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Abstract

Uncertainty can be modelled either probabilistically or non-probabilistically. The former option
leads to the concept of reliability as the probability of no-failure. In this paper non-probabilistic
convex models of uncertainty are used to formulate reliability in terms of acceptable system perfor-
mance given uncertain operating environment or uncertain geometrical imperfections. It is shown
that probabilistic reliability can be very sensitive to small inaccuracy in the probabilistic model.
Consequently, the non-probabilistic concept of reliability is useful when insufficient information is
available for verifying a probabilistic model. In addition, a theorem is presented showing that anal-
ogous convex and probabilistic models of input uncertainty can lead to very different predictions
of the range of output variation.
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1 Concepts of Reliability

Reliability has a plain lexical meaning, which the engineers have modified and absorbed into their
technical jargon. Lexically, that which is ‘reliable’ can be depended upon confidently. Applying this
to machines or systems, they are ‘reliable’ (still avoiding technical jargon) if one is confident that
they will perform their specified tasks as intended. In current technical jargon, a system is reliable
if the probability of failure is acceptably low. This is a legitimate extension of the lexical meaning,
since ‘failure’ would imply behavior beyond the domain of specified tasks. The particular innovation
which marks the development of modern engineering reliability is the insight that probability — a
mathematical theory — can be utilized to quantify the qualitative lexical concept of reliability.

We do not detract from the importance of the probabilistic concept of reliability by suggesting
that probability is not the only starting point for quantifying the intuitive idea of reliability. Prob-
abilistic reliability emphasizes the probability of acceptable behavior. Non-probabilistic reliability,
as developed here, stresses the range of acceptable behavior. Probabilistically, a system is reliable
if the probability of unacceptable behavior is sufficiently low. In the non-probabilistic formulation
of reliability, a system is reliable if the range of performance fluctuations is acceptably small.

Both approaches grapple with the problem of uncertainty. Both have clear design implications.
In both methods, the design variables are viewed as controlling the uncertainty of the performance.
In probabilistic reliability, design decisions must reduce the probability of unwanted performance
to acceptable levels. In non-probabilistic reliability, the design must assure that the performance
remains within an acceptable domain.

2 Models of Uncertainty: A Comparison

Both probabilistic and non-probabilistic concepts of reliability, when construed for purposes of
design, attempt to optimize the system with respect to the uncertain factors which influence it.
Distinct though overlapping information concerning these uncertainties is required by the two
concepts of reliability.

Any probabilistic theory contains two main components: sets of events, and a measure-function
defined on these sets.1 Typically, the sets of events are quite inclusive. For example, the normal
distribution extends over the entire real numbers, and probabilities are defined for all subsets. This
extravagant gaussian assumption — that anything can occur — is tempered by the probability
density function (pdf) which expresses the relative frequency of occurrence of different sets of
events.2

The non-probabilistic concept of uncertainty is also based on sets of events, but no measure-
function on these sets is defined. Instead, information about the uncertainties is invested in the
structure of the event-sets. We will concentrate on convex-set models of uncertainty, whose struc-
ture is usually specified by meager amounts of information. The non-probabilistic, set-theoretic
quantification of uncertainty is typically a poor-man’s substitute for probability, containing less
information than probabilistic models of uncertainty.

Convex models are one class of non-probabilistic models of uncertainty. A convex model is a
convex set3 of functions, where each function is a possible realization of an uncertain phenomenon.
Given specific though limited information which characterizes the uncertain events, one can often

1From this perspective, fuzzy logic is probabilistic, since it employs sets of events and membership functions
defined on these sets, though the axiomatization of fuzzy logic involves an important distinction from conventional
probability [6].

2“Your bait of falsehood takes this carp of truth” (II,1:69) [26].
3A set S is convex if, for all elements f and g in S and all numbers 0 < α < 1, the quantity αf + (1−α)g also

belongs to S.
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define a convex model as the set of all functions consistent with this information.4 This will become
clear in the examples to follow. Briefly, however, the energy-bound convex models define sets of
functions consistent with a given bound on the energy, while the spectral convex model defines the
set of all functions consistent with specific spectral information. Envelope-bound convex models
delimit the range of variation of uncertain functions to be consistent with given information, and
are a generalization, for functions, of the idea of interval-arithmetic for uncertain parameter values.

The procedure by which one formulates a convex model is basically different from the usual
method for specifying a stochastic model. In stochastic formulations one often chooses the form of
the model, e.g. gaussian, and then determines the coefficients of that model (mean and covariance
in the gaussian case). This procedure can work quite well when the form of the model is correct,
for then the model-parameters can usually be estimated accurately without the need to sample too
extensively. This is because, as in the gaussian model, the parameters can be related to the bulk
of events which hover around the mean.

On the other hand, if the form of the stochastic model is only approximately correct, then
the tails of the calibrated stochastic model may differ substantially from the tails of the actual
distribution. This is because the model-parameters, related to low-order moments, are determined
from typical rather than rare events. In this case, design decisions will be satisfactory for the bulk
of occurrences, but may be less than optimal for rare events. It is the rare events — catastrophes,
for example — which are often of greatest concern to the designer. The sub-optimality may be
manifested as either an over-conservative or an unsafe design.

We have explained that probabilistic and convex models of uncertainty are structurally different.
The former involve probability densities defined on sets of events. The latter involve no measure-
functions, but instead determine the structure of the event-sets from the available information
about the uncertainty. However, this difference can sometimes be viewed as a matter of degree.
In our first example (section 4) we will use a convex model to define a set of allowed probability
density functions. An ambient pressure is known to be uncertain, an approximate pdf for this
pressure is available, and a convex model describes the set of all possible densities. One could
legitimately view this hybrid probabilistic-convex model of uncertainty as simply a collection of
probabilistic models. This is more a matter of taste than substance. The crucial point is to
recognize the wide range of set-theoretic possibilities for representing uncertainty without specifying
probability. Furthermore, seemingly similar probabilistic and convex models of uncertainty can
have very different implications for design and reliability, as we will see (section 5). In section 6 we
will show that design-for-reliability, in the face of substantial uncertainty, can be pursued without
reference to probabilistic ideas at all. In our final example (section 7) we present a reliability
analysis for geometrical imperfections. However, before elaborating on the non-probabilistic concept
of uncertainty and its applications to reliability, it is appropriate to consider the limitations of
probability theory in technology. This we do in section 3.

3 Limitations of Probability

The mathematical theory of probability has proven useful in many technological applications. How-
ever, it has limitations which, when clearly identified, facilitate our understanding of the non-
probabilistic alternatives.

One criticism of probabilistic concepts of uncertainty arises in discussion of prior probability
and Bayesian inference and decision theory. A classical objection to Bayesian statistics hits at the
source of the prior distribution and utility functions. As Isaac Levi asserts: “Strict Bayesians are

4That sets defined in this manner often turn out to be convex is surprising and significant. A partial explanation
of the origin of this convexity is found in section 2.1 of [5].
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legitimately challenged to tell us where they get their numbers.” [20, p 387]. In outlining “the
general statistical decision problem”, Fenstad notes that “[T]he difficulty arises in connection with
the prior measure . . . . Does every set of alternatives carry a probability?” [13, pp 2–3] and if so,
what does it mean? Furthermore, uniqueness in formulating prior distributions is illusive: a given
quantity of prior information is often not represented by a unique prior probability distribution
[28].

Before the twentieth century, it was common to identify ignorance of likelihoods with equality
of probabilities. Many of Lewis Carroll’s probabilistic riddles are based upon this assumption [7].
Also, it appears in the solution of Buffon’s needle-problem, from the 18th century. On Buffon’s
solution Coolidge has remarked that Buffon failed to recognize “the great dangers involved in
assuming the equally likely” [8]. John Venn also used the uniform distribution as the fundamental
device for describing lack of information. He recognized, however, that “[a]ny attempt to draw
inferences from the assumption of (uniform) random arrangement must postulate the occurrence
of this particular state of things at some stage or other. But there is often considerable difficulty,
leading occasionally to some arbitrariness, in deciding the particular stage at which it ought to be
introduced.” [32, p97]

The difficulty of quantifying prior knowledge is seen quite clearly in such quandries as the
prisoner’s dilemma [17] and similar riddles [14] where alternative decisions each seem fully consistent
with the initial information. Considering the criticism of Bayesian priors, together with these riddles
whose formulation is sparse and simple yet whose resolution has taxed the attention of many people,
one may be inclined to agree with Kyburg that “it might be the case that some novel procedure
could be used in a decision theory that is based on some non-probabilistic measure of uncertainty.”
[19, p 189].

Perhaps such thinking as this led Suppes and Zanotti to stress the “distinction between indeter-
minacy and uncertainty”. Their concepts of upper and lower probabilities “are defined in a purely
set-theoretical way and thus do not depend . . . on explicit probability considerations.” [31, p 427].
They continue:

For a strict Bayesian there is no indeterminacy, for he would postulate a prior probability
. . . and thereby obtain a standard random variable . . . . The concept of indeterminacy
is a concept for those who hold that not all sources of error, lack of certain knowledge,
etc., are to be covered by a probability distribution, but may be expressed in other
ways, in particular, by random relations as generalizations of random variables, and by
the resulting concepts of upper and lower probabilities. [31, p 434].

In a different vein, we must mention the reductionist view, as expressed by De Finetti: “Proba-
bilistic reasoning — always to be understood as subjective — merely stems from our being uncertain
about something.” Uncertainty is the more primitive concept, while probability is a mathematical
construction: “probability does not exist” [10, p x]. Indeed, in Kolmogorov’s 1933 axiomatization
of probability, this theory is put in its “natural place, among the general notions of modern math-
ematics”, with no more than a passing reference to the “concrete physical problems” from which
probability theory arose. [18, p v]. This formalistic attitude might suggest the possibility of other
mathematical theories describing the same phenomena yet subject to different, non-probabilistic,
interpretation. (De Finetti, however, does not seem to have this in mind [9].)

Let us consider the statisticians themselves. The theories of distribution-free inference and
non-parametric statistics [15, 16] are motivated by the need to draw conclusions without assuming
specific probabilistic properties for the underlying populations from which data are drawn. One can
not impute ‘non-probabilistic’ tendencies to the proponents of these statistical theories. However,
the considerable interest in non-parametric statistics attests to the difficulty one may encounter in
implementing, or justifying, those statistical methods which are based on assuming specific prior
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or conditional probability distributions.
One of the primary driving forces in the origin of non-probabilistic models of uncertainty in the

engineering community has been precisely this difficulty. Referring to turbulent wind fluctuations
acting on transport aircraft or tall buildings, Sobczyk and Spencer [29, p89] enumerate numerous
complicating factors and conclude that “the engineering analysis of fatigue reliability assumes
some standard representations of the spectrum of a turbulent wind.” (Italics in the original). The
assumption of standard representations arises from the difficulty of verifying more specific models.
Considering steel offshore platforms they assert that “the establishment of standard load spectra
. . . [is] much more difficult than for aircraft structures.”

In a similar vein, Murota and Ikeda develop a theory for buckling of trusses with geometrical
imperfections, and comment that they

have employed random imperfections . . . although it is somewhat hypothetical at this
stage, since the probability distribution cannot be known precisely in practice. The
present analysis is not independent of the hypothetical distribution, and the quantitative
aspects of the results will have limitations in applicability. However, the qualitative
aspects of the conclusions will remain valid for a wide range of probability distributions.
[23].

Design-for-reliability would seem to depend on quantitative results, not only qualitative ones.
Let us briefly consider some non-probabilistic treatments of uncertainty in engineering. Drenick

[11, 12] and Shinozuka [27] describe uncertain seismic loads on civil structures by defining sets
of possible input functions, with no probability measures defined on these sets. Schweppe [24]
and Witsenhausen [33, 34] describe estimation and control algorithms for linear dynamic systems
based on sets of inputs. Schweppe [25] develops inference and decision rules based on assuming the
uncertain phenomenon can be quantified in such a way as to be bounded by an ellipsoid, again with
no probability function involved. Ben-Haim [1] develops a method for optimal design of material
assay systems based on convex sets of uncertain spatial distributions of the analyte material. Ben-
Haim and Elishakoff [5] describe a range of analysis and design problems in applied mechanics
based on defining convex sets of uncertain input functions or uncertain geometrical imperfections.
Lindberg [21, 22] and Ben-Haim [2] use the convex modelling method to study radial pulse buckling
of geometrically imperfect thin-walled shells.

There seem to be numerous suggestions, both among philosophers and technologists, that one’s
thinking about uncertainty can be something other than probabilistic. We hope in this article
to loosen the link between uncertainty and probability, and to suggest a specific non-probabilistic
methodology for reliability analysis.

4 Sensitivity of the Failure Probability: An Example

Let us consider failure by rupture of a long cylindrical tube subject to uncertain internal pressure,
P . From the perspective of probabilistic reliability, we wish to choose the wall thickness to assure
that the probabilility of failure is no larger than a specified value. However, we do not precisely
know the probability density function (pdf) of the pressure. We will see that small errors in the pdf
can lead to large errors in the probability of failure. A similar example, with a different formulation
of the uncertainty, is discussed in [5, pp11–13].

4.1 Uncertainty in the PDF of the Load

The equivalent stress for Tresca’s maximum shear stress failure criterion is:

σeq = P/ρ, where ρ =
(
r22 − r21

)/
2r22 (1)
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where r1 and r2 are the inner and outer radii, respectively. Failure occurs if σeq exceeds the yield
stress, σy. If the wall thickness, h, is very small, h = r2 − r1 ≪ r1, then ρ ≈ h/r1.

We suppose that the pdf of the pressure is in fact a complicated and imprecisely known function.
For design purposes, however, we approximate the pdf as an exponential density:

f0(p) = β0e
−β0p, p ≥ 0 (2)

In fact the real pdf is:
fη(p) = [α+ η(p)] e−β0p, p ≥ 0 (3)

where η(p) is an unknown function, and α is a constant which normalizes the pdf:

α = β0

[
1−

∫
∞

0
η(p)e−β0p dp

]
(4)

If η(p) is constant, then f0 and fη are identical. If |η(p)| ≪ β0, then f0(p) would seem to be a good
approximation to fη(p).

We will use an envelope-bound convex model [5] to represent the allowed range of variation of
the functions η(p). The set of possible η-functions is:

FENV = {η(p) : η1(p) ≤ η(p) ≤ η2(p)} (5)

where η1(p) and η2(p) are known non-negative functions which envelop the range of variation of
the perturbation, η(p).5

The mean of p on f0(p) is 1/β0. Employing eq.(4) one finds the mean of p on fη is:

Efη(p) =
1

β0
+

∫
∞

0

(
p− 1

β0

)
η(p)e−β0p dp (6)

If the perturbation, η(p), is small, or occurs far out on the tail of the exponential, then the means
of f0 and fη are nearly equal.

The maximum mean, for η ∈ FENV, occurs when η(p) switches from the lower to the upper
envelope when the rest of the integrand of eq.(6) changes sign from negative to positive:

max
η∈FENV

Efη(p) =
1

β0
+

∫ 1/β0

0

(
p− 1

β0

)
η1(p)e

−β0p dp+

∫
∞

1/β0

(
p− 1

β0

)
η2(p)e

−β0p dp (7)

Let us choose the following envelope functions, for which one can verify that the densities fη(p)
are non-negative and normalizable by α for all η-functions if ν is sufficiently small.

η1(p) = 0 (8)

η2(p) =

{
0 p < p1
νe−γ(p−p1) p ≥ p1

(9)

Assuming p1 ≥ 1/β0, one finds the maximum expectation on fη, for η ∈ FENV, to be:

max
η∈FENV

Efη(p) =
1

β0

[
1 + ν

p1β0(γ + β0)− γ

(γ + β0)2
e−β0p1

]
(10)

For example, let β0 = γ = 1, p1 = 4 and ν = 10−3. Then Ef0(p) = 1, while maxη Efη(p)−Ef0(p) ≈
3.2× 10−5. The nominal density is determined by a single parameter, β0. In this example it would
be quite difficult to distinguish between f0 and fη, for any η ∈ FENV. Yet we will see that the failure
probabilities and design decisions can be quite different for these different probability densities.

5Care must be taken in the choice of η1 and η2 to assure that each fη is always non-negative and normalizable by
α.
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4.2 Sensitivity of the Failure Probability

The probability of failure by rupture equals the probability that the pressure will rise to such a
level that the equivalent stress will exceed the yield stress. For pdf fη, the probability of failure is:

ϕη = Prob (σeq ≥ σy) = Prob (P ≥ σyρ) =

∫
∞

σyρ
fη(p) dp (11)

= e−β0σyρ +

∫
∞

0

[
H(p− σyρ)− e−β0σyρ

]
η(p)e−β0p dp (12)

where α from eq.(4) has been substituted into eq.(3), and where H(x) = 1 if x ≥ 0, and H(x) = 0
otherwise. The first term in eq.(12) is the probability of failure based on the nominal pdf of the
pressure, f0; the second term expresses the contribution of the uncertainty in fη(p).

It is an elementary matter to evaluate the greatest probability of failure, for any η-function
in FENV. The maximum of ϕη in eq.(12) occurs when η(p) switches from its lower to its upper
envelope as the term in square brackets changes in sign from negative to positive. Assume that
σyρ ≤ p1. One finds the maximum probability of failure, with the envelopes of eqs.(8) and (9), to
be:

ϕ̂ = max
η∈FENV

ϕη (13)

= e−β0σyρ +
ν
(
1− e−β0σyρ

)
e−β0p1

β0 + γ
(14)

Let us consider the thin-walled case, so ρ ≈ h/r1. From the strict probabilistic point of view,
it is reasonable to choose the tube-wall thickness, h, on the basis of the available probabilistic
information, f0(p). One chooses h to achieve a specified probability of failure, ϕ0, from eq.(12)
with η = 0:

ϕ0 = e−β0σyh/r1 (15)

Substituting this nominal design decision into eq.(14) for the maximum probability of failure with
the actual pdf yields:

ϕ̂ = ϕ0 +
ν (1− ϕ0) e

−β0p1

β0 + γ
(16)

The actual probability of failure, ϕ̂, can be substantially greater than the value, ϕ0, upon which
the wall-thickness is chosen. For example, choose 1 = β0 = γ and ν = 10−3 as before. If the desired
probability of failure is ϕ0 = 10−6 and the disturbance in f(p) appears at four standard deviations
from the origin (p1 = 4), then eq.(16) indicates that ϕ̂/ϕ0 = 10.2. That is, the actual probability
of error is 10 times the design value. ϕ̂ is of course still a small number, but not as small as ϕ0.

4.3 Design Implications

Let us continue with the thin-walled case. In the ordinary probabilistic analysis the wall-thickness
is chosen by inverting eq.(15) as:

hp = − r1
β0σy

lnϕ0 (17)

If we include the non-probabilistic information about the uncertainty in the pdf, namely the convex
model FENV, then the wall thickness is chosen by equating ϕ̂ to ϕ0 and inverting eq.(14):

hcm = − r1
β0σy

ln
ϕ0 − ζ

1− ζ
(18)
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where ζ = ν exp(−β0p1)/(β0+γ). (Note that eq.(14) cannot be solved for h unless ζ < ϕ0. However,
this is presumably an artifact of the thin-wall restriction.)

It is now possible to compare the strict probabilistic design, hp, with the probabilistic design
which has been augmented by a convex model for uncertainty in the pdf of the pressure, hcm. For
example, suppose 1 = β0 = γ, ν = 10−3 and p1 = 4 as before. Then ζ = 9.158 × 10−6, and
(augmented) thin-walled designs are available at any reliability ϕ0 > ζ. For example, a probability
of failure of ϕ0 = 10−5 results in a ratio of the design thicknesses of hcm/hp = 1.2; the ordinary
probabilistic design is 20% too thin.

The strict probabilistic design is under-conservative in this example because the actual pdf
functions, fη(p), are all biased (very slightly) towards higher pressures than the nominal pdf, f0(p).
If the functions η(p) were slightly negative rather than slightly positive the reverse situation would
probably arise: the strict probabilistic design would be overly conservative.

The point of this example is that very small uncertainties in the pdf, located far from the
bulk of events, are difficult to detect but cause substantial inaccuracy in both design-decisions and
assessment of failure-probability.

5 A Stochastic Comparison

One main point of this paper is the use of convex models of uncertainty for assessing performance-
sensitivity to variation in input or structural factors. The ability to use convex models in this way
is fundamental to the non-probabilistic concept of reliability. In this section we discuss a result
showing that analogous stochastic and convex models of uncertainty can lead to very different
predictions of the range of output variation. This has important consequences for the evaluation
of reliability.

We will compare the integral energy-bound convex model against an analogous stochastic model
and show that the latter predicts substantially smaller projected responses.

Many types of failures in dynamical mechanical systems are associated with unduly large fluctu-
ations in variables such as displacement or acceleration. In design-for-reliability of such systems one
attempts to choose the design parameters to minimize the large oscillations. We will demonstrate
that analogous stochastic and convex models of uncertainty can lead to very different predictions
of the range of output variation. Consequently, both the design decisions and the reliability will
differ substantially when based on these two different uncertainty models.

Consider a linear dynamic system in state-space representation:

ẋ(t) = Ax(t) +Bf(t) (19)

where A and B are constant matrices, x(t) ∈ RN is the state vector and f(t) ∈ RNI is an uncertain
input.

In the integral energy-bound convex model the integral over time of the energy of the disturbance
is bounded. The set of allowed input vector functions is:

FIEB =

{
f(t) :

∫ t

0
fT (τ)f(τ) dτ ≤ ρ2

I
(t)

}
(20)

where the superscript T implies matrix transposition.
For zero initial conditions, the solution of eq.(19) can be projected along a constant direction-

vector ψ and expressed as:

ψTx(t) =

∫ t

0
ψT eA(t−τ)Bf(τ) dτ (21)

The projection direction, ψ, is chosen to emphasize relevant dynamics. For example, ψ can be a
modal direction, or ψ can be chosen so that the projection is the difference between displacement
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at two nodes of the system. Projected responses are scalars and linear functions of f , so they are
much easier to optimize than, for example, the norm of x.

Using the Cauchy and the Cauchy-Schwarz inequalities, one can derive the following expression
for the maximum projection along ψ allowed by FIEB:

πIEB

ψ (t) = max
f∈FIEB

ψTx(t) (22)

= ρI(t)

√∫ t

0
ψT eAτBBT eAT τψ dτ (23)

We wish to compare this maximum-response prediction of the integral energy-bound convex
model against an analogous stochastic model, to show that even when the input-uncertainty models
seem quite similar, their output predictions are quite different. Stochastic homologies for several
convex models are discussed in [3].

In the stochastic model of the uncertainty, let the input vector, f(t), be a zero-mean random
process with covariance matrix:

E
[
f(t)fT (τ)

]
=

{
δ(t− τ)σ2f I t 6= τ

σ2f I t = τ
(24)

where σf is a scalar and I is the identity matrix.
We wish to choose the convex model to be “equivalent” to the stochastic model, in some

reasonable sense. Let us choose ρ2
I
as the statistical expectation of the integrated disturbance

energy. Thus FIEB contains all input vectors whose integrated energy is bounded by the average
integrated energy of the stochastic model. ρ2I is:

ρ2I (t) = E

[∫ t

0
fT (τ)f(τ) dτ

]
= NIσ

2
f t (25)

The result on the righthand side is obtained by manipulations with the trace operator.
In the random process, fT (t)f(t) can of course attain values in excess of its mean value. In other

words, this choice of ρ2I defines a rather restrictive convex model, since it very strictly constrains
the input vectors. It is, however, a convex model which is homologous to the stochastic inputs at
one standard deviation of the energy. In other words, this value of ρ2

I
defines a convex model whose

elements are quite similar to stochastic inputs up to one standard deviation. To define a convex
model which is homologous to the stochastic process at, for instance, α standard deviations, one
would choose ρ2

I
as α2 times the value in eq.(25). Our aim is simply to compare the stochastic and

convex model predictions of the range of response variation, so the scale factor α is irrelevant.
We will compare πIEB

ψ , based on FIEB with ρ2
I
from eq.(25), against the stochastic value of ψTx

at one standard deviation, from zero initial conditions. The mean of ψTx vanishes and its standard
deviation is:

σproj(t) = σf

√∫ t

0
ψT eAτBBT eAT τψ dτ (26)

Now, employing eqs.(23) and (25), we conclude that:

πIEB

ψ (t) = σproj(t)
√
NIt (27)

This relation asserts that the maximum response at any time t > 1/NI , predicted by a convex
model which is ‘calibrated’ to include inputs up to one standard deviation of the integrated energy,
will exceed the stochastic response at one standard deviation. Furthermore, this excess of πIEB

ψ over
σproj increases monotonically in time. The same conclusion will recur at whatever number, α, of
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standard deviations one examines, since α would just multiply each side of eq.(27). For t < 1/NI ,
the convex-model bound converges to zero, as t→ 0, more rapidly than the probabilistic standard
deviation.

One typical design-for-safety strategy is to choose the design-parameter values so as to achieve
acceptably small outputs. The stochastic outputs, being less than the analogous convex model
predictions for t > 1/NI as shown by eq.(27), will lead the designer to choose different parameters
in the stochastic-model than in the convex-model analysis. In other words, the stochastic design
will tend to allow greater responses than the convex-model design operating in the same conditions.

This conclusion can be stated differently, by noting that the convex model FIEB with ρ2
I
chosen

from eq.(25), contains all input functions f(t) consistent with the constraint
∫ t
0 f

T (τ)f(τ) dτ ≤
E
[∫ t

0 f
T (τ)f(τ) dτ

]
. Qualitatively speaking, these input functions “look” like white stochastic

inputs up to one standard deviation of the energy. However, the stochastic outputs at one standard
deviation “overlook”, as it were, some of the input functions allowed by the convex model.

Further insight into eq.(27) is obtained by inverting the interpretation of the integral energy-
bound convex model formulated with ρ2I from eq.(25). Sometimes a stochastic model is formulated
by starting from semi-quantitative data about the range of variability of the uncertain function,
then choosing the form of the stochastic model and then fitting the parameters of the model to the
data. In the present case, the initial data might correspond to the assertions that f(t) varies around
zero and that

∫ t
0 f

T (τ)f(τ) dτ typically does not exceed ρ2
I
(t). The stochastic model adopted is that

f(t) is a zero-mean white process for which E
[∫ t

0 f
T (τ)f(τ) dτ

]
= ρ2I (t). Eq.(24) is a covariance

matrix consistent with this model, when σ2f = ρ2I/NIt. It results, however, that this stochastic
model predicts much lower output responses at one standard deviation than the convex model
which includes all input functions consistent with

∫ t
0 f

T (τ)f(τ) dτ ≤ ρ2I (t). Again, increasing the
number of standard deviations does not change the conclusion, since the stochastic model at α
standard deviations is analogous to the convex model for which

∫ t
0 f

T (τ)f(τ) dτ ≤ α2ρ2
I
(t).

6 Non-Probabilistic Reliability: A Seismic Example

Seismically-safe design of buildings is not limited to assuring structural integrity alone. Also im-
portant is the functional integrity of critical secondary equipment such as communications units,
fire-control facilities, and so on. Building codes for seismically-safe structures require that the de-
signer guarantee specified limits to the inertial forces acting on critical secondary equipment during
earthquakes [30].

In this section we will use a convex model to represent uncertainty in the temporal waveform
of an earthquake excitation, and derive an expression for the maximum inertial force exerted on
a piece of light equipment which is dynamically coupled to a building. The convex model is
chosen to include all waveforms consistent with given spectral information about seismic ground
motion. The analysis which we will perform enables the designer to choose the dynamical coupling
of the equipment to the building so that the inertial forces acting on the equipment during any
earthquake represented by the convex model will be within acceptable bounds. The equipment
is then ‘reliable’ in our non-probabilistic sense: no earthquake consistent with available data on
ground-motion variability will exert unacceptable forces on the equipment.

A major limitation of this analysis is its dependence on an accurate dynamical model for the
motion of the building during an earthquake and for the dynamical coupling of the building to the
equipment. This however is characteristic of any model-based dynamical analysis.

An additional limitation is the paucity of information upon which the convex model is founded.
However, the adverse effect of limited information about seismic variability cannot properly be
viewed as a limitation of the analysis, but rather an inherent deficiency in the informational infra-
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structure upon which the analysis rests. To the extent that the convex model includes all earthquake
ground motions consistent with existing information, the convex model is faithful to the information,
without introducing additional strong presumptions about earthquake behavior. In a probabilistic
model, the adoption of a specific analytical form for the probability density is usually an assumption
whose verification is at best fragmentary for those rare events against which the design must
particularly guard.

It must of course be recognized that a convex model does introduce presumptions or extrapo-
lations beyond the raw data. A convex model contains an infinity of functions while the primary
observations are surely finite. A central question in the comparison of probabilistic and convex
models of uncertainty, and their application to design and reliability, is the evaluation of the rela-
tive potency of the presumptions which these models introduce. The result discussed in section 5
is a step in this direction.

6.1 Dynamics

The structure to which the equipment is attached is an N -dimensional linear elastic system with
viscous damping:

Mẍ(t) + Cẋ(t) +Kx(t) = Bu(t) (28)

where M , C and K are constant mass, damping and stiffness matrices, respectively, x(t) is the
deflection vector, u(t) is the NI -dimensional input and B is a constant N ×NI matrix.

We will assume that C is diagonalizable by the modal vectors. We will also assume that the nth
mode is dominant during seismic excitation, so the displacement of the ith node of the structure
is:

xi(t) ≈ φni ηn(t) =
φni

mnωnD

∫ t

0
φnTBu(τ)e−ζnωn(t−τ) sinωnD(t− τ) dτ (29)

where φn is the nth mode-shape vector and ηn(t) is the nth modal coordinate. mn, ωnand ζn are
the modal mass, undamped natural frequency and the damping ratio for the nth mode. Also define:
ωnD = ωn

√
1− ζ2n.

The secondary equipment attached to the ith node has mass, damping ratio and undamped
natural frequency me, ζe and ωe. Define ce = 2ζeωeme, ωeD = ωe

√
1− ζ2e and ke = ω2

eme. We
adopt the assumption of ‘cascaded dynamics’, which asserts that the motion of the equipment is
driven by the floor motion, but that the dynamics of the building are uneffected by the equipment
motion. The equation of motion for the equipment is:

meÿ(t) + ce [ẏ(t)− ẋi(t)] + ke [y(t)− xi(t)] = 0 (30)

where y(t) is the equipment displacement with respect to the ground. Define:

α(t) = e−ζnωnt [(ke − ceζnωn) sinωnDt+ ceωnD cosωnDt] (31)

σ(t) = e−ζeωet sinωeDt, γ =
φni

memnωeDωnD

(32)

With these definitions, the deflection of the equipment becomes:

y(t) = γ

∫ t

0
φnTBu(θ)

∫ t

θ
σ(t− τ)α(τ − θ) dτ

︸ ︷︷ ︸
ν(t,θ)

dθ (33)

which defines the function ν(t, θ) which will appear repeatedly in our analysis. After rather arduous
computations one finds:

ν(t, θ) = meωeν̃(t, θ) (34)

11



where ν̃(t, θ) is a dimensionless function defined as:

ν̃(t, θ) =
1

2
e−ζnωn(t−θ) [(γ1 + γ3) cosωnD(t− θ) + (γ2 − γ4) sinωnD(t− θ)]

−1

2
e−ζeωe(t−θ) [− (γ2 + γ4) sinωeD(t− θ) + (γ1 + γ3) cosωeD(t− θ)] (35)

The following dimensionless coefficients are employed:

γ1 =
β1β3 + β2β4+

β5+
, γ2 =

β1β4+ − β2β3
β5+

(36)

γ3 =
β2β4− − β1β3

β5−
, γ4 = −β1β4− + β2β3

β5−
(37)

β1 = 1− 2ζeζn
ωn
ωe
, β2 = 2

ωn
ωe
ζe

√
1− ζ2n, β3 = ζe − ζn

ωn
ωe

(38)

β4± =
√
1− ζ2e ±

ωn
ωe

√
1− ζ2n, β5± = β23 + β24± (39)

The integral ν(t, θ) in eq.(33) always exists, but eq.(35) is valid only if the following relation holds:

(β5−)(β5+) 6= 0 (40)

We will assume throughout our calculations that this relation is valid.
In seismic applications it is usually reasonable to assume that the excitation, u(t), is a scalar

function, and we will do so. Define the scalar quantity:

γ = γφnTB (41)

where γ is defined in eq.(32). Then the displacement of the equipment with respect to the ground,
as a function of the ground motion becomes:

y(t) = γ

∫ t

0
ν(t, θ)u(θ) dθ (42)

The maximum inertial force acting on the secondary equipment is approximated as:

F̂ = meω
2
e ŷ (43)

where ŷ is the maximum displacement of the equipment, driven by an uncertain input which is
constrained by a convex model. We now evaluate ŷ for the Fourier-envelope convex model.

6.2 Maximum Force with the Fourier-Envelope Convex Model

Let us assume that u(t) = 0 for t < 0, and that
∫
∞

0 u2(t) dt is bounded. Then the symmetrical
Fourier transform pair is defined as:

u(t) =
1√
2π

∫
∞

−∞

u(ω)e−jωt dω, u(ω) =
1√
2π

∫
∞

0
u(t)ejωt dt (44)

The Fourier-envelope convex model is the set of input functions u(t) for which the norm of the
Fourier transform u(ω) is contained in an envelope:

FFE =
{
u(t) : |u(ω)|2 ≤ R2(ω)

}
(45)
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The real and complex parts of u(ω) are just the Fourier cosine and sine transforms of u(t),
which we denote uc(ω) and us(ω) respectively:

u(ω) = uc(ω) + jus(ω) (46)

uc(ω) and us(ω) are real functions:

uc(ω) =
1√
2π

∫
∞

0
u(t) cos ωθ dt, us(ω) =

1√
2π

∫
∞

0
u(t) sinωθ dt (47)

Substituting (46) into the first of eqs.(44) and recognizing that u(t) is a real function one finds:

u(t) =
1√
2π

∫
∞

−∞

[uc(ω) cos ωt− us(ω) sinωt] dω (48)

Substituting this into eq.(42) and changing the order of integration one finds the displacement of
the equipment to be:

y(t) = γmeωe

∫
∞

−∞

[uc(ω)ν̃c(t, ω)− us(ω)ν̃s(t, ω)] dω (49)

where we define:

ν̃c(t, ω) =
1√
2π

∫ t

0
ν̃(t, θ) cos ωθ dθ, ν̃s(t, ω) =

1√
2π

∫ t

0
ν̃(t, θ) sinωθ dθ (50)

To maximize y(t) on FFE we note that the constraint on u(ω), at each value of ω, is:

u2c(ω) + u2s(ω) ≤ R2(ω) (51)

The Cauchy inequality is now used to find the maximum displacement as:

ŷ(t) = max
u∈FFE

y(t) = γmeωe

∫
∞

−∞

R(ω)
√
ν̃2c (t, ω) + ν̃2s (t, ω) dω (52)

Writing this more explicitly, recalling that condition (40) is assumed to hold, and using eq.(43),
the maximum inertial force acting on the secondary equipment is:

F̂ (t) =
meω

2
eφ

n
i

(
φnTB

)

mnωn
√
1− ζ2n

√
1− ζ2e

∫
∞

−∞

R(ω)
√
ν̃2c (t, ω) + ν̃2s (t, ω) dω (53)

This relation expresses the maximum inertial force exerted on the secondary equipment, which
is allowed by the Fourier-envelope convex model of the seismic-uncertainty. This maximum is
proportional to the equipment mass me and to the square of the natural frequency, ωe, of the
equipment-structure coupling, and inversely proportional to the modal mass and frequency of the
dominant structural mode. The quantities ν̃c(t, ω) and ν̃s(t, ω) are functions of dimensionless
coefficients depending on the the damping ratios of the equipment and of the structural mode, and
on the ratio ωn/ωe of the structural to the equipment natural frequencies. The function R(ω) is the
convex-model bound on the spectrum of the input, and is based on measured spectral variability
of earthquakes. One can use this relation to assign values to the design parameters so as to assure
that the inertial forces on the secondary equipment are always within acceptable limits.
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7 Reliability of Axially-Loaded Shells With Initial Geometrical

Imperfections

The examples discussed in sections 4 and 6 deal with uncertain external forces acting upon a
system. In this section we will use a convex model to perform a reliability-analysis with respect to
structural uncertainty. We consider an axially-compressed thin-walled shell with initial geometrical
imperfections.

The shell length is L. The axial coordinate, along the length of the shell, is z, which we
normalize as ξ = πz/L ∈ [0, π]. The azimuthal coordinate is θ ∈ [0, 2π]. The deviation of an actual
shell from the nominal shell dimension at point (ξ, θ) is η(ξ, θ). We represent the set of allowed
imperfection-functions by the uniform-bound convex model:

FUB(η̂) = {η(ξ, θ) : |η(ξ, θ)| ≤ η̂} (54)

The deviations from the nominal initial shell shape are uniformly bounded by η̂. Every imperfection-
function, η(ξ, θ), whose magnitude nowhere exceeds η̂, is included in FUB. One can view η̂ as a
radial tolerance of the shells whose imperfections are represented by FUB.

A typical question which arises in design-for-reliability is: how large a radial tolerance is ac-
ceptable, when the shell will bear static axial loads up to the value λmax?

Implicit in this question is a statement about the uncertainty in the actual shell shapes. If in
fact the designer knows nothing about the geometrical imperfections other than the value of the
radial tolerance to which the shells have been produced, then FUB is probably the most detailed
representation of the range of possible shell shapes which can be justified by the available data.
If additional information is available, such as spectral data about the spatial frequencies of the
imperfections, then other convex models would be appropriate. Various more detailed convex
models for this purpose are discussed in [2, 4, 5].

We will proceed with the simple uniform-bound convex model. The design question can be
formulated as follows. The design-parameter is η̂, the radial tolerance. Denote by µ(η̂) the least
buckling load of any shell in FUB(η̂). Then determine the greatest value of the radial tolerance, η̂,
for which the least buckling load, µ(η̂), exceeds the maximum load, λmax.

The mechanical analysis of geometrically imperfect shells is most conveniently done when the
imperfections are expressed in terms of their Fourier coefficients. Let x(η) be a vector of the
dominant Fourier coefficients of η(ξ, θ). Let x0 be the vector of Fourier coefficients of the nominal
shell shape. Let Ψ(x0) be the buckling load of this nominal shell, and Ψ(x0 + x) be the buckling
load of a shell with initial imperfections whose Fourier coefficients are x. For small imperfections
we can expand Ψ(x0 + x) as:

Ψ
[
x0 + x(η)

]
= Ψ(x0) + xT (η)

∂Ψ

∂x

∣∣∣∣
x=x0

(55)

Some manipulations lead to the following expression for the reduced buckling load due to the
imperfection function η(ξ, θ):

Ψ
[
x0 + x(η)

]
= Ψ(x0) +

∫ 2π

0

∫ π

0
η(ξ, θ)S(ξ, θ) dξ dθ (56)

where S(ξ, θ) is a combination of trigonometric functions with coefficients which depend on the
elements of the vector ∂Ψ(x = x0)/∂x. See [4, 5].

Examination of eq.(56) shows that the greatest reduction in the buckling load is obtained from
the imperfection-function which switches between its extreme values, +η̂ and −η̂, as S(ξ, θ) changes
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sign from negative to positive. The minimum buckling, load for shells whose radial tolerance is η̂,
is:

µ (η̂) = min
η∈FUB

Ψ
[
x0 + x(η)

]
(57)

= Ψ(x0)− η̂

∫ 2π

0

∫ π

0
|S(ξ, θ)| dξ dθ (58)

This relation expresses the buckling load of the weakest shell from among the ensemble of shells
whose radial tolerance is η̂. Additionally, it is based on mechanical data expressing the imperfection-
sensitivity of the buckling load, which appears in the function S(ξ, θ). Eq.(58) is derived for small
imperfections, and is therefore linear in the parameter η̂.

Eq.(58) underlies the convex-modelling assessment of the reliability of the uncertain shell. The
shell uncertainty is expressed by η̂ and the range of performance — embodied in the least buckling
load — is given by µ(η̂). One chooses the radial tolerance to assure that the maximum axial load
does not exceed the least buckling load:

λmax < µ(η̂) (59)

Uncertainty plays a central role in this analysis: FUB represents a set of shells, any one of which
could occur. Any given physical shell with tolerance not exceeding η̂ is represented by one of the
imperfection functions in FUB; which one, one does not know. The shell is ‘reliable’ in the sense of
our non-probabilistic model of uncertainty when (59) is satisfied.

One must understand clearly that, while uncertainty in the shell shapes is fundamental to this
analysis, there is no frequency or likelihood information, either in the formulation of the convex
model or in the concept of reliability. It might be useful, for example, to assess the reliability of a
given radial tolerance by a quantity such as:6

r = 1− λmax

µ(η̂)
(60)

When r is close to unity, the maximum load is far less than the least load-bearing capacity; the sys-
tem is ‘reliable’ in the non-probabilistic sense. As r approaches zero, the maximum load approaches
the least buckling load, and failure becomes more imminent. However, unlike in a probabilistic anal-
ysis, r has no connotation of likelihood. We have no rigorous basis for evaluating how likely failure
may be; we simply lack the information, and to make a judgement would be deceptive and could
be dangerous. There may definitely be a likelihood of failure associated with any given radial
tolerance. However, the available information does not allow one to assess this likelihood with any
reasonable accuracy.

8 Summary

We have stressed the following ideas in this paper:
1. The modelling of uncertainty can be either probabilistic or non-probabilistic. We have

employed several convex models to implement the latter option.
2. Many authors, from both philosophical and technological areas, have noted that the details

of probability distributions are often difficult to verify or justify with concrete data.
3. Analysis and design for high probabilistic reliability are very sensitive to small inaccuracies

in the tails of the probability density function.

6I am indebted to Prof. Cempel for this suggestion.
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4. Convex models are structurally different from probabilistic models. In particular, they
have no probability densities. Instead, they use information about the uncertainty to specify the
structure of sets of uncertain events.

5. A theorem is presented which compares the output of a system driven by a stochastic process,
with the output of the same system driven by a convex model which is homologous to the stochastic
process. The theorem suggests that input uncertainties which appear quite similar when modelled
by either a stochastic or a convex model can lead to output uncertainties which are significantly
different.

6. We have examined three examples, covering both input uncertainties and structural-geometric
uncertainties.
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