The Innovation Dilemma Uncertainty and Economic Policy

Yakov Ben-Haim Technion Israel Institute of Technology

Outline

Innovation dilemma: Definition and examples.

Severe uncertainty:

- The idea of an info-gap.
- Shackle-Popper indeterminism.

Info-gap robust satisficing:

Resolving the dilemma.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

Innovation dilemma: The Idea

Choose between 2 options:

- Option 1: (paradigm: new technology)
- New and innovative.
- Very promising.
- Higher uncertainty.

Option 2: (paradigm: standard procedure).

- State of the art.
- Less promising.
- Lower uncertainty.

Dilemma due to uncertainty.

Innovation dilemma: Examples

Automobile steering and collision control:

- Autonomous sensor-based computer control (innov).
- Human steering and foot-break system (SotA).

Monetary policy:

- New tools for new situations (innov).
- "A little stodginess at the CB" (Blinder) (SotA).

Peace or War:

- Bold diplomatic initiative (Sadat to Jerusalem, '77) (innov).
- Conventional diplomatic-military cycle (SotA).

Risk taking or avoiding:

- Nothing ventured, nothing gained (innov).
- Nothing ventured, nothing lost (SotA).

Outline

✓ Innovation dilemma: Definition and examples.

Severe uncertainty:

- The idea of an info-gap.
- Shackle-Popper indeterminism.

Info-gap robust satisficing:

Resolving the dilemma.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

Risk and Uncertainty

Probabilistic risk or **Knightian "true uncertainty"**

Probabilistic Risk

Probability Consequence

Stochastic process Drought

Actuarial tables Industrial accident

Historical data Tsunami

Quality control data Faulty air filters

Sociological data Deception, scam

Risk is:

- Structured: known event space
- Modeled with probability
- Manageable (but still risky)

Frank Knight's "true uncertainty"

"The uncertainties which persist ... are uninsurable

> because there is no objective measure of the probability".

Wheeler's Island

"We live on an island of knowledge surrounded by a sea of ignorance. As our island of knowledge grows, so does the shore of our ignorance." John A. Wheeler

Discovery

- America
- Nuclear fission
- O Martians (not yet?)

- **Discovery**
- Invention/Innovation
 - Printing press: material invention.
 - Ecological responsibility: conceptual innovation.
 - French revolution: social innovation.

- **Discovery**
- Invention/Innovation
- S Surprise (Asymmetric uncertainty)
 - Ambush
 - Competitor's innovation
 - Natural catastrophe

- Discovery
- Invention/Innovation
- S Surprise (Asymmetric uncertainty)

What's the next D I or S ???

Knightian uncertainty:

- Unstructured: unknown event space.
- Indeterminate: no laws.
- Barely manageable.

Info-gap uncertainty: examples

- Transcendental probability.
- ECB interest rate.
- Phillips curve.
- Many more (info-gap.com).

Carroll's Transcendental Probability

Riddle from *Pillow Problems*:

"A bag contains 2 counters, as to which nothing is known except that each is either black or white. Ascertain their colours without taking them out of the bag."

Answer: "One is black, and the other white."

Charles Dodgson

ECB Interest rate after 9/11

Rate fairly constant through Aug 2001.

After 9/11 ECB will reduce the rate.

Info-gaps:

- By how much will ECB reduce interest?
- What is ECB decision model?

Phillips Curve

Linear? Quadratic?

Info-gaps: data, processes, functional relations.

Inflation vs unemployment US, '61-'67.

Inflation vs unemployment US, '61-'93.

Info-gap:

Disparity between what one

does know

and what one

needs to know

in order to make a

responsible decision.

Two elements: uncertainty and consequence.

Distinct from probability.

Role a fair dice:

- Equal probabilities of 1, ..., 6.
- Known event space; known likelihoods.

Response to next financial crisis. The event space?

- 2 events: Either collapse or not.
- 8 events: collapse or not, short or long, local or global.
- More possibilities.
- Rolling an N-sided dice, but:
 - Unknown event space; unknown likelihoods.

Probabilistic thinking sometimes useful:

- Israel 1984 inflation: 450% and growing.
- Moda'i/Bruno 5-point consensus plan: Budget cuts, wage and price control, ILS devalued and forex rigid, no ILS printing.
- Stabilization likely.
- Hence "No stabilization" unlikely.

Binary logic:

- Proposition either true or false.
- Excluded middle: proposition can't be both T and F.

Probability applies excluded middle to uncertainty:

Proposition can't be both 'likely' and 'unlikely'.

In economics we can't always exclude the middle.

Example: Policy based on regressing inflation vs employment.

- Theory-based structural trade off. Historical evidence.
 - Likely basis for policy success.
- Lucas critique:
 - Agents' responds to policy.
 - Agents' response uncertain.
 - **Unlikely** basis for policy success.

The policy maker faces an info-gap.

- Ignorance or ambiguity or potential for surprise.
- Two elements: uncertainty and consequence.
- Distinct from probability.
- In human affairs, info-gaps result from Shackle-Popper indeterminism.

Shackle-Popper indeterminism

GLS Shackle, 1903-1992

Karl Popper, 1902-1994

Shackle-Popper Indeterminism

Intelligence:

What people know, influences how they behave.

Discovery:

What will be discovered tomorrow can't be known today.

Implies

Indeterminism:

Tomorrow's behavior can't be fully modelled today.

- Info-gaps, indeterminism: unpredictable.
- Ignorance is not probabilistic.

Outline

- ✓ Innovation dilemma: Definition and examples.
- **✓** Severe uncertainty:
 - The idea of an info-gap.
 - Shackle-Popper indeterminism.

Info-gap robust satisficing:

Resolving the dilemma.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

1. Satisficing: Achieving critical outcomes.

- Essential goals.
- Worst acceptable outcomes.
- Modest or ambitious.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?
- 1. Satisficing: Achieving critical outcomes.
- 2. Robustness: Greatest tolerable error.
 - Immunity to ignorance.
 - Greatest tolerable error or surprise.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?
- 1. Satisficing: Achieving critical outcomes.
- 2. Robustness: Greatest tolerable error.

Optimize robustness; satisfice goals:

Procedural (not substantive) optimization.

Outline

- ✓ Innovation dilemma: Definition and examples.
- **✓** Severe uncertainty:
 - The idea of an info-gap.
 - Shackle-Popper indeterminism.
- ✓ Info-gap robust satisficing:

Resolving the dilemma.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

Collaborators:

- Maria Demertzis (Bruegel).
- Jan Willem Van den End (DNB).

The question:

Include financial stability objectives in monetary policy?

Or

Leave financial stability to macro-prudential policy?

Method: Info-gap robustness analysis.

Model of economic dynamics, M:

- Inflation gap, π_t .
- Output gap, y_t .
- Other variables.
- Loss function $L(\pi_t, y_t)$.
- 4 Policy rules:
 - R0: benchmark. Standard macro, aggregate demand, Phillips curve, traditional Taylor rule.
 - R1: R0 + monetary policy reacts to financial stress.
 - R2: R0 + financial imbalance and debt in demand curve.
 - R3: full model; all of the above.

Uncertainties:

- Model coefficients, c.
- Shock amplitudes, ε_t .
- Shock times, t_s .

Info-gap model of uncertainty, *U(h)*:

- Unbounded family of nested sets of c, ε_t , t_c .
- No known worst case. Unbounded horizon of uncertainty.
- No probabilistic information.

Robustness combines:

- **Performance requirement:** loss, *L*, acceptably small.
- **System model** of economic dynamics, *M*.
- Uncertainty model, U(h).

Robustness. Maximum tolerable uncertainty:

Maximum horizon of uncertainty, h, such that **Performance requirement** on L satisfied by

System model *M* for all realizations in

Uncertainty model U(h).

Robustness curve (R3):

- Performance requirement: Horizontal axis.
- Robustness: vertical axis.
- Trade off (pessimist's thm): Robustness vs performance.
- Zeroing: No robustness at predicted outcome.
- Time horizon: reduces robustness.

Robustness: 4 policy rules.

- Trade off, zeroing: all 4 rules.
- **RO** Robust dominant at $t_1 + 1...$
- Robustness decreases with time.
- Innovation dilemma at t_1 : Preference reversal of R0, R2.
- Resolution of innov. dilemma:
 - Maximize robustness.
 - Satisfice loss.

Monetary policy selection

Conclusions:

- R0 more robust at $t_1 + 1...$: Less true; less vulnerable to error. Simple rule more robust (usually).
- Robustness decreases with time.
- Innovation dilemma at t_1 : Preference reversal of RO, R2. Simple rule not always more robust.

Innovation dilemma of poverty

Rural poverty:

- Low agricultural productivity.
- High mortality/morbidity.
- Resentment and suspicion of government and NGOs.
- Local barons or warlords.

Innovative hi-tech proposal:

- New strains of plants.
- Better irrigation.
- Better fertilizers.
- Mechanization of field work.

Innovation dilemma of poverty

Potential gains from innovation:

- Higher agricultural productivity.
- Higher standard of living.
- Less arduous field work.

Potential losses from innovation:

- Failure of innovative crops, causing starvation.
- Social reorganization and upheaval.
- Rapid population growth, canceling gains (Malthus).

Dilemma: Innovation could be much better, or much worse.

How to choose?

Innovation dilemma of poverty

Basic questions:

- What are the goals?
- What is our knowledge?
- What are the uncertainties?

Robustness of an option:

Maximum tolerable uncertainty.

The knowledge-bifurcation. Is your knowledge:

- Quantitative: data and equations?
- Qualitative: mainly insight and understanding, (perhaps with some numbers)?

We will consider both situations.

Field study of traditional State of the Art:

- Survival requirement: 1171 kg wheat/ha.
- Probability dist. of productivity well known.
- Survival probability: 0.95 (known).
- Survival catastrophe return-time: 20 years (known).

Knowledge about innovative option:

- Probability distribution of productivity estimated, uncertain.
- Survival probability: 0.9967 (estimate).
- Survival catastrophe return-time: 303 years (estimate).

The choice is clear?

Uncertainty of innovative option:

- Prob. distribution of productivity: estimated.
- True tail (rare but bad): highly uncertain.
- Survival probability & catastrophe return-time may be much worse than for SotA.

Robustness of an option: How much error can we tolerate? Greatest uncertainty at which current **knowledge** satisfies the survival **requirement**.

Robust prioritization: Innovation or SotA?

- Maximize robustness, satisfice outcome.
- Don't try to optimize the outcome.

Robustness of innovative option:

Pessimist's thm. Trade off:

Higher survival prob > lower robustness

Zeroing: No robustness at

estimated survival probability.

Robustness of SotA:

- Unbounded for survival probability up to 0.95.
- Zero for survival probability above 0.95.

Decision: Choose by robustly satisfying the requirement.

Summary of quantitative analysis of innov. dilemma:

- Zeroing: no robustness at estimated survival prob.
- Optimizer's fallacy: Prioritize by estimates.
- Trade off: robustness vs survival probability.
- Preference reversal: Resolution of dilemma.

Now for the hard part:

Qualitative analysis of robustness.

Robustness:

- We can't evaluate it quantitatively.
- Assess it qualitatively with proxies for robustness:
 - Resilience: rapid recovery of critical functions.
 - Redundancy: multiple alternative solutions.
 - Flexibility: rapid modification of tools and methods.
 - Adaptiveness: adjust goals and methods online.
 - Comprehensiveness: interdisciplinary system-wide coherence.

Basic questions:

- What are the goals?
- What is our knowledge?
- What are the uncertainties?

Bernard Amadei: girl water carriers.

- Goal: more potable water.
- Knowledge: Abundant fuel. Pump tech. Local culture.
- Uncertainties:
 - Long-term maintenance? Catastrophe if not.
 - Stable fuel supply?
 - Social response: what happens to the girls?

Robust solution:

- Satisfice the goal. Don't try to maximize. (Exploit trade off)
- Co-design: local involvement in all stages (comprehensive).
- Train locals in pump maintenance (resilience, flexibility).
- Transition period of dual supply (redundancy).
- Long-term contact for emergency support (adaptiveness).
- **Education** for girls (and boys) (comprehensiveness).
- Quantitative analysis where possible.

Methodological re-cap:

- Trade off: higher ambition = lower robustness. Ambitions: Yes. Wishful thinking: No.
- Zeroing: Best-estimated outcomes have no robustness.
- Satisfice your goals. Optimize your robustness. Don't try to maximize the outcome.
- Preference reversal: sub-optimal may be more robust. Wood burning steam pump more robust to uncertainty than solar electric technology.

Last words

Innovation dilemma: New is promising but more uncertain.

Severe uncertainty:

- The idea of an info-gap.
- Shackle-Popper indeterminism.

Info-gap robust satisficing:

Satisfice the goals, optimize the robustness.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

Questions?