(α) + δ ≤ εc (66)

From this it results that the robustness decreases as δ increases because θa(α) is continuous with
non-negative slope, which proves eq.(54).
Proof of theorem 2.

1. We first consider eq.(28). From eq.(25) and the assumed coherency of U(α, Ã) with F (u)
for this δ we have:

θc(α) ≥ θa(α) for all α > 0 if and only if
dPs(B)

dδ
> 0 (67)

with strict inequality for some α.
To complete the proof we must show that, for this δ:

dα̂(B, εc)
dδ

> 0 (68)

if and only if:
θc(α) ≥ θa(α) for all α > 0 (69)

with strict inequality for some α.
1.1 Suppose that eq.(69) holds. Thus lemma 2 implies that δ×(εc) ≥ 0. Hence |δ| < |δ×(εc)|

implies that δ < δ×(εc). Now eq.(55) of lemma 4 implies eq.(68).
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1.2 Suppose that eq.(68) holds. Hence lemma 4 implies that the δ-value in eq.(68) satisfies:

δ ≤ δ×(εc) (70)

Thus, since |δ| < |δ×(εc)|, we conclude that δ×(εc) > 0. From lemma 2 we conclude that θc(α×)−
θa(α×) > 0. Hence, since the sign of θc(α) − θa(α) is constant for all α > 0, we conclude that
eq.(69) holds.

2. We now consider eq.(29). From eq.(25) and the assumed anti-coherency of U(α, Ã) with
F (u) for this δ we have:

θc(α) ≥ θa(α) for all α > 0 if and only if
dPs(B)

dδ
< 0 (71)

with strict inequality for some α.
To complete the proof we must again show that eqs.(68) and (69) are equivalent. The argument

in step 1.2 is still valid, which completes the proof of the theorem.

7.2 For Section 3: Derivation of Eq.(33)

Let M(α) denote the inner maximum in the definition of the robustness, eq.(9). The info-gap
model U(α, Ã) becomes more inclusive as α increases, thus M(α) increases with increasing α. The
robustness is the greatest value of α at which M(α) ≤ εc. Thus the robustness is the greatest α
which satisfies M(α) = εc. In other words, at any fixed `, if M(α) is strictly increasing in α, then
M(α) is the inverse of the robustness function α̂(`, εc):

M(α) = εc implies α̂(`, εc) = α (72)

At horizon of uncertainty α, each coefficient λT+i of the info-gap model in eq.(31) varies in the
interval λ̃ ≤ λT+i ≤ (1 + α)λ̃. The absolute maximum forecast error at horizon of uncertainty α,
M(α), is obtained at one of the extremes: either λT+i = λ̃ or λT+i = (1 + α)λ̃ for all i = 1, . . . , k,
whichever is greater:

M(α) = max
{

(`k − λ̃
k
)yT , [(1 + α)kλ̃

k − `k]yT

}
(73)

From this we find:

M(α) =





(`k − λ̃
k
)yT if 0 ≤ α <

(
2`k

λ̃k
− 1

)1/k

− 1

[(1 + α)kλ̃
k − `k]yT if

(
2`k

λ̃k
− 1

)1/k

− 1 < α

(74)

Inverting M(α) we obtain eq.(33).

7.3 For Section 4: Derivation of Eqs.(40) and (41)

We now derive the robustness function for 1-step forecasts, eqs.(40) and (41).
The 1-step prediction error for the mth state variable is given in eq.(21). The 1-step robustness

can be written:

α̂(B, εc) = max

{
α : max

AT+1∈U(α,Ã)

N∑
n=1

[AT+1]mn yT,n ≤ εc +
N∑

n=1

BmnyT,n

and min
AT+1∈U(α,Ã)

N∑
n=1

[AT+1]mn yT,n ≥ −εc +
N∑

n=1

BmnyT,n

}
(75)

At horizon of uncertainty α in the info-gap model of eq.(5), the inner maximum in eq.(75) is
obtained with the following choice of [AT+1]mn:

[AT+1]mn =

{
Ãmn − αvmn if yT+1,n < 0

Ãmn + αwmn if yT+1,n ≥ 0
(76)
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As before define sn = 1 if yT,n ≥ 0 and sn = 0 otherwise. The inner maximum in eq.(75) becomes:

max
AT+1∈U(α,Ã)

N∑
n=1

[AT+1]mn yT,n =
N∑

n=1

ÃmnyT,n + α

N∑
n=1

[vmn(1− sn) + wmnsn] |yT,n|
︸ ︷︷ ︸

τc

(77)

where τc is the “coherency” between the last measurement, yT , and the info-gaps in AT+1, defined
in eq.(36).

Similarly, at horizon of uncertainty α, the inner minimum in eq.(75) is obtained with the
following choice of [AT+1]mn:

[AT+1]mn =

{
Ãmn − αvmn if yT+1,n ≥ 0

Ãmn + αwmn if yT+1,n < 0
(78)

The inner minimum in eq.(75) becomes:

min
AT+1∈U(α,Ã)

N∑
n=1

[AT+1]mn yT,n =
N∑

n=1

ÃmnyT,n − α

N∑
n=1

[wmn(1− sn) + vmnsn] |yT,n|
︸ ︷︷ ︸

τa

(79)

where τa is the “anti-coherency” between yT and the info-gaps in AT+1, defined in eq.(37).
Recalling the definition of δ in eq.(12), eqs.(75), (77) and (79) can be combined as:

α̂(B, εc,m) = max
{

α : α ≤ εc + δ

τc
and α ≤ εc − δ

τa

}
(80)

We are now ready to explain eq.(40) and then eq.(41). We must consider 4 cases.
τc > τa and δ ≥ 0, shown in fig. 7. The thin lines show the two linear constraints which α

must obey in eq.(80). The heavy line is the intersection of these constraints and thus defines the
robustness, which is eq.(40) for this choice of δ.

τc < τa and δ ≤ 0, shown in fig. 8. Once again the thin lines show the two linear constraints
which α must obey in eq.(80). The heavy line is the intersection of these constraints and thus
defines the robustness, which is again eq.(40) for this choice of δ.

τc > τa and δ ≤ 0, shown in fig. 9. The thin lines show the two linear constraints which α must
obey in eq.(80). The right-most line is the intersection of these constraints and thus defines the
robustness, which is eq.(41) for this choice of δ.

τc < τa and δ ≥ 0, shown in fig. 10. Again the thin lines show the two linear constraints which
α must obey in eq.(80). The right-most line is the intersection of these constraints and thus defines
the robustness, which is again eq.(41) for this choice of δ.
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Figure 7: Robustness function
for τc > τa and δ ≥ 0.

Figure 8: Robustness function
for τc < τa and δ ≤ 0.
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Figure 10: Robustness function
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