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Interpreting Null Results from

Measurements with Uncertain Correlations:

An Info-Gap Approach
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Abstract

Null events—not detecting a pernicious agent—are the basis for declaring the agent is absent.
Repeated nulls strengthen confidence in the declaration. However, correlations between observations
are difficult to assess in many situations and introduce uncertainty in interpreting repeated nulls. We
quantify uncertain correlations using an info-gap model, which is an unbounded family of nested sets
of possible probabilities. An info-gap model is non-probabilistic and entails no assumption about a
worst case. We then evaluate the robustness, to uncertain correlations, of estimates of the probability
of a null event. This is then the basis for evaluating a non-probabilistic robustness-based confidence
interval for the probability of a null.
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1 Introduction

“No news is good news” applies to situations where one has searched diligently for a pernicious agent
and not found it. In monitoring programs for verifying the eradication of an invasive species (Regan
et al. 2006, Moffitt et al. 2008, Rout et al. 2009) a long series of null measurements is taken as
strong evidence of absence. In monitoring the spread of an infectious disease such as SARS, mad-cow
disease or influenza, the absence of cases indicates actual absence of the disease from the monitored
population. In port-of-entry monitoring for detecting weapons or explosives (Moffitt et al. 2005),
“no news” suggests that deterrent measures have been effective.

No news is good news provided that the null measurements are sufficiently numerous and inde-
pendent of each other. This requires knowledge of the degree of correlation among the measurements.
If a null measurement enhances the probability that subsequent measurements will also be null (re-
gardless of the objective situation), then lots of “no news” is little or no “news” at all.

Correlations among purportedly independent measurements can arise by many mechanisms.
Searches are often performed by humans, or at least with an essential human element. Both

positive and negative correlations among measurements can result from a “self-fulfilling prophecy”
(SFP) as we now elucidate. The “prophecy” does not have to be explicit or conscious; it can be
subliminal or implicit.

Positive correlations between measurements are induced by SFPs such as “Everybody has found
one, so we must find one.” Over-reporting of rare species when monitoring the decline of a population
can occur unless strict observational protocols are used (such as bringing in physical specimens and
not relying on visual sightings). For instance, Franklin (1999) uses a range of observational data
from many different sources over the past 150 years—of varying accuracy and reliability—to evaluate
change in bird assemblages in northern Australia. Some of these sources were trained biologists,
though professional protocols changed over the sampling period. Some observers were casual or
untrained observers who may exert less effort, and thus miss the rare events, or who are enthusiastic
in the search for rare occurrences and may systematically over-report extreme observations. While
historical observational data are an important and valuable source, it is difficult to verify that the
assumption of independence is not violated.
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Positive correlations can also be induced by SFPs such as “Nobody has found one, so there prob-
ably aren’t any.” Boredom, over-confidence and inter-personal dynamics are perpetual challenges in
monitoring rare events. Redundancy of human inspection and supervision is a key tool in clinical
safety (Vincent 2006). However, the “[q]uantification of error is the most difficult aspect” of human
reliability analysis (Lyons et al. 2004, p.231). Correlations among observations by different individ-
uals are very hard to measure, and may be either positive or negative depending on inter-personal
relations.

Negative correlations can also be induced by SFPs. Thoughts such as “Everybody has already
found one, so we needn’t look too hard”, or “Nobody has found one, so we’d better find one” will
both result in negative correlations among measurements.

We have discussed mechanisms relating to the searcher, but SFPs of various sorts can act, either
explicitly or implicitly, on the potential target.

Positive correlation among measurements can result from motivational reasoning by the target
such as “They haven’t found us yet and we sure won’t let them find us now” or “They find us
wherever we are. What’s the use?”. These mechanisms can operate even without volition on the
part of the target if the search process itself either enhances or diminishes the vulnerability of the
target. Searches which tend to flush out the target will have positive correlation, while searches
which tend to drive the target away will induce negative correlation.

Likewise, negative correlations can result from SFPs in the target population such as “They
have begun to find us. We must hide better”. An example is landowners who preemptively destroy
habitat for an endangered species in order to avoid potential land-use regulations prescribed under
the Endangered Species Act (Lueck and Michael, 2003). The converse motivation may also operate
on a target, such as “They have never found us. We needn’t hide so well”.

The point of this discussion is that prevention of correlations among measurements requires
careful design and control of the measurement protocol and conditions. This in turn depends on
knowledge of both the target and the monitor. In situations such as emerging diseases, intelligent
adversarial targets, or human observation under stress or repetition, this knowledge may be deficient.
Indeed, the monitoring may be intended to detect new and unknown threats. When this is the case,
the interpretation of a string of null results must account for uncertainty in correlation between the
measurements.

When this uncertainty can be modeled probabilistically then standard statistical tools such as
Bayesian inference or confidence intervals can be used. However, we consider situations in which prob-
abilistic information is deficient. Consequently we employ a non-probabilistic concept of robustness
to ignorance.

‘Robustness’ has many meanings. As we will use it, the concept of robustness derives from a prior
concept of non-probabilistic uncertainty. Knight (1921) elaborated on the distinction between ‘risk’
based on known probability distributions and ‘true uncertainty’ for which probability distributions
are not known. We are concerned with robustness against Knightian uncertainty.

Wald (1945) studied the problem of statistical hypothesis testing based on a random sample whose
probability distribution is not known, but whose distribution is known to belong to a given class of
distribution functions. Wald states that “in most of the applications not even the existence of . . . an
a priori probability distribution [on the class of distribution functions] . . . can be postulated, and in
those few cases where the existence of an a priori probability distribution . . . may be assumed this
distribution is usually unknown.” (p.267). Wald introduced a loss function expressing the “relative
importance of the error committed by accepting” one hypothesized subset of distributions when a
specific (though unknown) distribution in fact is true. (p.266). He notes that “the determination
of the [loss function] is not a statistical question and is considered here as given.” (p.266). Wald
developed a decision procedure which “minimizes the maximum . . . of the risk function.” (p.267).

Many engineering researchers, beginning in the 1960s, developed estimation and control algo-
rithms for linear dynamic systems based on sets of inputs. Schweppe (1973) for instance develops
inference and decision rules based on assuming that the uncertain phenomenon can be quantified in
such a way as to be bounded by an ellipsoid, with no probability function involved.
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This paper uses info-gap theory which builds on this tradition of non-probabilistic robustness
concepts.

Our aim is to estimate the probability of absence based on a series of null results, and to rule out
values less than the estimate at specified level of significance. Many statistical methods have been
proposed from this task. However, as pointed out by Coolen (2006), severely uncertain data may not
point clearly either to a single estimate or a single estimation algorithm. Coolen then proposes the
method of non-parametric predictive inference to obtain bounds on the estimate.

Nonetheless it is sometimes necessary to obtain a point estimate of the probability of a null, and to
exclude values less than the estimate. We use a binary hypothesis test for this purpose. However, we
are uncertain that the measurements are statistically independent, and we observe only null events.
Consequently we are unable to estimate both p and the strength of correlation. We therefore model
the uncertain correlation with an info-gap model and embed the hypothesis in an info-gap robustness
function.

We formulate a binary hypothesis test with independent measurements in section 2. This hy-
pothesis test can be used to decide on the level of confidence of a specific value of the probability
of absence, if the measurements are known to be statistically independent. In section 3 we formu-
late a non-probabilistic info-gap model for uncertainty in the correlations between the measurements
(Ben-Haim, 2006). The hypothesis test is then extended in section 4 to deal with the uncertain
correlations between the measurements. This is achieved by introducing the robustness function for
an hypothesized value of the probability of absence. The basic properties of the robustness function
are discussed and illustrated by an example in section 5. The paper concludes in section 6.

2 Binary Hypothesis Test with Independent Measurements

Consider a sequence of statistically independent measurements where each measurement is either
‘null’ or ‘positive’. For instance a null result is that an agent (e.g. disease) is not found, while a
positive result is that the agent is found. Let p denote the probability of a null result. (This can
be further resolved into the probability of absence and the probability of a null given absence. We
will not make this distinction since we are not modeling the measurement process itself.) We now
formulate a standard binary hypothesis test (DeGroot, 1986).

Let pnom be an hypothesized value of p. We worry that the true probability of a null result is
lower than pnom and consequently the probability of a positive (pernicious) result is greater than
1− pnom. We have observed n null results in n trials, and we wish to test between the following two
hypotheses:

H0 : p = pnom (1)

H1 : p < pnom (2)

That is, having observed n nulls in n trials, at what confidence can we reject the hypothesis that
p = pnom in favor of the hypothesis that p is smaller, considering only aleatoric uncertainty? Epistemic
uncertainty about the degree of correlation will be introduced in section 3.

The level of significance of this test is the probability, conditioned on H0, of a result which
impugns H0 more than the current observation (n nulls in n trials). H0 would be weakened, with
respect to H1, if fewer than n nulls were observed. That is, the level of significance is:

α = Prob(m < n|H0) (3)

where m is the number of nulls and n is the number of measurements. Given the assumption that
the measurements are statistically independent, the distribution of nulls is binomial and the level of
significance becomes:

α = 1− pnnom (4)
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Inverting this we find that the smallest value of pnom for which H0 is rejected at level of significance
α is:

pnom = (1− α)1/n (5)

We will refer to this value of pnom as the “nominal implied probability” of a null at level of significance
α, given n null observations out of n trials. Speaking even less precisely (but more suggestively) we
will sometimes say that, given n nulls out of n trials, the probability of a null is no smaller than pnom
at level of significance α.

3 Uncertain Correlation

Let 0n denote the observation of n nulls out of n trials. We will henceforth consider n > 1 (though
this assumption is not needed at all steps of the following argument). If the measurements are all
statistically independent then the probability of 0n, conditioned on H0, is pnnom. However, if some
or all of the measurements are statistically dependent, implying the existence of correlation among
some of the measurements, then the probability of 0n can be either greater or less than pnnom.

If all the measurements are completely correlated, then the probability of 0n equals the probability
of any single measurement being null which, under H0, is pnom.

At the other extreme, if two or more of the measurements are strictly anti-correlated then the
probability of all measurements being null is precisely zero.

Most generally, we see that the probability of 0n, conditioned on H0 and for n > 1, can take any
value between 0 and pnom, depending on the degree of correlation among the measurements:

0 ≤ Prob(0n|H0) ≤ pnom (6)

The extreme values, 0 and pnom, occur for extreme correlations or anti-correlations. We do not
have reason either to believe or to reject these extreme cases or any of the uncountable infinity of
intermediate cases. Consequently, we formulate an info-gap model for uncertainty in the probability
of 0n, conditioned on H0, which can deviate from the nominal—uncorrelated—situation by some
unknown fraction h:

U(h) = {Prob(0n|H0) = pnnom + u : −pnnomh ≤ u ≤ (pnom − pnnom)h} , 0 ≤ h ≤ 1 (7)

The family of sets U(h) becomes more inclusive as h increases from 0 to 1. When h = 0 then U(h)
contains only the nominal estimate, pnnom. When h = 1 then U(h) equals the entire interval in eq.(6).
The sets U(h) thus obey the axioms of contraction and nesting which characterize all info-gap models
and which endow h with its meaning as an “horizon of uncertainty”.

There are many ways in which one could represent info-gaps in the correlations among observa-
tions. The choice of an info-gap model depends on the available information and on judgment by the
analyst. The info-gap model of eq.(7) derives naturally from the probability model inherent in this
problem.

4 Robustness to Uncertainty

We are unable to use the hypothesis test of eqs.(1) and (2) to estimate the probability of a null because
the conditional probability, Prob(0n|H0), is uncertain as represented by the info-gap model of eq.(7).
We can however evaluate the robustness to uncertainty of any estimate, pe, of the probability of a
null. That is, we ask, What is the greatest horizon of uncertainty in the correlation up to which pe
errs no more than an acceptable amount? We now formulate this precisely.

Formulation. The conditional probability of 0n is Prob(0n|H0) which is uncertain. Nonetheless,
arguing as in eq.(4), the level of significance is:

α = 1− Prob(0n|H0) (8)
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At any horizon of uncertainty h this can be written:

α = 1− (pnnom + u) (9)

where u is constrained to the interval specified in U(h) in eq.(7). Inverting this as in eq.(5), the
uncertain implied probability is:

pnom(u) = (1− α− u)1/n (10)

We know neither the value of u nor the value of horizon of uncertainty h. However, there are
some values of u and h at which pnom(u) in eq.(10) is the correct statistical estimate of a null result
at level of significance α.

Let pe be any estimate of the probability of a null result. pe may be the nominal implied probability
of a null, eq.(5), or any other value. Our performance requirement is that pe differ from the correct
statistical estimate, pnom(u) in eq.(10), by no more than δ (which is a parameter we choose to reflect
the required accuracy):

|pnom(u)− pe| ≤ δ (11)

The robustness (to uncertainty in the degree of correlation) of estimate pe is the greatest horizon of
uncertainty h at which eq.(11) is obeyed:

ĥ(pe, δ) = max

{
h :

(
max
u∈U(h)

|pnom(u)− pe|

)
≤ δ

}
(12)

There is a slight abuse of notation in the expression u ∈ U(h). The elements of the info-gap model
are actually values of Prob(0n|H0). This abuse should cause no confusion and is notationally simpler.

Derivation. Let µ(h) denote the inner maximum in eq.(12). This is a monotonically increasing
function of h because the sets of the info-gap model are nested according to h. The robustness is the
greatest value of h at which µ(h) = δ. Consequently, a plot of µ(h) vs. h is the same as a plot of δ
vs. ĥ(pe, δ). That is, µ(h) is the inverse of the robustness, ĥ(pe, δ), viewed as a function of δ at fixed
pe. We will now develop an expression for µ(h).

Referring to eq.(10), we note that |pnom(u)− pe| takes its maximum absolute value when u takes
one of its extreme values at horizon of uncertainty h. Referring to the info-gap model of eq.(7), we
find the following expression for µ(h) as the greater between two alternatives:

µ(h) = max
{∣∣∣[1− α− (pnom − pnnom)h]

1/n − pe

∣∣∣ ,
∣∣∣[1− α+ pnnomh]

1/n − pe

∣∣∣
}

(13)

This is a computationally convenient expression for the inverse of the robustness function. The
important aspect of this relation is that the maximum between the two terms in eq.(13) can change
as h increases. This entails the possibility of discontinuity in the robustness, which will lead to the
intersection between robustness curves for some alternative choices of pe as we will see shortly.

5 Example

We now illustrate these ideas with several examples.
Fig. 1 shows robustness curves for the nominal implied probability of a null event, pnom in eq.(5),

for three different sample sizes n. Recall that n is the number of observed null results. Three ideas
should be noted: trade-off, zeroing and the cost of robustness.

Trade-off. The positive slope expresses the trade-off between robustness, ĥ(pnom, δ), and error
in the estimated probability of a null, δ. Large robustness against uncertainty in the degree of
correlation is obtained only by accepting the possibility of large error in estimating the probability
of null events. Conversely, small error entails low robustness.

Zeroing. If there is no correlation between the measurements then the nominal implied probabil-
ity, eq.(5), is the correct statistical estimate of the probability of a null event at level of significance α.
That is, in the absence of correlation, the error, δ, is zero. However, arbitrarily small correlation can
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Figure 1: Robustness vs. error
in probability of nulls, for 3 sam-
ple sizes. α = 0.05, pe = pnom.

Figure 2: Robustness vs. error
in probability of nulls, for various
estimated probabilities. n = 6,
α = 0.05.

cause this estimate to err. Consequently, the robustness to error of the nominal implied probability
is zero. This is manifested by the robustness curves reaching the horizontal axis (zero robustness) at
zero error of the nominal implied probability.

Cost of robustness. The slope of the robustness curve increases with the sample size. A large
slope means that a large increase of robustness can be obtained in exchange for a small increase in
the error of the estimated probability. A small slope implies the opposite: the cost of robustness—in
units of error—is large. We note that the cost of robustness decreases as the sample size increases,
but that the utility of the marginal measurement also decreases with increasing sample size.

Fig. 2 show robustness curves for three different choices of pe. The solid curve uses the nominal
implied probability, pnom, and is reproduced from fig. 1 for the case n = 6. The dashed curve is for
a value of pe which exceeds pnom and the dot-dashed curve is for pe < pnom.

The first thing to note in fig. 2 is that the solid and dot-dash curves have smooth slope while
the dashed curve has a kink. This occurs because the first two cases are determined entirely by the
right-hand case in eq.(13), while the dashed curve switches from the first to the second case at the
kink. To understand this in more detail, recall that pnom = (1−α)1/n. Examination of eq.(13) shows
that the second term is always the maximum when pe ≤ pnom, hence the solid and dot-dash curves
are smooth. However, when pe > pnom, then the first term in eq.(13) is greater than the second for
small h, and the second term is greater for large h. The kink occurs at the transition. This kink has
a very important implication, as we now see.

Preference reversal. The nominal error of pe is positive when pe differs from pnom, so the
dashed and dot-dashed curves intersect the horizontal axis at δ > 0 (this is the zeroing property
discussed earlier). These two pe values are chosen to have the same nominal error. However, when
pe > pnom (dashed curve) the cost of robustness is very small (very large slope) near the horizontal
axis. This causes the dashed curve to rise very rapidly and to cross the solid curve. Thus, when
pe > pnom, the robustness of pe exceeds the robustness of pnom over part of the range of δ. Specifically,
pnom is more robust than the larger pe for δ from zero to about 0.0044, though the robustness of pnom
is relatively low in this range. On the other hand, for δ > 0.0044 we see that the robust preference
is for the larger value of pe. The kink in the robustness curve entails the possibility for a reversal of
preference between pnom and values of pe which are greater than pnom.

Let us examine the solid and dashed curves in fig. 2 more closely at estimation error δ = 0.0044,
which is where the kink occurs in the dashed curve. The robustnesses of the nominal estimate, pnom,
and the dashed alternative estimate, pe, are 0.025 and 0.050 respectively. Referring to the info-gap
model in eq.(7) we see that pe can tolerate twice as large a range of uncertainty in the probability
resulting from unknown correlations.
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We can also construct robustness-based confidence intervals for pnom and pe at δ = 0.0044:

pnom : 0.9915 ± 0.0044 = [0.9871, 0.9959], ĥ(pnom, δ) = 0.025 (14)

pe : 0.9955 ± 0.0044 = [0.9911, 0.9999], ĥ(pe, δ) = 0.050 (15)

These are intervals of values for the probability of a null event, p. Specifically, these intervals contain
the α-confidence intervals for all horizons of uncertainty up to the robustness. The intervals for
pnom and pe overlap. However, the interval based on pe contains substantially larger values, and the
robustness to uncertain correlations is twice as large for pe as for pnom. We will return to robustness-
based confidence intervals after extending the discussion of curve-crossing.
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Figure 3: Robustness vs. error
in probability of nulls, for various
estimated probabilities. n = 6,
α = 0.05.

Figure 4: Lower confidence
bound vs. estimated error, at
various fixed robustnesses. n =
6, α = 0.05.

Fig. 3 illustrates the curve-crossing phenomenon for 4 values of pe which exceed pnom. The solid
and dashed curves are the same as in fig. 2. The nominal value of implied probability is pnom = 0.9915.
The figure shows pe values of 0.9935. 0.9955, 0.9975 and 0.9995. We see that the robustness gain
with pe increases (making pe more attractive) as pe rises further above pnom, but the curve crossing
occurs at a greater value of δ (making pe less attractive). The analyst must make a value judgment
in choosing pe, balancing between robustness, ĥ(pe, δ), (which is large for larger pe) and estimation
error δ (which is small for smaller pe).

Fig. 4 shows an alternative representation of our results, providing further support for the judg-
ment to be made. The horizontal axis is the estimated probability of a null, pe. Any value of pe and
of robustness, ĥ(pe, δ), induce a robustness-based confidence interval, pe ± µ(ĥ) (truncated at 0 or 1
as needed), as explained in eqs.(14) and (15). The vertical axis in fig. 4 is the lower bound of this
confidence interval. (The upper bound of the confidence interval is not shown since it is equal or very
close to unity.) The slope of the curve will be either 2 or 0, depending on which term dominates in
the expression for µ(h) in eq.(13).

The positive slopes in fig. 4 express the tightening of the robustness-based confidence interval
as the estimated value, pe, increases. We also see that the curves shift upward as the robustness
decreases, indicating the tightening of the confidence interval as the robustness decreases. This
results from the trade-off between robustness, ĥ(pe, δ), and estimation error δ.

Figs. 3 and 4 together assist the analyst in choosing and evaluating an estimate of the null
probability. Fig. 3 emphasizes the trade-off between estimation error and robustness to unknown
correlation. The curve crossing in this figure highlights the robustness-advantage of pe values larger
than the nominal estimate, which is obtained at the expense of enlarged estimation error. Fig. 4
emphasizes this trade-off differently, as a tightening of the confidence interval as the robustness
decreases.
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6 Conclusion

Null events—not detecting a pernicious agent—are the basis for declaring the agent is absent. Re-
peated nulls strengthen confidence in the declaration. However, correlations between observations
are difficult to assess in many situations and introduce uncertainty in interpreting repeated nulls.

We quantify uncertain correlations using an info-gap model, which is an unbounded family of
nested sets of possible probabilities. An info-gap model is non-probabilistic and entails no assumption
about a worst case. We then evaluate the robustness, to uncertain correlations, of estimates of the
probability of a null event. This is then the basis for evaluating a robustness-based confidence interval
for the probability of a null.

pnom denotes the nominal estimate of the probability of a null (based on assuming no correlations)
at level of significance α, eq.(5). We compare the robustness of pnom with other estimates of the
probability of a null, pe.

The purpose of the measurements is to determine the confidence with which absence of the
pernicious agent can be declared. The analyst asks, What is the greatest value of the probability of
a null which can confidently be adopted, based on n nulls in n observations.

pnom is the preferred estimate if the measurements are uncorrelated. However, if there is un-
certainty in the correlations between the measurements, then the choice of an estimate is more
complicated. We show the following results.

• pnom has greater robustness to uncertain correlations than smaller estimates of the probability
of a null, pe < pnom.

• pnom has greater robustness to uncertain correlations than larger estimates of the probability
of a null, pe > pnom, for estimation error less than an identified threshold.

• pnom has lower robustness to uncertain correlations than larger estimates of the probability of
a null, pe > pnom, for estimation error greater than an identified threshold.

The first item indicates that considerations of robustness would never lead one to prefer a lower-
than-nominal estimate over the nominal estimate of probability of absence of the pernicious agent.
Thus considerations of robustness would never lead one to choose a greater-than-nominal estimate
of the probability of presence of the pernicious agent.

The second and third items indicate that the preference between higher-than-nominal and nom-
inal estimates of the probability of a null may change, depending on the estimation error which is
acceptable, and the corresponding robustness to uncertain correlation.

It may at first seem counter-intuitive that the introduction of uncertainty could lead one to adopt
a greater-than-nominal probability of a null, making the picture seem rosier than in the absence of
uncertainty. The intuition to grasp, however, is that an estimate has two attributes: nominal error
and cost of robustness. The nominal estimate, pnom, has zero nominal error (its robustness curve
intersects the axis at δ = 0). Any other estimate, pe, has greater nominal error (so its robustness
curve intersects the axis at δ > 0). However, the costs of robustness of pnom and pe may also differ.
In particular, when pe > pnom, the initial cost of robustness is very low for pe, causing a robustness
advantage for pe over pnom at positive error (pe’s steep robustness curve rises above pnom’s curve).
Since some error must be tolerated in order to have any robustness, this can result in preference
for greater-than-nominal probability of a null. The two attributes—nominal error (intercept) and
cost of robustness (slope)—combine to produce this result. The introduction of uncertain correlation
does not make the picture rosier. Now the analyst must deal with both the statistical error (with
confidence quantified by the level of significance α) and the additional info-gap error (with confidence
quantified by the robustness ĥ(pe, δ)). Managing these two foci of uncertainty can lead to altered
preference among potential estimates of the probability of a null.
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