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Abstract Cascading failures occur in networks of interacting agents in which failure at one node
can cause further failures. We define the ‘degree of cascading failure’ as the fraction of nodes that
could fail as a result of at least one single failure. This refers to the possibility of failure, and thus
involves the uncertainty of failures. We employ the concept of robustness, as developed in info-
gap theory, to study cascading failures. This method attempts to satisfy an outcome requirement,
and to maximize the robustness against uncertainty. This is a procedural optimization rather than
a substantive optimization. The outcome is the substantive “good” that one seeks, and we only
attempt to make it good enough, while the robustness is an aspect of the procedure of reaching a
decision, and the robustness is optimized.

We illustrate three properties of the robustness analysis. ‘Zeroing’ asserts that predicted out-
comes (e.g. degree of cascading failure) have no robustness against uncertainty. ‘Trade off’ asserts
that greater robustness is obtained only in exchange for more modest outcome goals (e.g. accept-
ing greater degree of cascading failure). ‘Preference reversal’ between policy alternatives arises
in situations where one alternative is putatively better but more uncertain. This presents the pol-
icy maker with a dilemma: choose the putatively better but more uncertain option, or choose the
putatively worse but more reliable one? The info-gap robustness analysis offers a resolution of
this dilemma. This analysis underlies a critique of conventional optimization in which one uses the
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best data, knowledge and understanding to prioritize the decision alternatives based on predicted
outcomes.

We use two simple examples of static networks to explore the implications of deep uncertainty,
and to demonstrate the analysis of robustness based on info-gap theory. The first example is a
general linear network with uncertain probability of successful transmission from one node to the
next. The second example is the analysis of traffic jams as a cascading failure problem. In both
examples we explore how the analysis supports design and policy decisions.

1 Introduction

Fraid (2016) has studied the application of info-gap decision theory to cascading failures in dynamic
networks involving supply and demand requirements at each node. In this paper we will use simple
static examples to illustrate the insights obtained from an info-gap robustness analysis of cascading
failures in networks.

Info-gap theory is a method for prioritizing options and making choices and decisions under
severe uncertainty (Ben-Haim, 2006, 2010, 2018). The options might be operational alternatives
(implement a policy, choose a budget, decide to intervene or not, etc.) or more abstract decisions
(choose a model structure, make a forecast, formulate a policy, etc.). Decisions are based on data,
scientific theories, empirical relations, knowledge and contextual understanding, all of which we’ll
refer to as one’s models, and these models often recognize and quantify uncertainty.

Info-gap theory has been applied to decision problems in many fields, including various areas of
engineering (Kanno and Takewaki, 2006; Chinnappen-Rimer and Hancke, 2011; Harp and Vesseli-
nov, 2013), biological conservation (Burgman, 2005), economics (Knoke, 2008; Ben-Haim, 2010),
medicine (Ben-Haim et al., 2012), national security (Moffitt, Stranlund, and Field, 2005), public policy
(Hall et al., 2012), and more (info-gap.com). Info-gap robust-satisficing has been discussed non-
technically elsewhere (Schwartz, Ben-Haim, and Dacso, 2011; Ben-Haim, 2012 a, b; Ben-Haim,
2018).

In section 2 we define and illustrate the concept of the degree of cascading failure of a network.
In section 3 we explain the centrality of uncertainty in evaluating the degree of cascading failure of a
linear network with uncertain transmission probabilities between nodes. We then apply the info-gap
analysis of robustness to manage this uncertainty. In section 4 we illustrate the methodology in
managing the cascading failure of highway traffic jams. On a more general level, our analysis is a
critique of conventional optimization, as explained in the concluding discussion, section 5.

2 Degree of Cascading Failure: A Definition

Consider a network with n nodes. The network has cascading failures of degree φ if there is at
least one node in the network whose failure could cause the failure of at least a fraction φ of the
nodes in the network.

Example 1 For example, consider the game of ‘telephone’ in which n people sit in a row, and one
person whispers a message to their neighbor, who whispers the message to the next neighbor, etc.
The last person to receive the message announces it out loud. That announcement often differs
greatly from the original version, to everyone’s delight. This game involves n transmissions of the
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message (including the final announcement), any one of which could corrupt the message. We
will assume that no corruption could correct a previous corruption.1 A node fails if the message
that it transmits is a corruption of the original message. The first transmission could be corrupted,
meaning that all n transmissions of nodes 1, . . . , n would be corrupted. Thus this is a network with
cascading failure of degree φ = 1.

Example 2 Consider a central broadcaster, node 1, who transmits a message that is received by
n − 1 receivers, nodes 2, . . . , n. The broadcaster fails if its transmission is faulty. Any of the nodes
2, . . . , n fails if it corrupts the message after receipt. A receiver’s corruption may or may not correct
for corruption by the original transmission. If node 1 fails, then all other nodes could also fail,
meaning that this network has cascading failure of degree φ = 1.

Example 3 Consider n observers watching the same scene, for instance a volcano. Assume that
this scene is in one of two well defined states. For instance, either “eruption” or “no eruption” of
the volcano. Observer i fails if it records the scene incorrectly. There is no communication between
observers, so failure of any one observer has no effect on any other observer. Hence this network
has cascading failure of degree φ = 1/n.

Example 4 Continue the previous example, but assume that n is an even number of nodes. Also,
each node discusses its observation with exactly 1 other node, and they both then agree on the
observation. In other words, any node could corrupt both itself and at most 1 other node. Thus this
network has cascading failure of degree φ = 2/n.

Example 5 Continue the previous example except that now node 1 discusses with node 2 and they
agree on their observation. Then node 2 discusses with node 3 and they agree, and so on. Thus,
failure by node 1 could result in failure of all nodes. Thus this is a network with cascading failure of
degree φ = 1.

Example 6 Hierarchical network. Consider a triangular hierarchical system such as shown in fig 1.
Each node on the bottom row has received a message that it passes to either 1 or 2 nodes in the
layer just above. Every receiving node does the same. Each node may corrupt the message it has
received. A single node in the bottom row of the 2-row network could pass a corrupted message
to the top node so the degree of cascading failure of this 3-node network is φ = 2/3. In the 3-
row network with 6 nodes, the central node in the bottom row could “infect” three higher nodes,
so the degree of cascading failure is φ = 4/6 = 2/3. As shown in appendix A, the degree of
cascading failure in a triangular hierarchical network with either 2n or 2n+ 1 rows is:

φ2n = φ2n+1 =
n+ 1

2n+ 1
, n = (0, ) 1, 2, . . . (1)

where the expression for φ2n+1 holds also when n = 0.
It is interesting to note that the degree of cascading failure decreases as the size of the hierarchy

increases:
φ2n > φ2(n+1) (2)

1For example, if the message is a single binary bit, a corruption would change the bit, and a subsequent corruption
would change the bit back to its original value, which thus corrects the previous corruption. We exclude this possibility by
considering only complex messages.
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Figure 1: Five triangular hierarchical networks for example 6.

The degrees of cascading failure for networks with 1, 2, , . . . , 6 rows are 1, 2/3, 2/3, 3/5, 3/5, and
4/7, respectively.

Furthermore, the degree of cascading failure converges asymptotically:

lim
n→∞

φ2n =
1

2
(3)

The convergence to a degree of 1/2 is fairly rapid.

3 Linear Network with Uncertain Transmission Probability

3.1 Cascading Failures and Uncertainty

The concept of degree of cascading failure refers to the possibility that failure of a single node could
cause additional nodes to fail. Thus, the degree of cascading failure involves the uncertainty of
failures.

For instance, consider the game of ‘telephone’ discussed earlier in example 1. A node may
fail either by receiving and accurately transmitting a corrupted message, or by corrupting and then
transmitting the message. If the first node corrupts the message, then all subsequent nodes transmit
corrupted messages either by accurately transmitting the corrupted message or by further corrupting
the message. Because the first node could fail, the degree of cascading failure of the ‘telephone’
network is φ = 1.

Let π denote the probability that any single node accurately transmits the message it received.
We will assume that the probability of accurately transmitting the received message is the same for
all nodes, and that correct transmission is statistically independent between nodes.

The degree of cascading failure, φ, is not a random variable; it is a deterministic property of the
network: the largest possible fraction of nodes that could fail in a cascading failure. However, the
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fraction of nodes involved in a cascading failure can be smaller than φ. Let ψ denote the fractional
size of a cascading failure in a network with n nodes. Thus ψ is a random variable with values
0/n, 1/n, 2/n, . . . , n/n. As shown in appendix B, the probability distribution of ψ, for the game of
‘telephone’, is:

P

(
ψ =

i

n

)
=

{
πn, if i = 0

πn−i(1 − π), if i = 1, . . . , n
(4)

The cumulative probability distribution of ψ is:

P

(
ψ ≤

i

n

)
= πn−i, i = 0, 1, . . . , n (5)

The probability of cascading failures larger than i/n is the complementary probability:

P

(
ψ >

i

n

)
= 1− πn−i, i = 0, 1, . . . , n (6)

At fixed network size, n, and fixed probability π, we see that the probability of cascading failures
larger than i/n decreases as i/n increases. This is not saying that larger cascading failures are less
likely than smaller cascading failures. Rather, the set of all cascading failures gets smaller as i/n
increases. Thus the probability of cascading failures larger than i/n decreases as i/n increases.

3.2 Cascading Failures and Robustness

We suppose that we have an estimate, π̃, of the probability of accurate transmission from one person
to the next in the game of ‘telephone’, and an estimated error of this estimate, a positive number s.
Roughly speaking, π is estimated as π̃ ± s, where we recognize that the actual error may exceed s.
More precisely, the fractional error of π with respect to π̃ is |π− π̃|/s, whose magnitude is unknown.
Thus the info-gap model of uncertainty is:

U(h) =

{
π : π ∈ [0, 1],

∣∣∣∣
π − π̃

s

∣∣∣∣ ≤ h

}
, h ≥ 0 (7)

Like all info-gap models of uncertainty, this is an unbounded family of nested sets.2 When h = 0 the
set contracts to the estimated value: U(0) = {π̃}. As h increases the sets become more inclusive.
Thus h is called the horizon of uncertainty, and its value is unknown.

We would like to design or manage the network so that the probability of large cascades is small.
More precisely, we require that the probability of cascading failures with degree larger than i/n have
probability no greater than a critical value Pc. That is, we require:

P

(
ψ >

i

n

)
≤ Pc (8)

For any choice of this critical probability, Pc, we would like to know if this requirement is feasible.
Alternatively, we would like to know what Pc values are feasible. The answers to these questions is
provided by the robustness function.

The robustness is the greatest horizon of uncertainty, h, in the info-gap model of eq.(7), up to
which the requirement in eq.(8) is guaranteed. Formally, the robustness to uncertainty in π is defined
as:

ĥ(Pc, i) = max

{
h :

(
max
π∈U(h)

P

(
ψ >

i

n

))
≤ Pc

}
(9)

2The family of sets is unbounded in the space of possible probability values, [0, 1].
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Figure 2: Robustness curves for 3 values of i. π̃ = 0.999, n = 100, s = 0.05.

As shown in appendix C, the robustness function is:

ĥ(Pc, i) =
1

s

(
π̃ − (1− Pc)

1/(n−i)
)

(10)

or zero if this is negative.
The best-estimated prediction of the probability that the degree of cascading failure exceeds i/n

is, from eq.(6), P (ψ > i/n) = 1 − π̃n−i. From eq.(10) we see that the robustness reaches the
horizontal axis precisely when the critical probability, Pc, equals this value. That is, if 1 − π̃n−i is
adopted as the performance requirement, Pc in eq.(8) — and some would consider this sensible
because it is the best estimate of the probability that the degree exceeds i/n — then the robustness
for satisfying this requirement is zero. This is the zeroing property: best-model predicted outcomes
have no robustness against uncertainty underlying the predictions.

Eq.(10) also shows the irrevocable trade off between robustness and performance: as the per-
formance requirement becomes more demanding (as Pc is decreased) the robustness becomes
smaller (ĥ(Pc, i) goes down). This is a trade off because we would like Pc to be small and ĥ to be
large.

The robustness function of eq.(10) is shown in fig. 2 for n = 100, π̃ = 0.999, s = 0.05, and
three different values of i: 10, 20 and 30. As we expect from eq.(10) and the zeroing property, the
robustness vanishes when Pc = 1 − π̃n−i, which equals 0.087, 0.078 and 0.068 for i = 10, 20 and
30, respectively. Furthermore, the robustness increases as Pc increases as seen from the positive
slopes of the curves, expressing the trade off property. We also see that the robustness increases
as i increases. This is because the probability of cascading failures larger than i/n decreases as
i/n increases, as explained following eq.(6).

We now consider two different implementations of the telephone game, both with π̃ = 0.999.
In one we have better knowledge so its error estimate, s, is smaller, but the number of players is
greater, so n is larger. In both cases i/n = 0.2. Specifically, in the first implementation, n1 = 100,
s1 = 0.05 and i = 20 as before (middle curve of fig. 2), and the estimated probability that the degree
of cascading failure exceeds i/n is P (ψ > i/n) = 0.078. In the second implementation n1 = 60,
s1 = 0.15 and i = 12 and P (ψ > i/n) = 0.048. That is, the poorer information in the second case
(s2 > s1) is compensated by the smaller number of players (n2 < n1).

Plots of robustness curves for these two implementations are shown in fig. 3. The robustness
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Figure 3: Robustness curves for 2 values of n, s and i. π̃ = 0.999.

curves cross one another, implying the potential for a reversal of preference between these two
implementations. The second implementation (dashed curve) is putatively better: its predicted prob-
ability that ψ exceeds i/n is lower because of the smaller size of the network, as we expect from
eq.(6). However, from the zeroing property we know that predicted outcomes have no robustness
to uncertainty. From the trade off property we know that only poorer outcomes (larger Pc) have
greater robustness to uncertainty. However, the trade off is more severe for the putatively better
case (dashed curve) because the uncertainty, as expressed by s2, is greater. As a consequence,
the robustness curves cross one another at Pc = 0.11. If one needs a critical probability less than
0.11, then option 2 is more robust, though its robustness is small. If greater Pc would be acceptable
then option 1 is more robust.

4 Traffic Jams and Network Management

High-speed freeways have been known to experience vast traffic jams in the middle of nowhere.
These traffic jams arise from the relation between car speed and traffic density: speed decreases
as density increases. The density of cars is low upstream of the jam, so car speeds are high. When
some random disturbance causes a local increase of density, the local speeds drop. However, cars
continue arriving at the disturbance at high speed, causing further increase in density and decrease
in speed. The cascading failure here is that the length of the traffic jam grows and the density of
cars increases, ultimately causing complete stoppage of car motion. The jam “evaporates” at the
free leading edge at a low rate, while the jam grows at the upstream edge at the high rate of arrival
of high-speed cars.

Such traffic jams could be ameliorated by automatic sensor detection of small jams, followed
by automatic change of the maximum permitted speed upstream of the jam, fed back to upstream
drivers by digital speed signs. The upstream speeds remain much greater than speeds at which
cars leave the jam downstream, but the upstream density is much lower, which can allow the jam
in contract and eventually vanish. We will study this as a network-management problem, where
the basic question we address is determination of the revised upstream speed once a traffic jam is
detected.
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4.1 Traffic Model

Traffic behavior is a complex interaction of a large number of independent agents: the drivers.
The drivers adjust their behavior (speed) in response to the density of cars in their vicinity, this
adjustment further modifies the local density, and these modifications propagate along the freeway.
We will adopt a simple macroscopic model of this multi-agent network. A more realistic analysis
would require a dynamic multi-agent model.

Let x km denote the position along the freeway, let ρ(x) cars/km denote the density of cars at
position x, and let s(x) km/hr denote the speed of cars at position x. The flux of cars at position x is
the number of cars passing that position per hour, denoted f(x) cars/hr, where f(x) = ρ(x)s(x).

We consider a traffic jam in which cars are totally stopped along a length of freeway between
positions x = −xj and x = 0. We make the simplifying assumptions that car speeds are constant
(and high) upstream of the jam, and zero in the jam. Likewise, density is constant (and low) upstream
and constant (and high) in the jam. Specifically car speeds are:

s(x) =

{
s0, if x ≤ −xj

0, if − xj < x ≤ 0
(11)

where s0 is a positive number, like 100 km/hr. Likewise, the density of cars is:

ρ(x) =

{
ρ0, if x ≤ −xj

ρ1, if − xj < x ≤ 0
(12)

where ρ0 and ρ1 are positive numbers, like 20 cars/km and 300 cars/km, respectively.
Consider the cars at the free downstream edge of the traffic jam. The density of cars immediately

in front of these cars is zero (or very low) so they accelerate strongly, rapidly reaching a low speed,
sd, while detaching themselves from the jam. If the density of cars during this initial low-speed
detachment stays essentially constant at ρ1, then the flux of cars departing from the jam is f0 = ρ1sd.
For instance, if sd = 10 km/hr and ρ1 = 300 cars/km, then f0 = 3000 cars/hr.

Let Nj(0) denote the number of stopped cars in a traffic jam at some initial reference time. The
initial length of the traffic jam is xj, so Nj(0) = ρ1xj. The number of cars changes over time, evolving
as Nj(t), because cars arrive from upstream and depart downstream. Nj(t) grows due to the flux
ρ0s0 of arriving cars, and shrinks due to the flux ρ1sd of detaching cars. Thus:

dNj(t)

dt
= ρ0s0 − ρ1sd (13)

The solution of this differential equation is:

Nj(t) = ρ1xj + (ρ0s0 − ρ1sd)t (14)

The time required for the jam to disappear, denoted Td, is the value of t at which Nj(t) = 0:

Td =
ρ1xj

ρ1sd − ρ0s0
(15)

provided that this is non-negative. If this expression is negative, then the jam is growing faster than
it is shrinking, and it will never disappear. The value of Td with the values specified earlier, for a jam
1 km long, is 0.3 hr.
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4.2 Uncertainty and Robustness

We will study the modelling and management of uncertainty in the time required for the traffic jam
to disappear, eq.(15). A jam of length xj has been detected, the density of cars in the jam is ρ1 and
the speed of departing cars is sd. Before intervention, the density and speed of cars upstream of
the jam are ρ0b and s0b. These values are all known.

The upstream maximum speed will be revised to a new lower value, s̃0r. However, the actual
speed of upstream cars, denoted s0r, may differ and may be greater. Our estimate is that s̃0r may
err by as much as ±ws or more.

The upstream density will change as a result as the revised speed limit, the new value being ρ0r.
The relation between density and speed is poorly understood. Our best available model is linear:

dρ0r
ds0r

= −δ (16)

where δ is estimated to take the value δ̃, but this may err by ±wδ or more. From eq.(16) we can
write:

ρ0r = −(s0r − s0b)δ + ρ0b (17)

After revising the upstream speed limit, the duration of the jam, eq.(15), is:

Td =
ρ1xj

ρ1sd − ρ0rs0r
(18)

where both ρ0r and s0r are uncertain.
Combining eqs.(17) and (18), the duration depends on the uncertain quantities, s0r and δ, as:

Td(s0r, δ) =
ρ1xj

ρ1sd − [(s0b − s0r)δ + ρ0b]s0r
(19)

The uncertainty in s0r and δ is represented by the following fractional-error info-gap model:

U(h) =

{
s0r, δ : s0r ≥ 0,

∣∣∣∣
s0r − s̃0r

ws

∣∣∣∣ ≤ h,

∣∣∣∣∣
δ − δ̃

wδ

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (20)

Note that the info-gap model depends on the revised upstream speed limit, s̃0r.
We require that the duration of the jam not exceed a critical value, Tc:

Td(s0r, δ) ≤ Tc (21)

The robustness to uncertainty, or any choice s̃0r of the revised upstream speed limit, is the
greatest horizon of uncertainty, h, up to which all realizations of s0r and δ in the uncertainty set
U(h), satisfy the requirement in eq.(21). Formally:

ĥ(Tc, s̃0r) = max

{
h :

(
max

s0r ,δ∈U(h)
Td(s0r, δ)

)
≤ Tc

}
(22)

Before evaluating robustness curves, let’s consider some empirical data. In California, the En-
gineering and Traffic Survey typically sets speed limits near the 85th percentile speed,3 which is
nearly 1 standard deviation above the mean of a normal distribution. A typical highway may have an

3Division of Traffic Operations, California Department of Transportation, 2014, California Manual for Setting Speed Lim-
its, p.14. http://www.dot.ca.gov/trafficops/camutcd/docs/california-manual-for-setting-speed-limits.pdf. Accessed online 9
November 2018.
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average speed of about 80 km/hr, with a speed limit of 100 km/hr at the 85th percentile, implying a
standard deviation of about 20 km/hr. A speed of 90 km/hr is at the 69th percentile, and 110 km/hr
is at the 93rd percentile, so characterizing extremal speeds as ‘100 ±10 km/hr or more’ is a realistic
description of the high-end drivers.

Fig. 4 shows a robustness curve based on eq.(22). The parameter values for this calculation are
as follows. The traffic jam is of length xj = 1 km, the car density in the jam is ρ1 = 300 cars/km,
and the speed at which cars depart from the jam is sd = 10 km/hr. The initial upstream car density
is ρ0b = 20 cars/km, and the initial upstream speed is s0b = 100 km/hr. The revised speed limit is
s̃0r = 90 km/hr where the error estimate for observance of this limit is ws = 10 km/hr or more. The
slope of density vs. speed is estimated as δ̃ = 0.1 car hr/km2, for which the predicted upstream car
density is ρ̃0r = 21 cars/km. The estimated error of δ̃ is wδ = 0.03. The putative predicted duration
of the traffic jam, after revising the speed limit, is Td = 0.27 hr.

In fig. 4 we observe the zeroing and trade off properties of all info-gap robustness curves. The
robustness for achieving the predicted traffic jam duration of 0.27 hr is precisely zero, and robustness
is increased only by accepting greater duration of the jam.

A substantial reduction in the speed limit should decrease the duration of the traffic jam. For
instance, in a situation with mean and standard deviation of 80 and 20 km/hr, respectively, a speed
of 70 km/hr is at the 31st percentile. One should expect consider violation of this revised speed
limit, and, in the revised situation, characterizing extremal speeds as ‘70 ±40 km/hr or more’ is a
reasonable description of the high-end drivers.

If the speed limit were reduced to s̃0r = 70 km/hr then the predicted upstream car density would
be greater, ρ̃0r = 23 cars/km, but the predicted jam duration would still be less: Td = 0.22 hr.
However, this more restrictive speed limit would be expected to induce greater speed violation, so
the estimated error is ws = 40 or more. The dilemma is that the lower speed limit has a putatively
lower jam duration but this is more uncertain. Fig. 5 shows the robustness curve for this option,
together with the option shown in fig. 4. The robustness curves cross one another, indicating the
potential for a reversal of preference between these options.

The robustness curves in fig. 5 cross one another at a traffic jam duration of 0.29 hr. If a duration
less than this value is required, then the revised speed of s̃0r = 70 km/hr is more robust and hence
preferred over s̃0r = 90, though the robustness is not large. If a greater jam duration is acceptable,
then s̃0r = 90 is more robust and hence preferred. The choice between these options is a dilemma:
s̃0r = 70 is putatively better but more uncertain than s̃0r = 90. The dilemma is manifested in the
intersection of the robustness curves, which also supports a choice between these options.

5 Discussion

We have used the term “models” to refer to one’s data, knowledge and understanding. The con-
ventional optimization of a decision begins by using the best models that one has to predict the
outcomes of the decision alternatives. One then chooses the option whose predicted outcome is
best. This “best-model optimization” makes sense when one’s models are fairly good. However,
when the models are subject to deep uncertainty, then the zeroing property of the info-gap robust-
ness function demonstrates that the predictions have no immunity against this uncertainty: their
robustness is precisely zero. This means that the prioritization of the decision alternatives, based
on their best-model predicted outcomes, is unreliable.
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Figure 4: Robustness curve for
revised upstream speed limit.

Figure 5: Robustness curves for
two revised upstream speed lim-
its.

Furthermore, the trade off property of the robustness function implies that only outcomes less
desirable than the predicted outcome can have positive robustness against uncertainty. Decision
analysis must, therefore, be based on exploring the robustness curve, rather than just its end-
point at the predicted outcome. The robustness curves of different decision alternatives may cross
one another. When this happens, the analyst may prefer one option over one range of required
outcomes, while preferring the other option over a different range of outcome requirements. In other
words, the analyst may encounter a reversal of preference between one option (e.g. the putative
optimum) and a different option (which is putatively sub-optimal). We have seen this crossing of
robustness curves and consequent potential for preference reversal in both examples.

The methodology that is developed in this paper is to satisfy a performance requirement on the
outcome — rather than trying to optimize the outcome — and to maximize the robustness against
uncertainty. This is a procedural optimization rather than a substantive optimization. The outcome
is the substantive “good” that one seeks: small probability of large-degree cascading failures in our
first example; short traffic jam duration in our second example. In the robust-satisficing approach
and we only attempt to make the substantive outcome good enough. In contrast to the substantive
outcome, the robustness is an aspect of the procedure of reaching a decision, and the robustness
is optimized, not the outcome. Once the decision is made and implemented, the robustness is of no
substantive consequence.
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A Degree of Cascading Failure in Triangular Hierarchical Ne tworks,
Eq.(1)

Fig. 1 shows 5 triangular hierarchical networks. In each network of this figure, the largest possible
cascade of corrupted nodes is seen to be a rectangle. In the 2-row network this is a 1×2 rectangle,
in the 3-row network it is a 2×2 rectangle, in the 4-row network it is a 2×3 rectangle, etc.
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Thus, in a network with 2n rows, for n = 1, 2, . . ., the maximum-failure cascade is an n× (n+1)

rectangle of nodes, containing n(n+1) nodes. The total number of nodes in a network with 2n rows
is
∑2n

i=1 i = 2n(2n+ 1)/2. Thus the degree of cascading failure in a network with 2n rows is:

φ2n =
n(n+ 1)

2n(2n + 1)/2
=

n+ 1

2n + 1
, n = 1, 2, . . . (23)

Similarly, in a network with 2n + 1 rows, for n = 0, 1, . . ., the maximum-failure cascade is an
(n + 1) × (n + 1) rectangle of nodes, containing (n + 1)2 nodes. The total number of nodes in a
network with 2n + 1 rows is

∑2n+1
i=1 i = (2n + 1)(2n + 2)/2 = (2n + 1)(n + 1). Thus the degree of

cascading failure in a network with 2n + 1 rows is:

φ2n+1 =
(n+ 1)2

(2n + 1)(n + 1)
=

n+ 1

2n+ 1
, n = 0, 1, 2, . . . (24)

which is exactly the same as eq.(23). Eqs.(23) and (24) are combined as eq.(1).

B Derivation of the Probability Distribution in Eqs.(4) and (5)

Derivation of eq.(4). A cascading failure has fractional size of zero if no nodes in the telephone
chain fail. Thus P (ψ = 0) = πn which is the first line of eq.(4).

A cascading failure has fractional size of i/n, for i = 1, . . . , n, if the first n − i nodes do not
fail, for which the probability is πn−i, and the next node does fail for which the probability is 1 − π.
Failure of nodes is statistically independent, so the probability that ψ = i/n is the product of these
two terms, which is the second line of eq.(4).

Derivation of eq.(5). The cumulative probability distribution is the sum of terms of the probability
distribution:

P

(
ψ ≤

i

n

)
=

i∑

j=0

P

(
ψ =

i

n

)
, i = 0, 1, . . . , n (25)

= πn +
i∑

j=1

πn−j(1− π) (26)

= πn + (1− π)πn
i∑

j=1

(
1

π

)j

(27)

The geometric sum in eq.(27) is:

i∑

j=1

(
1

π

)j

=
(1/π) − (1/π)i+1

1− (1/π)
=

1− πi

πi(1− π)
(28)

Thus eq.(27) becomes:

P

(
ψ ≤

i

n

)
= πn + πn−i(1− πi), i = 0, 1, . . . , n (29)

= πn + πn−i − πn (30)

= πn−i (31)

which is eq.(5).
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C Derivation of the Robustness in Eq.(10)

Let m(h) denote the inner maximum in eq.(9). From eq.(6) we see that this inner maximum occurs
when π is as small as possible in the uncertainty set U(h) of eq.(7). This occurs when π = (π̃−sh)+

where we have defined x+ = x if x ≥ 0 and x+ = 0 otherwise. Thus:

m(h) = 1−
[
(π̃ − sh)+

]n−i (32)

The robustness is the greatest value of h at which this expression does not exceed Pc:

1−
[
(π̃ − sh)+

]n−i
≤ Pc (33)

For h ≤ π̃/s, solving this relation at equality yields the robustness in eq.(10). This expression is
no greater than π̃/s so we needn’t consider greater values of h. This completes the derivation of
eq.(10).
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