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ABSTRACT 

The WEI-WUV algorithm purports to assess the effectiveness of a system of weapon systems based 

on a  linear function of the quantities of each weapon type. The WEI-WUV algorithm has been 

widely criticized and indeed fallen into disrepute. The foremost limitations are (1) the need for 

subjective choice of numerical coefficients to represent complex and subtle situations, and (2) the 

linearity of the WEI/WUV function not accounting for synergy or competition between force 

elements. Is WEI-WUV really passé, out of date, of little or no use? In this paper we employ info-gap 

decision theory to model and manage the very real uncertainties that accompany a WEI-WUV 

assessment. We demonstrate how the impact of parameter and functional uncertainties can be 

assessed, and how the WEI-WUV algorithm can be used in supporting responsible decision making. 

We also explore the value of additional information when confronting dispute among experts about 

the values of WEI-WUV parameters. 

 

INTRODUCTION 

 Military effectiveness is obtained, in part, by acquiring the proper combination of weapon 

systems, munitions, logistics, and other military capabilities. The choices involved are, ultimately, 

quantitative: how much of this, and how much of that, subject to constraints on money and time. 

The challenge facing quantitative decision support for force buildup is that military effectiveness is 

the result of many factors in addition to systems and munitions: morale, training, organization, 

intelligence, future adversary capabilities, goals of the political echelon, and more. In order for 

quantitative assessment to be useful in selecting weapon systems and munitions or in assessing 

force balance, it must account for the vast uncertainties that are inherent in the wider context of 

military effectiveness.  

 The WEI-WUV methodology provides an algorithm (whose mathematics we will specify later) for 

assessing the effectiveness of a system of weapon systems, with N different weapon categories 

(e.g. tanks, fighter aircraft, etc.) and J different specific weapon types in each category (e.g. M1 

tanks, F16 fighters, etc.). Expert judgment is elicited to evaluate the Weighted Unit Value (WUV) of 

each weapon category, and the Weapon Effectiveness Index (WEI) of each weapon type in each 

category (Krepinevich and Watts, 2015, pp.142-148). The WEI-WUV algorithm assesses the overall 

effectiveness as a linear function of the quantities of each weapon type, weighted by the WEI and 

WUV coefficients. The WEI-WUV approach has a long history in the US Army. Raymond (1991) 

discusses detailed examples, and the US Army Concepts Analysis Agency (1991) cites US Army 

sources as far back as 1974. The WEI-WUV algorithm is easy to implement and precise: one gets a 
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single number to assess military effectiveness of a complex configuration of systems. The challenge 

is two-fold: is the linear equation realistic and relevant or are non-linear functions needed, and are 

the coefficients correct? 

It is plausible that, if we knew the broader context in detail, then we could calibrate the WEI-

WUV algorithm for reliable assessment of military effectiveness in that context. The problem is that 

we cannot know the unknown future context in which the systems will operate. We face an info-

gap: a deep disparity between what we do know and what we need to know in order to make a 

responsible decision. We thus cannot reliably calibrate the WEI-WUV algorithm (or any other 

algorithm). The WEI-WUV algorithm can err either in its calibration or in its mathematical form.  

What we can do, however, is to model and manage this uncertainty in the quantitative assessment 

of system configurations. This begins by distinguishing between two different questions. One 

question – that we cannot answer – is: how wrong is the quantitative algorithm for assessment of 

effectiveness? The other question – that we can answer – is: how much error in the quantitative 

algorithm can we tolerate without jeopardizing the quality of the assessment?  

This second question addresses the robustness-to-uncertainty of the algorithm, and is the focus 

of this article, directed specifically at the WEI-WUV algorithm. An algorithm is highly robust to 

uncertainty if the algorithm can err substantially and yet the assessment is still reliable. Conversely, 

an algorithm has low robustness if the quality of the assessment is jeopardized when the algorithm 

errs even a little. The robustness question takes a different form when facing a choice between two 

(or more) alternatives: how much error in the quantitative algorithm can we tolerate without the 

decision switching from one alternative to another? In this paper we develop a methodology for 

assessing robustness to uncertainty, based on info-gap decision theory, and apply it to the WEI-

WUV algorithm. We will consider robustness to uncertainty both in the parameters and in the 

mathematical form of the WEI-WUV algorithm. 

It has long been recognized that quantitative decision support for assessing military 

effectiveness is both important and subject to limitations. Speight, Rowland and Keys (1997) bring 

"analytical methods to bear in order to: identify the factors most closely associated with past 

success; chart the manner in which these factors interact; and ascertain the hallmarks of successful 

historical campaigns" (p.31). They note, however, that the widely used WEI-WUV (Weapon 

Effectiveness Index-Weighted Unit Value) "does not take proper account of the complexity of 

battlefield interactions" (p.32). Lussier (U.S. Congressional Budget Office, 1988) notes that the WEI-

WUV method 

“ignores many attributes of a military unit – such as quality and training of personnel, support 

equipment, logistic capability, and the interplay of various weapons – that can determine the 

outcome of a particular battle. Despite their importance, however, these factors often do not 

lend themselves to easy translation into numerical values.” (p.16) 

“Static comparisons like those using the WEI/WUV method also ignore other decisive 

variables, such as strategy, maneuver, terrain, and combat attrition, that determine the conduct 

of war. … Finally, the WEI/WUV method assumes that the added benefit of additional weapons is 

linear – that is, more weapons of any kind continue to provide the same additional capability as 

the first such weapon.” (p.17) 
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The WEI-WUV algorithm has rightly been criticized, and indeed fallen into disrepute in the US 

Army and elsewhere, due to very real limitations. The foremost limitations are (1) the need for 

subjective choice of numerical coefficients to represent complex and subtle situations, and (2) the 

linearity of the WEI/WUV function not accounting for synergy or competition between force 

elements. In this paper we will employ info-gap decision theory to model and manage the very real 

uncertainties that accompany a WEI-WUV assessment. We will demonstrate how parameter and 

functional uncertainties can be ameliorated. We also explore the value of additional information 

when confronting dispute among experts about the values of WEI-WUV parameters. Is WEI-WUV 

passé? Not necessarily, as we will see. 

Info-gap robustness analyses have been performed in formulating and quantitatively evaluating 

a wide range of decisions in engineering, biological conservation, economics, medicine and other 

areas (see info-gap.com and Ben-Haim 2006, 2010). Info-gap robustness analyses have also been 

performed for various quantitative decision problems in security and military affairs. Moffitt, 

Stranlund and Field (2005) use info-gap robustness to develop inspection protocols for detecting 

terrorist activity. Sisso, Shima and Ben-Haim (2010) apply info-gap robustness in designing search 

strategies when probabilistic information about potential targets is highly uncertain. Davidovitch 

and Ben-Haim (2011) use info-gap theory in designing profiling strategies given severe uncertainty 

about criminal response to profiling. Info-gap theory has also been applied to the analysis of 

robustness to uncertainty in a range of qualitative decisions in military affairs (Ben-Haim 2014, 

2015, 2016). 

  

DECISION STABILITY AND ROBUSTNESS TO UNCERTAINTY 

   

Our analysis of the WEI-WUV algorithm is based on the idea of robustness to uncertainty as 

evaluated with info-gap theory. An algorithm for assessing military effectiveness is highly robust to 

uncertainty if the decisions that it induces yield acceptable effectiveness despite substantial error in 

the parameters or structure of the algorithm. Equivalently, an algorithm is highly robust to 

uncertainty if widely different parameter values or functional forms would lead to the same 

decision. An algorithm that is robust to uncertainty will yield decisions that are stable in the sense 

that the same decision would be made even with quite different realizations of the uncertain 

quantities. A robust decision is desirable because it is consistent with the best available data and 

knowledge, as well as with a wide range of other possible data and knowledge. Stated differently, a 

robust decision is equivalent to a consensus decision of people whose data and knowledge is highly 

diverse.  

It is important to emphasize that the decision-stability of a robust decision does not mean that 

the decision is rigid, unwavering or indifferent to existing knowledge. A robust decision is 

responsive to existing data and understanding, but is also consistent with a wide range of 

alternative knowledge that cannot be excluded on the basis of present understanding. This realism 

of the robustness is a result of the way the uncertainty model is formulated, based on info-gap 

decision theory, as we will explain. 
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The concept of robustness highlights two distinct aspects of a WEI-WUV algorithm to support 

decision making. First, the WEI-WUV assessment establishes a ranking of preference among 

available options. Second, we want to know if this preference ranking would stay the same even if 

our algorithm were substantially different in its parameter values or its functional form. That is, we 

want to know if the putative preference ranking is robust to uncertainty. That one option is 

preferred over another option by our WEI-WUV assessment does not imply that this putative 

preference is robust to uncertainty. Preference-ranking, and robustness-to-uncertainty of the 

preference-ranking, are two distinct attributes of a decision algorithm, as we will explain.  

The putative WEI-WUV assessment – the numerical value of the force effectiveness – is a 

prediction in which we can have little faith. The point of the robustness analysis is to support the 

prioritization of force configurations without depending on explicit predictions of force 

effectiveness. When a specific force configuration has adequate predicted effectiveness and high 

robustness to uncertainty, then we have reason to adopt that configuration even though we cannot 

predict its actual force effectiveness. The info-gap robustness analysis can be seen as a response to 

Colin Gray's appeal (2010) for managing the unknown future: 

"You cannot know today what choices in defense planning you should make that will be 

judged correct in ten or 20 years' time. Why? Because one cannot know what is unknowable. 

Rather than accept a challenge that is impossible to meet, however, pick one that can be met 

well enough. Specifically, develop policy-makers, defense planners, and military executives so 

that they are intellectually equipped to find good enough solutions to the problems that emerge 

or even erupt unpredictably years from now. (p.6) 

"The gold standard for good enough defense planning is to get the biggest decisions correct 

enough so that one's successors will lament 'if only …' solely with regard to past errors that are 

distinctly survivable." (p.9) 

Info-gap robustness analysis, when applied to the WEI-WUV algorithm, supports force planning 

without depending on prediction of the future. It provides a tool to assist in managing "problems 

that emerge … unpredictably years from now." 

We will present an explicit methodology for evaluating the info-gap robustness to uncertainty. 

Three examples will demonstrate how robustness is evaluated and used in decision making based 

on the WEI-WUV algorithm. 

 

FIRST EXAMPLE: UNCERTAIN MATHEMATICAL FORM 

 Introduction 

Linear mathematical functions are widely used in quantitative assessment, despite their 

acknowledged deficiencies as mentioned earlier. The deficiencies of linear functions can be 

substantially ameliorated, and their advantages enjoyed, by managing their uncertainty as we now 

explain by examining the WEI-WUV algorithm. 

 The WEI-WUV algorithm assesses a system of systems, with N different weapon categories (e.g. 

tanks, attack helicopters, etc.) and J different specific weapon types in each category (e.g. M60A3 

and M1 tanks, AH-1S and AH-64 helicopters, etc.). The concept of 'weapon categories' should be 

construed broadly to include logistical and support systems, intelligence capabilities, command and 
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communication technologies etc., as well as explicit weapon systems. A specific force composition 

is specified by a matrix Q  whose elements 
n jq specify the number of weapons of type j in category 

n. The WEI-WUV algorithm assesses the effectiveness of a specific force composition with the 

function: 

 
1 1

( )
N J

n n j n j

n j

E Q v q w
= =

=   (1) 

nv  is the Weighted Unit Value (WUV) for weapons category n, assessing the relative importance of 

this weapon category. 
n jw  is the Weighted Effectiveness Index (WEI) for weapon type j in category 

n, assessing the relative importance of the jth weapon type in category n.  

 It is clear, however, as many critics have acknowledged, that eq.(1) ignores important nonlinear 

effects. In other words, the function we should use to assess effectiveness of the force composition 

is: 

 
1 1

( , ) ( )
N J

n n j n j

n j

E Q f v q w f Q
= =

= +   (2) 

where the function ( )f Q  is unknown or at least highly uncertain. For example, ( )f Q  might be a 

quadratic function of the weapon quantities 
n jq  expressing the diminishing marginal utility of 

individual weapon types, or expressing positive synergistic interactions, or negative competitive 

interactions, of different weapon types. Or ( )f Q  might represent unknown higher-order 

polynomial relations. Or ( )f Q  might represent discontinuous variation of effectiveness reflecting 

abrupt change due to highly nonlinear properties of the system of systems.  

Info-Gap Model of Uncertainty 

Let iE  and jE  denote the estimated effectiveness of two force compositions, iQ  and jQ  

respectively, as assessed by eq.(1). Let i jE  denote the average estimated effectiveness: 

( ) / 2i j i jE E E= + . The uncertainty in this example is that we don’t know the form of the non-linear 

function, ( )f Q  in eq.(2), or its value relative to the estimated effectiveness values based on eq.(1) 

for any specific choice of the quantity matrix Q . This uncertainty is expressed as an unknown 

bound, h , on the absolute value of the ratio of ( )f Q  to the average effectiveness i jE . That is: 

 
( )

and 0
i j

f Q
h h

E
   (3) 

The left hand inequality in eq.(3) asserts that, while the form of the function ( )f Q  is unknown, its 

fractional error is bounded by h  for any specific choice of the quantity matrix Q . The right hand 

inequality asserts that the value of this bound is unknown. The two relations in eq.(3) assert that 

we have no knowledge that can restrict the form of the function ( )f Q , and that we have no basis 

for fixing an upper bound on the relative error. We are acknowledging and accounting for very 

severe uncertainty in the functional form of the WEI-WUV algorithm. In order to decide whether or 

not the WEI-WUV recommendation is reliable, despite this uncertainty, we ask: how robust is the 

algorithm to this uncertainty? We will elaborate the answer shortly. 
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 Let ( )U h denote the set of all functions, ( )f Q , obeying the left hand condition in eq.(3).  An 

info-gap model for uncertain fractional error in the function ( )f Q , for comparing the specific 

compositions iQ  and jQ , is the following unbounded family of nested sets of functions: 

 
( )

( ) ( ) : , 0
i j

f Q
U h f Q h h

E

  
=   
  

 (4) 

 

( )U h  is a set of functions, ( )f Q , defined on the domain of possible quantity matrices, Q . These 

sets become more inclusive as h  increases. Thus h  is called the 'horizon of uncertainty'. Because h  

is unknown, the info-gap model is an unbounded family of nested sets, ( )U h , of possible 

realizations of the uncertain entity, the function ( )f Q  in this case. The unboundedness of the info-

gap model implies that there is no known worst case. Info-gap models can be defined in many 

different ways to represent different partial knowledge about the unknown entity. As in this info-

gap model and others that we will encounter, bounded uncertainty in the shape of a function is 

readily represented. The robustness analysis based on an info-gap model of uncertainty is different 

from the usual sensitivity analysis in several ways. First, it considers unbounded variation rather 

than small or plausible estimated errors. Second, it deals with unbounded uncertainty in the shape 

of functions as well as in parameter values. Finally, an info-gap model of uncertainty can readily 

incorporate information about the uncertain variability, especially for functional uncertainty, as we 

now explain. 

 The info-gap model in eq.(4) can be modified to express additional information, if it is available 

to the analyst. For example, we might confidently assert that the effectiveness increases with 

increasing quantity of each weapon type, but that the marginal utility decreases. Thus two 

additional constraints would be added: 

 
( )

0



 n j

f Q

q
   and    

2

2

( )
0




 n j

f Q

q
    (5) 

The info-gap model for comparing compositions iQ  and jQ  now becomes: 

 
2

2

( ) ( ) ( )
( ) ( ) : 0, 0, for all , . , 0

n j n j i j

f Q f Q f Q
U h f Q n j h h

q q E

   
=     

   

    (6) 

Further additional information can be added, when available, such as second-derivative constraints 

representing unknown positive synergistic interactions, or unknown negative competitive 

interactions, between different weapon types. There is a vast array of mathematical forms for info-

gap models of uncertainty, suitable to the non-probabilistic representation of uncertainty in many 

forms (Ben-Haim 2006, 2010). 

 Info-Gap Robustness 

 Define iQ , jQ , iE , jE  and i jE  as before. We would like to use the algorithm in eq.(2) for 

comparing configurations iQ  and jQ , but we don’t know the form of the function ( )f Q  so we can't 

evaluate ( , )iE Q f  or ( , )jE Q f . If we use eq.(1) instead, the robustness question (discussed 

earlier) is: how wrong can eq.(1) be, without unduly jeopardizing the quality of the decision?  
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Suppose that eq.(1) indicates that iQ  is more effective, and hence putatively preferred over jQ . 

The robustness question is: how much error in eq.(1) can we tolerate without altering this 

preference ranking? That is, how large could ( )f Q  be, relative to the linear term, without changing 

the decision based on ignoring ( )f Q  altogether and using eq.(1)? If large error can be tolerated 

without altering the decision, then we are confident in using eq.(1) even though we know it is 

wrong. We won't be able to predict the effectiveness, but we can confidently prioritize the force 

configurations. 

Implementation of the analysis of robustness proceeds as follows. Define the effectiveness-

margin, ,  of iQ  over jQ  as ( , ) ( , )i jE Q f E Q f = − . For any required effectiveness-margin, the 

robustness, denoted ˆ( )h  , is the greatest tolerable absolute fractional error of the unknown 

function ( )f Q . Large robustness implies that the algorithm in eq.(1) can be confidently used 

despite ignorance of the non-linear interactions. In contrast, small robustness implies that we 

cannot have confidence in eq.(1). The robustness function is formally defined as: 

 ˆ( ) max : [ ( , ) ( , )]min
( ) ( )

   
  = −   
    

i jh h E Q f E Q f
f Q U h

 (7) 

Reading this expression from left to right: The robustness, ˆ( )h  , for comparing force compositions 

iQ  and jQ , is the greatest horizon of uncertainty, h , up to which the lowest margin of 

effectiveness, ( , ) ( , )−i jE Q f E Q f , exceeds the required critical value  , for all realizations of the 

unknown function, ( )f Q , in the uncertainty set ( )U h . The inner minimum is the worst case at 

horizon of uncertainty h , and the robustness, ˆ( )h  , is the greatest h  at which the worst case still 

satisfies the required effectiveness margin as specified by  . We don’t know the value of the 

horizon of uncertainty, h , so we can’t calculate the true worst case. Nonetheless, we can calculate 

the greatest tolerable uncertainty, which is ˆ( )h  . 

The robustness function is readily derived for the info-gap model of eq.(4). As before, define 

( )i iE E Q=  in eq.(1) and similarly for 
jE . Thus eq.(2) becomes ( , ) ( )i i iE Q f E f Q= +  and similarly 

for j . Let ( )m h  denote the inner minimum in eq.(7), which occurs when ( )f Q  takes the following 

values: ( ) = −i i jf Q hE  and ( ) = +j i jf Q hE  (we are assuming that i jE  is positive). Thus, because 

( )m h  must be no less than  , we find the following expression for the robustness: 

 ˆ( ) 2 ( )
i j

i j i j

i j

E E
m h E E hE h

E E

− −
= − −     =

+
 (8) 

or zero if this expression for ˆ( )h is negative (recall that ( ) / 2i j i jE E E= + ). 

Data 

The Weapon Effectiveness Indices, 
n jw , and the Weighted Unit Values, nv , are taken from the 

report of the U.S. Congressional Budget Office (1988, p.15). These data are also used by Krepinevich 

and Watts (2015, p.143). The CBO WUV and WEI values are: 

 (94, 109, 56, 71, 73, 99, 55, 30, 4)v =   (9) 



8 
 

 

1.11 1.31 0

1.00 1.77 0

1 0 0

1 0 0

0.79 0.69 0.2

1.02 0.98 1.16

0.97 1 0

1 0 0

1 1.77 0

W

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

  (10) 

We will consider 3 force compositions:  a standard composition 1Q , an innovative composition 

2Q , and a conservative composition 
3Q . The standard force composition, 1Q , is the one specified in 

the U.S. CBO report. The innovative and conservative force compositions, 
2Q  and 

3Q , modify the 

composition of three weapon categories: tanks (category 1), attack helicopters (category 2), and 

anti-tank missiles (category 5). The higher WEI value for the M1 tank, for the AH-64 helicopter, and 

for the TOW and the Dragon anti-tank missiles, suggest that these weapon types can be treated as 

innovative options compared with the alternatives (M60A3 tank, AH-1S helicopter, and LAW anti-

tank launcher). Force compositions for these categories are shown in tables 1, 2 and 3. 

 

Force composition 
1,1q  

1,2q  
1,3q  

 M60A3 M1 - 

Standard (1) 150 150 0 

Innovative (2) 0 300 0 

Conservative (3) 300 0 0 

 
 

 

Force composition 
2,1q  

2,2q  
2,3q  

 AH-1S AH-64 - 

Standard (1) 21 18 0 

Innovative (2) 0 39 0 

Conservative (3) 39 0 0 

 

Force composition 
5,1q  

5,2q  
5,3q  

 TOW Dragon LAW 

Standard (1) 150 240 300 

Innovative (2) 540 150 0 

Conservative (3) 0 0 690 

 

Results 

Table 1. Force compositions for tanks. 

 

 

Table 2. Force compositions for attack helicopters. 

 

 

Table 3. Force compositions for anti-tank missiles. 
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We illustrate the info-gap robustness analysis by considering these 3 force compositions, 1Q , 
2Q  

and 
3Q . Based on eq.(1), the putative effectiveness values, 1E , 

2E  and 
3E , for the three options 

are 51.22 10 , 51.40 10  and 51.03 10  respectively. The average effectiveness 
i jE , the 

effectiveness-margin 
i jE E− , and their ratio, are shown in table 4 for the three comparisons of 

these three compositions. The effectiveness margin of the innovative option (2) over the standard 

option (1) is the smallest of the three comparisons, and it is also the smallest fraction, 0.138, of the 

average effectiveness. The standard (1) compared with the conservative option (3) is the next, 

while the innovative (2) compared with the conservative option (3) is the most definitive 

comparison, showing a 30.9% effectiveness margin relative to the average effectiveness of these 

two options. While a 30.9% advantage of the innovative over the conservative force composition 

may (or may not) seem substantial based on contextual understanding, how robust is this to error 

in the functional form of the WEI-WUV algorithm in eq.(1)?  

 

i  j  
i jE  i jE E−  ( ) /i j i jE E E−  

2 1 51.31 10  41.82 10  0.138 

1 3 51.13 10  41.94 10  0.172 

2 3 51.22 10  43.75 10  0.309 

 

 

The robustness functions for the comparisons of the three force compositions are plotted in fig. 

1, whose details we now explain. We will stress the concepts of trade off and zeroing, and explain 

how they are used in responsible decision making. 

The solid curve in fig. 1 is the robustness, ˆ( )h  , vs. the required effectiveness margin,  , for 

comparing the innovative force composition, 
2Q , against the conservative composition 

3Q . The 

negative slope of the curve reflects the trade off between the required margin of effectiveness and 

the robustness-against-uncertainty. Greater margin  (which is desirable) can be required but only 

by reducing the robustness, ˆ( )h   (which is not desirable). This is a universal and unavoidable trade 

off (sometimes called the pessimist's theorem): a more demanding outcome (greater required 

effectiveness margin  ) is more vulnerable to failure (hence the robustness, ˆ( )h  , is lower).  

                                                 

Table 4. Effectiveness margins for example 1 with 3 

compositions: standard (1), innovative (2) and conservative (3). 
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The solid robustness curve in fig. 1 reaches the horizontal axis when   precisely equals the 

estimated value of the effectiveness margin, 43.75 10 . This means that the estimated margin has 

no robustness against uncertainty. This universal property of zeroing means that best-estimated 

values are not a good basis for decision making because they have zero robustness against 

uncertainty. This is not surprising to the skeptic who hastens to point out that the 'best estimate' is 

based on eq.(1) which is known to be wrong.  

Combining the trade off and zeroing properties of the robustness curve enables the responsible 

use of eq.(1). On the one hand the analyst treats the estimated margin of effectiveness of the 

innovative over the conservative option, 43.75 10 , with considerable caution because its 

robustness is zero. On the other hand, one notes from the solid curve in fig. 1 that the robustness is 

0.15 when the required effectiveness margin, ,  is zero: ˆ(0) 0.15=h . This means that 
2Q  is 

preferred over 
3Q  provided that the unknown nonlinear function ( )f Q  is less in absolute 

magnitude than 15% of the average effectiveness of these two compositions. We don't know the 

shape of the function ( )f Q , and extensive data and knowledge would be required in order to 

specify it. However, much less extensive contextual understanding might be sufficient in order to 

assert that ( )f Q  is (or is not) plausibly greater than 15% of the linear model. The analyst might 

make the judgment that, for these very different force compositions, the nonlinear interactions of 

weapon systems could plausibly be very important, and that 15% robustness is in fact rather low. 

This would imply that one would not have confidence in preferring 
2Q  over 

3Q  based on the 

putative WEI-WUV recommendation. On the other hand, the analyst might make the judgment 

that, despite the names of these two compositions, they are in fact very much in the same 'ballpark' 

and that linear interactions capture most of the relevant factors. In that case, a 15% robustness of 

the preference for 
2Q  over 

3Q is quite definitive. 

Similar conclusions result from the comparison of the standard vs the conservative compositions 

(1–3, dashed line in fig. 1) and for the innovative vs the standard option (2–1, dot-dashed line). 

Both curves display the trade off between robustness and required effectiveness margin, and the 

zeroing property that the estimated effectiveness margin has no robustness against error in  eq.(1). 

1Q  is putatively preferred over 3Q  with an estimated effectiveness margin of 41.94 10 . Likewise, 

2Q  is putatively preferred over 1Q  with an estimated effectiveness margin of 41.82 10 . However, 

the robustness to uncertainty of these estimated margins is zero, so these putative preferences 

must be treated with great caution. Furthermore, the robustness in general is low for these 

comparisons. For instance, at zero margin, the robustness values are ˆ(0) 0.086=h  and 

ˆ(0) 0.069=h  for comparisons 1–3 and 2–1, respectively. The analyst may make the judgment that 

8.6% or 6.9% robustness is too low to warrant support for the putative WEI-WUV preference of 1Q  

over 
3Q  or for 

2Q  over 1Q , respectively. 

Figure 1. Robustness 

functions for example 1. 
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SECOND EXAMPLE: PARAMETRIC UNCERTAINTY 

 Introduction 

In the previous section we considered uncertainty in the mathematical form of the WEI-WUV  

algorithm for assessing military effectiveness and for prioritizing alternative force compositions. 

The example considered the linear WEI-WUV algorithm, eq.(1), to which an unknown nonlinear 

function was appended, resulting in eq.(2). We now return to the strictly linear form, eq.(1), and 

consider uncertainty in the values of the parameters: the WUV's nv  assess the relative importance 

of the nth weapon category, and the WEI's 
n jw  assess the relative importance of the jth weapon 

type in category n.  

Judgment is needed to choose the values of these WEI-WUV parameters, and considerable 

uncertainty can surround the choices of the parameter values. Why, for instance, is the Weapon 

Effectiveness Index of the AH-64 attack helicopter 1.77 while the WEI index for the AH-1S is 1.00? 

Why is the Weighted Unit Value of the Vulcan air defense system 56, while the WUV of the Bradley 

fighting vehicle is 71 (U.S. CBO, 1988, p.15)? Different professional analysts might plausibly choose 

different values. Likewise, the same experts might choose different parameter values when 

considering different conflict scenarios. We will demonstrate that the info-gap robustness analysis, 

used in the previous section to evaluate the impact of functional uncertainty, is directly applicable 

to this parameter-uncertainty analysis. (The two analyses can be combined, though we will not 

pursue that extension here.) 

 We will compare the same three force compositions considered earlier: the standard 

composition 1Q , the innovative composition 
2Q , and the conservative composition 

3Q . We will use 

the linear WEI-WUV algorithm in eq.(1), with the parameter values recommended in the study by 

Lussier (U.S. CBO, 1988, p.15). However, we are concerned that different analysts might well 

provide very different (though not negative) values of the WEI-WUV coefficients. More specifically, 

consider two force compositions, iQ  and jQ , where the putative effectiveness, according to eq.(1) 

with the CBO WEI-WUV values, is greater for iQ  than for jQ , that is: i jE E−  exceeds a required 

value of the effectiveness margin  . The robustness question, in the context of parameter 

uncertainty, is: by what fraction can the WEI-WUV coefficients change without reducing the 

effectiveness margin below the required value  ? In other words, how robust to parameter 

uncertainty is the preference for iQ  over jQ ?  

 Formulation and evaluation of the robustness 

Let v  and W  denote the WEI-WUV values in the CBO report (U.S. CBO, 1988, p.15), and let v  and 

W  denote uncertain true values. The following info-gap model represents unknown and 

unbounded fractional error of the nominal values, while also requiring all values to be non-

negative: 

 ( ) , : 0, , . 0, , , , 0
n j n jn n

n n j

n n j

w wv v
U h v W v h n w h j n h

v w

 −− 
=        
  

 (11) 
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Like all info-gap models of uncertainty, this is an unbounded family of nested sets for which a worst 

case is unknown. We note that the same horizon of uncertainty, h , applies to all of the fractional 

errors in this info-gap model. That is, at horizon of uncertainty h , the fractional errors of all the 

parameters, nv  and 
n jw , are bounded by the same value of h . The value of h , however, is 

unknown. 

The robustness is defined analogously to eq.(7), though with respect to parameter uncertainty. 

The robustness for comparing force compositions iQ  and jQ  is the greatest horizon of uncertainty, 

h , up to which the margin of effectiveness, ( , , ) ( , , )−i jE Q v W E Q v W  based on eq.(1), exceeds the 

required value  , for all realizations of the uncertain parameters, v  and W , in the uncertainty set 

( )U h . The robustness function is formally defined as: 

 ˆ( ) max : [ ( , , ) ( , , )]min
, ( )

   
  = −   
    

i jh h E Q v W E Q v W
v W U h

 (12) 

Let ( )m h  denote the inner minimum in eq.(12). The uncertainty sets ( )U h  become more 

inclusive as the horizon of uncertainty, h , increases. Thus ( )m h , which is a minimum on ( )U h , 

decreases as h  increases. From eq.(12) we see that the robustness, ˆ( )h , is the greatest value of 

h  at which ( )  m h . From this we see that a plot of  h  vs. ( )m h  is equivalent to a plot of ˆ( )h  vs. 

 . In other words, ( )m h  is the inverse function of ˆ( )h .  In short, it is sufficient to evaluate ( )m h , 

which we do as follows. 

Using eq.(1) we can write: 

 ( )( ) ( )

1 1

( , , ) ( , , )
= =

− = −  n j n j

N J
i j

i j n n j

n j

E Q v W E Q v W v q q w  (13) 

Define a truncation function: + =x x  if x  is positive, and 0+ =x  otherwise.  

It is evident from the info-gap model of eq.(11) that the inner minimum in eq.(12) is obtained if 

each 
n jw  is chosen as (1 ) n jh w+  if the corresponding ( ) ( )

n j n j

i jq q−  is negative, and chosen as  

(1 ) n jh w+−  otherwise. 

Similarly, it is evident from the info-gap model of eq.(11) that the inner minimum in eq.(12) is 

obtained if each 
nv  is chosen as (1 ) nh v+  if the corresponding ( )( ) ( )

1
n j n j

J
i j

n j

j

q q w
=

−  is negative, and 

chosen as  (1 ) nh v+−  otherwise. 

The inner minimum, ( )m h , is obtained from eq.(13) with these choices of 
n jw  and 

nv . We now 

discuss the numerical results. 

Results 

 The putative effectiveness values and margins for the 3 compositions are the same as in the 

previous example (see table 4). As before, the innovative-conservative comparison (2-3) has the 

greatest estimated effectiveness margin, at 30.9% relative to the average effectiveness of these 

two options. How robust to uncertainty in the WEI-WUV parameters is this comparison? 

Robustness curves are shown in fig. 2 for the three comparisons. 
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 The zeroing and trade off properties of robustness curves, discussed earlier in connection with 

fig. 1, hold in the present case as well.  

The zeroing property is that putative estimates have no robustness to uncertainty in the data 

upon which the estimates are based. This is demonstrated by the horizontal intercepts of the 3 

robustness curves in fig. 2, at which the robustness is zero. These intercepts are the same as in fig. 

1, because in both figures they correspond to the putative estimates of the effectiveness margins 

presented in table 4.  

The robustness to uncertainty, ˆ( )h , trades off against the required margin of effectiveness,  : 

one can require greater margin only at the cost of accepting lower robustness to uncertainty. The 

innovative-conservative comparison (2–3, solid curve) has the greatest putative effectiveness 

margin (horizontal intercept furthest to the right), but also has the strongest trade off between 

robustness and effectiveness margin (lowest slope). The "cost of robustness" is greatest for the 

solid curve in fig. 2, meaning that a given positive increment of robustness, ˆ( )h , is obtained with 

the largest decrement of required effectiveness margin,  . Interestingly, the robustness at zero 

margin of effectiveness, ˆ(0)h , is very nearly the same for all three comparisons, equaling about 

0.22. This means that, in each of the three comparisons, the preference ranking is stable for all 

variations of the WEI-WUV coefficients up to about 22% of their nominal values. Larger parameter 

variations can lead to reversal of the sign of the effectiveness margin and hence reversal of the 

preference ranking of the corresponding force compositions. 

                                                                 
 

 

 

 The nominal preference ranking of the three compositions is based on evaluating the 

effectiveness margins using the nominal estimates of the WEI-WUV coefficients. These nominal 

preferences are that the innovative composition (2) is preferred over the standard composition (1), 

which in turn is preferred over the conservative composition (3). In light of the robustness analysis, 

these preferences will be the same among analysts who agree on the values of the WEI-WUV 

coefficients within plus or minus 22%.  

A decision maker who judges, based on experience or contextual understanding or consultation 

with diverse experts (see the next example), that the coefficients could vary more than 22% will not 

be confident in this putative preference ranking. If, for example, experience shows that WEI-WUV 

Figure 2. Robustness 

functions for example 2. 
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coefficients could vary by tens of percent, then fig. 2 shows that the margins of effectiveness can be 

strongly negative for each of the comparisons, indicating the possibility of reversal of the 

preferences. For example, if parameters can vary up to 40% , then the dashed curve at ˆ( ) 0.4 =h  

shows that the margin of effectiveness for the standard over the conservative composition can be 

negative and as small as 4

1 3 1.3 10− = − E E . This indicates possible strong preference for the 

conservative over the standard option. The comparison of the innovative and conservative options 

is even more dramatic, as seen from the solid curve in fig. 2. At 40% robustness the effectiveness 

margin for the innovative composition can be as negative as 4

2 3 2.6 10− = − E E , indicating a 

potential for strong preference for the conservative over the innovative option. 

A negative value of  , the required margin of effectiveness of configuration i over configuration 

j, would usually imply that j is preferred. For instance, the innovative (i=2) vs. the standard (j=1) 

comparison has 41.3 10 = −   at robustness of 0.4, suggesting that the standard option should be 

preferred. However, exogenous considerations – economic, organizational or political – may 

militate against returning to the standard configuration unless it is very substantially more 

effective. 

 

THIRD EXAMPLE: EXPERTS AND THEIR TRIBULATIONS 

 The knowledge and judgment of experts (and sometimes of non-experts) is used in choosing the 

parameter values of the WEI-WUV algorithm. Experts will often disagree in their judgments, 

indicating the need for collecting diverse opinions in attempting to converge on realistic parameter 

values. The degree of dispute among experts can be reduced by research and by various methods 

for eliciting expert judgment. What extent of agreement is needed in order to support responsible 

decision making? In this section we use the info-gap robustness function to address the question: 

how much dispute among experts is consistent with reliable use of the WEI-WUV algorithm?  

We suppose that our expert recommendations of WEI-WUV parameter values have been 

distilled as follows. Each WUV parameter, nv , has been assigned an estimated value nv with an 

associated positive error estimate, ns , that assesses the degree of dispute about nv . Recognizing 

that experts can change their minds and that other experts may have yet other judgments of the 

value of nv , we acknowledge that the true of value nv  may deviate from nv  by more than ns . 

Similarly, each WEI parameter, 
n jw , has been assigned an estimate, 

n jw , and a positive error 

estimate 
n jt , recognizing that the true value 

n jw  may deviate from 
n jw  by more than 

n jt . We 

assume, as before, that the nv ’s and the 
n jw ’s are non-negative. The question we address is: how 

much must the error estimates, ns  and 
n jt , be reduced (by legitimately reducing dispute among the 

experts) in order for the WEI-WUV algorithm to be a reliable basis for decision making? (The actual 

dispute-reduction process may also lead to revised values of the estimates, nv  and 
n jw , but we 

won’t consider their modification in this example.) 

We continue the example of the previous section, only modifying the info-gap model of eq.(11) 

as follows: 
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 ( ) , : v 0, , . 0, , , , 0
n j n jn n

n n j

n n j

w wv v
U h v W h n w h j n h

s t

 −− 
=        
  

 (14) 

The only difference from eq.(11) is that the fractional errors of the parameters are defined with 

respect to their error estimates rather than with respect to their estimated values. Eq.(14) is a 

generalization of eq.(11) because ns  and 
n jt  could be chosen as nv  and 

n jw , respectively, thus 

reverting to eq.(11). 

 We consider the same three force compositions, 1Q  (standard), 
2Q  (innovative) and 

3Q  

(conservative). The estimated WEI-WUV values, nv  and 
n jw , are taken from the report of the U.S. 

Congressional Budget Office (1988, p.15) as before. 

 The definition of the robustness function in eq.(12) is still valid, where now ( )U h is the info-

gap model of eq.(14). Likewise, eq.(13) is the effectiveness margin for comparing option i  with 

option j .  

In analogy to the discussion following eq.(13), the info-gap model of eq.(14) implies that the 

inner minimum in eq.(12) is obtained if each 
n jw  is chosen as 

n j njw t h+  if the corresponding 

( ) ( )

n j n j

i jq q−  is negative, and chosen as  ( )n j n jw t h
+

−  otherwise. 

Similarly, it is evident from the info-gap model of eq.(14) that the inner minimum in eq.(12) is 

obtained if each 
nv  is chosen as 

n nv s h+  if the corresponding ( )( ) ( )

1
n j n j

J
i j

n j

j

q q w
=

−  is negative, and 

chosen as  ( )n nv s h
+

−  otherwise. 

The inner minimum in eq.(12), ( )m h , is obtained from eq.(13) with these choices of 
n jw  and 

nv . 

We now discuss numerical results. 

The results in the previous section, based on the info-gap model in eq.(11), can be understood in 

terms of the info-gap model of eq.(14) by defining the uncertainty estimates as  n ns v=  for all n , 

and n j n jt w= for all n  and j . This definition of the uncertainty estimates means, in the context of 

the current example, that the expert dispute on each WEI-WUV parameter is on the order of 100% 

of the estimated value of that parameter. In other words, truly reliable estimates may deviate from 

the known estimated values by 100% or more. And this implies that the choice between any two 

options, iQ  vs. jQ , requires robustness to uncertainty of several hundred percent: a value of ˆ( )h   

in the range of perhaps 3 to 4. The robustness curves in fig. 2 show that positive efficiency margins, 

 , have much lower robustness for all comparisons. In other words, the expert dispute must be 

substantially reduced in order to support confident choice based on the WEI-WUV algorithm. 

By how much must the expert dispute be reduced, as expressed by smaller uncertainty 

estimates ns  and n jw , in order to achieve acceptable robustness and thereby achieve reliable WEI-

WUV assessment? We now illustrate the answer. 

Let 
n ns v=  for all n  and n j n jt w=  for all n  and j  for some positive choice of  . This means 

that the expert dispute over the WEI-WUV parameter values is about a fraction   of each 
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estimated value. (One can consider different degrees of dispute for different parameters if one has 

relevant information, but, for simplicity, we don’t consider that.)  

Fig. 3 shows robustness curves for 0.5 =  (left frame) and 0.25 =  (right frame). When 0.5 =  

the range of expert dispute is about  50% for each parameter value, implying the need for 

robustness several times this: ˆ( )h   in the range of 1.5 to 2.0. From the left frame in fig. 3 we see 

positive efficiency margins only for much lower robustness. Evidently,  50% dispute is too large to 

warrant a confident choice based on the WEI-WUV algorithm. 

The right hand frame in fig. 3 shows robustness curves for  25% expert dispute, implying that 

reliable use of the WEI-WUV recommendation requires a robustness value on the order of 0.75 to 

1.00. We see positive efficiency margins with robustness in this range: ˆ( )h   nearly equal to 1. For 

example, the innovative option, 
2Q , has positive efficiency margin over the conservative option 

3Q , 

with robustness nearly 4 times the uncertainty estimate. This might reasonably be judged 

substantial robustness to uncertainty in the parameters, and this preference – based on the WEI-

WUV analysis – might confidently be accepted. A similar judgment applies to the comparison of the 

standard vs the conservative options (1 – 3), and the standard vs the innovative options (1 – 2), 

though with lower efficiency margins than for the innovative-conservation comparison (2 – 3). We 

don't have confidence in the putative predictions of force effectiveness, but we do have confidence 

in the prioritizations of these force configurations. 

 

                   
 

 

DISCUSSION 

Robustness analysis adds a dimension of responsible skepticism to the interpretation and use of 

quantitative assessments of military effectiveness. We have focused on the WEI-WUV algorithm, 

though info-gap robustness analysis is relevant to other methods as well. Preferences among force 

buildup options, based on best estimates of quantitative measures of effectiveness, are the starting 

point, not the conclusion, of the analysis. After establishing the nominal preferences, we ask the 

robustness question: how much error (in parameter values or in mathematical form) can we 

tolerate without altering the preference ranking? As illustrated in the first two examples, if the 

answer is that the ranking would remain unchanged even with great error, then the analyst can be 

confident in the preference ranking despite substantial uncertainty. On the other hand, if small 

Figure 3. Robustness functions for example 3. 

 



17 
 

changes in parameters or functional forms could alter the preference ranking, then additional 

analysis, information, or options are needed before a confident decision can be made. The third 

example illustrated how the info-gap robustness analysis can be used to evaluate how much 

additional information or analysis might be needed.  

The WEI-WUV algorithm is conventionally used to predict the effectiveness of alternative force 

configurations, leading to prioritization of the configurations based on these predictions. We have 

shown that these predictions are unreliable, which is the main limitation of the conventional use of 

WEI-WUV. The robustness analysis of the WEI-WUV algorithm supports prioritization of the force 

configurations without attempting to predict the true effectiveness values. The prioritization of 

configurations in based on the degree of robustness of putatively acceptable options. 

Info-gap analysis of robustness provides the basis for deliberation and assessment of confidence 

in a decision, when facing substantial uncertainty. Robustness curves such as those in figs. 1 to 3 

focus attention on two salient aspects of the decision.  

First, the property of zeroing asserts that putative evaluations have no robustness against error 

in the data and mathematical models upon which the evaluations are based. This means that 

preferences based on putative evaluations cannot be confidently accepted when facing severe 

uncertainty. The putative evaluations are "best estimates" in the sense that they use accepted or 

normative data and models. But these estimates must be treated cautiously when facing severe 

uncertainty because "the best" may be substantially wrong.  

Second, robustness-to-uncertainty trades off against the effectiveness margin that is required 

for decision. The putative effectiveness margin has zero robustness, and only lower (less decisive) 

margin has positive robustness. The robustness curve focuses attention on this irrevocable trade 

off, and supports deliberation and decision by quantifying the trade off. Robustness analysis is not 

inherently conservative. It does, however, indicate how large an effectiveness-margin can be 

confidently required. 

The robustness analysis does not presume knowledge of the maximum possible error or 

uncertainty. One must distinguish between two distinct questions. One is the scientific question 

about truth and falsity: how wrong are we? The other is the robustness question: how much error 

can we tolerate in making a decision? The first question cannot be answered without improving our 

knowledge and understanding. The second question can be answered with our current state of 

imperfect knowledge, as we have demonstrated with three examples. The final decision will 

probably employ some qualitative judgment about the answer to the first question, but this does 

not depend on a full and explicit answer to that question. The info-gap robustness analysis is 

fundamentally different from a min-max or worst-case analysis, which require knowledge of the 

maximum error, as explained in detail elsewhere (Ben-Haim et al., 2009, section 7). 
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