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Abstract: We study decapitation in a hierarchical network with unity of command. Decapita-
tion means removing a node and the sub-network below that node. Unity of command means that
each node receives a command from only one other node. We focus on the question of vulnerability
to decapitation: given two different networks, which network is more vulnerable to decapitation?
Vulnerability to decapitation can be assessed by counting the number (or fraction) of lost nodes re-
sulting from a specific decapitation. Two propositions prove, however, that the result is paradoxical:
A different answer is obtained if one selects the decapitated node by counting i rows from the top
of each network, or i rows from the bottom. Alternatively, one can assess the average loss based
on the probabilities for decapitation of the different nodes. However, the probability distribution may
be uncertain, in which case the assessment of vulnerability is also uncertain. In that case one can
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assess vulnerability to decapitation by evaluating the robustness to uncertainty in the probability dis-
tribution, while satisfying a performance requirement on the average loss. This analysis is based on
info-gap decision theory. We discuss several examples, including choosing the number of brigades
in a brigade combat team.

1 INTRODUCTION

Steinbruner (1981-1982) emphasized that “U.S. military planners have long understood the vulner-
ability of the U.S. command structure” to “nuclear decapitation” by the Soviet Union. He stressed,
however, that “the importance of command coordination for overall strategic capability is not easily
calculated and cannot be included in standard measures of the strategic balance.” Furthermore,
Steinbruner noted the lack of a “theory of behavior robust enough to yield a confident prediction” of
the impact of decapitation. The goal of this paper is to explain part of the difficulty, and to provide a
quantitative tool for responding to the challenge.

By “decapitation” we mean the removal of a command node in a hierarchical network. By
“unity of command” we mean that each unit in the network receives orders from only one other
unit (Leighton, 1952, p.401). Thus decapitation entails the removal of a node in the hierarchy and
removal of the entire sub-network under that node.

Unity of command is prevalent in militaries, occurring widely throughout the history of war, but
also in commercial and industrial organizations (Takahashi, 1986) as elaborated by Henri Fayol (see
Godwin et al., 2017). This is based in part on a long tradition and strong social norms in numerous
societies throughout history.1 The prominence of military unity of command is strongly supported
by battlefield experience. For instance, Murray and Hsieh (2016, pp.119–120) discuss situations
in the American Civil War in which adverse outcomes resulted from absence of unity of command.
Unity of command has also been adopted in disaster management to manage or ameliorate volatile
civilian catastrophes (Pal, Ghosh and Ghosh, 2017). Unity of command comprising both civilian and
military elements is important for successful nation-building against an insurgency when the insur-
gents attack military and non-military units indiscriminately, as done by the Taliban in Afghanistan.
Without civilian-military unity of command the military mission may succeed while the governance
and humanitarian missions may fail. (Welle, 2010).

We focus on the vulnerability to decapitation from the viewpoint of organizational structure of a
hierarchical network with unity of command. The central question we address is: given two alterna-
tive network structures, which is more vulnerable to decapitation? For example, should one have “a
larger number of BCTs [brigade combat teams] that have predominantly two maneuver battalions,
[or] . . . a smaller number of BCTs that all have three maneuver battalions.” (Salmerón and Appleget,
2014, p.51).

We employ the concept of robustness, as developed in info-gap theory which is a method for
prioritizing options and making choices and decisions under deep uncertainty (Ben-Haim, 2006,
2010, 2018). The options might be operational alternatives (implement a policy, choose a budget,

1Hierarchical networks with unity of command are ancient social structures. Imperial armies of Sumer, Akkad, and
Babylon surely used such command structures. Similarly, Jethro advised Moses to establish a judicial hierarchy. “So
Moses hearkened to the voice of his father in law, and did all that he had said. And Moses chose able men out of all
Israel, and made them heads over the people, rulers of thousands, rulers of hundreds, rulers of fifties, and rulers of tens.
And they judged the people at all seasons: the hard causes they brought unto Moses, but every small matter they judged
themselves.” (Exodus, 18: 24–26, King James Version.)
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decide to intervene or not, etc.) or more abstract decisions (choose a model structure, make a fore-
cast, formulate a policy, etc.). Decisions are based on data, scientific theories, empirical relations,
knowledge and contextual understanding, all of which may be highly uncertain.

Section 2 takes a first look at the decapitation paradox. In section 3 we formulate our repre-
sentation of hierarchical networks with unity of command. Section 4 presents and discusses two
propositions quantifying the decapitation paradox. Sections 5 and 6 explore average loss due to
decapitation with various probability distributions. Section 7 explores the robustness to uncertainty
in the probability distribution when assessing average vulnerability to decapitation. Section 8 is a
concluding discussion.

Figure 1: Hierarchical networks with (R,B) = (5, 2) (left) and (R,B) = (3, 5) right. Each network
has 31 nodes.

2 THE PARADOX: A FIRST LOOK

The two hierarchical networks in fig. 1 each have 31 nodes and unity of command. Consider decap-
itation of a node 1 row above the bottom. The left network loses 3 nodes, while in the right network
loses 6 nodes. The right network is more vulnerable to decapitation. Likewise, remove a node that
is 2 rows above the bottom. The left network loses 7 nodes and the right network loses all 31 nodes.
Again the right network is more vulnerable.

Now consider decapitation of a node 1 row below the top. The left network loses 15 nodes while
the right network loses only 6 nodes. The left network is more vulnerable. Likewise, remove a node
that is 2 rows below the top. The left network loses 7 nodes while the right network loses only 1
node. Again the left network is more vulnerable.

Any node is uniquely identified by its row number and its position in that row; counting rows
from the top or from the bottom makes no difference. However, which of the networks in fig. 1 is
more vulnerable to decapitation seems to depend on whether one identifies the decapitated node
by counting from the bottom or from the top. Assessment of vulnerability to decapitation is important
in selecting between hierarchical topologies. Hence resolution of this paradox is central to our study
of the reliable functionality of hierarchical networks with unity of command.

We are evaluating the impact of decapitation in terms of the number (or fraction) of nodes
loss. While the number of nodes lost does not reflect the full impact on effectiveness of the
organization, it is a reasonable basis for comparative evaluation: greater numerical loss will
usually correspond to greater loss of effectiveness.
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Figure 2: BCT with 2 (left) or 3 (right) brigades per team.

The two networks in fig. 2 show a slightly more realistic but more complicated example, motivated
by the choice between 2-brigade or 3-brigade BCTs mentioned earlier (Salmerón and Appleget,
2014). Each hierarchy has 36 nodes (brigades) in its bottom row, but the left hierarchy has them
grouped in 2-brigade units and the right hierarchy in 3-brigade units. The total number of nodes in
the left and right hierarchies are 74 and 55, respectively. The left hierarchy uses branching ratios of
1 or 2 throughout, while the right hierarchy uses branching ratios of 2 or 3.

Decap i rows below top Brigades lost in BCT2 Brigades lost in BCT3
0 36 36
1 12 or 24 18
2 8 or 12 or 16 9
3 4 or 8 3
4 4 1

Table 1: Number of “brigades” lost by decapitation i rows below the top.

Decap i rows above bottom Brigades lost in BCT2 Brigades lost in BCT3
0 1 1
1 2 3
2 4 9
3 4 or 8 18
4 8 or 12 or 16 36

Table 2: Number of “brigades” lost by decapitation i rows above the bottom.

Table 1 shows the number of brigades (bottom-row nodes) lost by decapitation i rows below the
top of the hierarchy. We see that the 2-brigade structure (BCT2) almost always loses more brigades
than the 3-brigade structure (BCT3). It would seem that BCT3 is less vulnerable to decapitation.

Table 2 shows the number of brigades lost by decapitation i rows above the bottom of the
hierarchy. We see that now the 3-brigade structure (BCT3) almost always loses more brigades (and
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never loses fewer brigades) than the 2-brigade structure (BCT2). It would seem that BCT2 is less
vulnerable to decapitation.

In many situations one must choose between alternative hierarchical structures with unity of
command. Part of the choice is based on addressing the question “Which topology is more vulnera-
ble to decapitation?” Counting the number of nodes lost as a result of decapitation seems paradoxi-
cal. In section 3 we formulate our representation of hierarchical networks with unity of command. In
section 4 we formalize the paradox in two propositions, and in sections 5–7 we explore 3 different
approaches to resolving the paradox.

(3,2)

(1,1)

(2,1)

Figure 3: Hierarchical network with 3 rows and 2 branches at each node.

3 HIERARCHICAL NETWORKS WITH UNITY OF COMMAND

We now formulate our mathematical representation of hierarchical networks with unity of command.

3.1 Introduction

We study hierarchical networks as in the simple example of fig. 3, though generalizing to arbitrary
branching ratio and number of rows. The single node in the highest row receives a message — a
command — from an external source and passes it along to all the nodes in the 2nd row. Each
node passes the message it receives to nodes in the next lower row until the message reaches the
bottom of the network. Throughout the network, each node receives a message from exactly one
other node, which expresses the unity of command in the network.

The lexical meaning of “command” is unambiguous. Nonetheless, in human networks it is im-
portant to recall Leighton’s insight that the “commander’s true function . . . was not coercion but
decision, the final responsibility of choosing among various possible courses of action.” (Leighton,
1952, p.425). Unity of command entails both the uniqueness of each specific command relationship,
and the unity of purpose that encompasses all of the individual orders that are issued.

The concept of a message refers to actions as well as statements, either of which induce a
subsequent action or statement. For instance, Diener (2018) discusses promotion in a military
hierarchy. When a vacancy occurs at one rank, a person in the next lower echelon is promoted,
which creates a new vacancy, and subsequent promotion down to the lowest level. Each vacancy
creates a message that propagates down the hierarchy. Furthermore, the message is intended to
evolve in a pre-planned manner. For instance, a battlefield command at one node is intended to elicit
a specific action at the next node which in turn should elicit a specific response at the next node,
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and so on. Decapitation interrupts this process, with adverse impact on the overall functionality of
the hierarchy. Central to our analysis is the uncertainty that accompanies the decapitation process.

3.2 Formulation of Network Topology

The network hasR rows, which can be thought of as echelons in an organizational hierarchy such as
an army. The first row has only one node, and each node (except in the bottom row) branches into
B nodes in the next lower row; we refer to B as the branching ratio. (For now we do not consider
varying branching ratio among the nodes, though examples in sections 6.2 and 7 will consider
varying branching ratio.) Fig. 3 shows an example with R = 3 and B = 2.

The number of nodes in row i is Ni = Bi−1 for i = 1, . . . , R. If the branching ratio, B, is greater
than 1, then the total number of nodes in the network is:

N =
R∑
i=1

Bi−1 =
BR − 1

B − 1
(1)

If B = 1 then the number of nodes equals the number of rows: N = R.

3.3 Distinction from Random Networks

The properties of random networks have been of interest for a long time. For instance, Erdös and
Rényi (1959) study “asymptotic statistical properties of random graphs”. A “scale free” network is
one in which the nodal distribution of a random network follows a power law, at least asymptotically
as the degree grows. That is, the fraction of nodes of degree k is proportional to k−γ (at least
asymptotically in k) where γ is a positive constant. Grant et al. (2011) note that the 11 command
and control networks that they studied were “closest in form to scale-free networks”. Barabasi and
Albert (1999, p.509) demonstrate that the power-law nodal distribution in complex random networks
is “a consequence of two generic mechanisms: (i) networks expand continuously by the addition
of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected.”
These properties introduce an element of self-organization in the growth of the network, which is
important in many networks that are neither “completely regular [nor] completely random” (Watts
and Strogatz, 1998. p.440).

Our hierarchical networks with unity of command are not scale free, either at finite degree or
asymptotically, as we now show.

The “degree” of a node is the number of connections that it has to other nodes. In the networks
that we are considering the single top node is connected to B other nodes; the NR nodes in the
bottom row are each connected to only 1 other node; all other nodes are connected to B+1 nodes.
Thus a node in the networks we are considering has degree 1, or B, or B+1. The fraction of nodes
with these degrees are:

p(1) =
NR

N
=

(B − 1)BR−1

BR − 1
(2)

p(B) =
1

N
=

B − 1

BR − 1
(3)

p(B + 1) =
N − 1−NR

N
=
BR−1 −B
BR − 1

(4)

From eqs.(2)–(4) we see that the hierarchical networks with unity of command that we are studying
are not scale free.
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Nor are our network models relevant as the branching ratio, B, grows asymptotically. Hierarchi-
cal networks with unity of command are fundamentally different from complex and partially random
networks such as the world wide web, electrical power grids, citation patterns of scientific articles,
and other such networks cited by Barabasi and Albert (1999). Unity of command imposes a non-
random structure that distinguishes the network from random scale free networks.

Newman (2003) points out that it is “large-scale statistical properties” that are of interest in scale
free and related networks. It is worth quoting Newman (2003) at length:

“Many of the questions that might previously have been asked in studies of small net-
works are simply not useful in much larger networks. A social network analyst might
have asked. ‘Which vertex in this network would prove most crucial to the network’s con-
nectivity if it were removed?’ But such a question has little meaning in most networks of
a million vertices — no single vertex in such a network will have much effect at all when
removed. On the other hand, one could reasonably ask a question like ‘What percent-
age of vertices need to be removed to substantially affect network connectivity in some
given way?’ and this type of statistical question has real meaning even in a very large
network.” (p.169)

Size itself is not the essential distinction; a modern army may have several million “nodes”, and yet
removal of particular nodes can have enormous impact. The essential distinction is the strong struc-
tural constraint imposed by unity of command, as opposed to the random element in the structure
of the complex networks that Newman examines. The two propositions discussed in section 4 show
that removal of nodes under unity of command nonetheless entails a paradox, and introduces deep
uncertainties, even though the topology is highly structured.

4 DECAPITATION PARADOX

In this section we explore the decapitation paradox in hierarchical networks with unity of comm-
and and constant branching ratio. If a single node of a network is removed or incapacitated, then
the entire hierarchical sub-network below and including that node is lost: “decapitation” of a sub-
network removes all of its nodes. The paradox arises from the following question regarding two
networks with different numbers of rows and/or branches at each node. Which network is more
vulnerable to decapitation? The paradox is manifested in two propositions. As before, the topology
of a hierarchical network with unity of command is specified by the number of rows, R, and number
of branches at each node, B, referred to as the branching ratio.

The paradox is embodied in the following two propositions, whose proofs appear in appendices A
and B.

Proposition 1 Given:
1. Two hierarchical networks with unity of command, denoted T and T ′, whose topologies are

(R,B) and (R′, B′), respectively.

2. Network T has fewer branches at each node: B < B′.

3. A single node is decapitated in each network. In each case the decapitated node is i rows
above the bottom row of its network, for i = 0, . . . , min(R− 1, R′ − 1).
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Let ` and `′ denote the total number of nodes lost in networks T and T ′, respectively, due to the
decapitation.

Then: The network with lower branching ratio loses fewer nodes than the network with greater
branching ratio unless the decapitation is in the bottom row:

` ≤ `′ (5)

with equality if and only if i = 0.

Proposition 2 Given:
1. Two hierarchical networks with unity of command, denoted T and T ′, whose topologies are

(R,B) and (R′, B′), respectively.

2. Network T has fewer branches at each node: B < B′. The two networks have the same total
number of nodes.

3. A single node is decapitated in each network. In each case the decapitated node is i rows
below the top row of its network, for i = 0, . . . , min(R− 1, R′ − 1).

Let L and L′ denote the total number of nodes lost in networks T and T ′, respectively, due to the
decapitation.

Then: The network with lower branching ratio loses more nodes than the network with greater
branching ratio unless the decapitation is in the top row:

L ≥ L′ (6)

with equality if and only if i = 0.

Roughly speaking, proposition 1 states that the network with lower branching ratio loses fewer
nodes, while proposition 2 states that the network with lower branching ratio loses more nodes.
Proposition 1 locates the decapitated node by counting from the bottom of the network, while
Proposition 2 counts from the top and also assumes that the two networks have the same total
number of nodes. The paradox is that, seemingly, the more vulnerable network depends on whether
one counts from the bottom or from the top.

It is important to resolve this paradox because one might, mistakenly, answer the question
“Which topology is more vulnerable to decapitation?” by counting from the top (or from the bottom),
without recognizing that top- or bottom-counting yield different answers.

A paradox is not a contradiction; it results from a faulty perception or misunderstanding. One can
unambiguously locate a node either by counting from the bottom or from the top. However, when
counting from the bottom, both sub-networks have the same number of rows, which is not the case
when counting from the top if the networks have the same number of nodes. Hence the difference
between the two propositions.

Furthermore, a high-row node with low branching ratio commands a large fraction of all the
nodes of the network. For instance, each node in the first row below the top of the left hand network
in fig. 1 commands 15 of the 31 nodes, while each node 1 row below the top of the righthand network
commands only 6 of the 31 nodes. Precisely the reverse holds for low rows, as seen again in fig. 1.

On a more conceptual level, we resolve the paradox by recognizing that the original question
is not well posed. The question was: Given two networks with different numbers of rows and/or
branches, which network is more vulnerable to decapitation? The answer is that vulnerability to
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decapitation is not a unique property of a hierarchical network with unity of command. Networks with
low branching ratio will be relatively more vulnerable to decapitation high in the network, but relatively
less vulnerable for decapitation low in the network. Conversely, networks with high branching ratio
will be relatively less vulnerable to decapitation high in the network, but relatively more vulnerable
to decapitation low in the network.

This conclusion is itself significant for its implications about differential vulnerability to low- or
high-row decapitation. It demonstrates that hierarchical topology — R and B — by itself does not
uniquely determine vulnerability to decapitation.

We now extend the exploration of assessing vulnerability to decapitation, revealing further ambi-
guities and their resolution.

In section 5 we compare the average loss due to decapitation in networks with different topolo-
gies, assuming equal probability for decapitation of each node. This yields unique comparisons
of vulnerability, but depends on the assumed probability distribution. Section 6 looks at average
losses with alternative probability distributions, resulting in different assessments of vulnerability. If
one knows the probability distribution for decapitation, then the average loss is a unique measure
of vulnerability. If the probability distribution is uncertain, then one can consider the robustness to
uncertainty in the distribution, as explored in section 7.

5 AVERAGE LOSS WITH EQUAL PROBABILITIES

Consider a hierarchical network with R rows and constant branching ratio B. A node in the network
will be chosen at random, with equal probability for each node. The selected node will be removed,
which decapitates the sub-network in which this node is at the top. Let ` denote the average number
of nodes lost. In appendix C we show that, if B = 1:

` =
R+ 1

2
(7)

while if B > 1:

` =
RBR

BR − 1
− 1

B − 1
(8)

B= 1 2 3 4 5
R= 1 1.0 1.00 1.00 1.00 1.00

2 1.5 1.66 1.75 1.80 1.83
3 2.0 2.42 2.61 2.71 2.77
4 2.5 3.26 3.55 3.68 3.75
5 3.0 4.16 4.52 4.67 4.75
6 3.5 5.09 5.50 5.66 5.75
7 4.0 6.05 6.50 6.66 6.75
8 4.5 7.03 7.50 7.66 7.75
9 5.0 8.01 8.50 8.66 8.75

10 5.5 9.00 9.50 9.66 9.75

Table 3: Average number of nodes lost, `(R,B), with uniform probability distribution.

Table 3 shows that, on average, large networks lose more nodes from a decapitation than small
networks. However, in terms of the average fraction of lost nodes, large networks are less vulnerable
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to decapitation than small networks. Once again, vulnerability to decapitation is in part a matter of
definition: different assessments result from different definitions.

Table 3 also allows comparison of the vulnerabilities of networks with different (R,B) values. For
instance, consider networks (R,B) = (5, 2) and (R,B) = (3, 5), which both have 31 nodes. Network
(5,2) loses on average 4.16 nodes from a uniformly random decapitation, while network (3,5) loses
only 2.77 nodes on average. In this respect, the latter network is less vulnerable to decapitation.

We must recall, however, that these averages presume a uniform probability distribution across
all of the nodes. We explore the relaxation of this assumption in the next section, and we will see
that vulnerability varies substantially as the probability distribution changes.

6 AVERAGE LOSS WITH ALTERNATIVE PROBABILITY DISTRIBUTIONS

The uniform probability distribution might be adopted in the absence of more specific information,
motivated perhaps by the principle of indifference. However, many decapitations are anything but
uniformly distributed. For example, political assassinations will generally be biased to high-ranking
individuals. The Archduke Franz Ferdinand of Austria and his wife Sophie were assassinated in
1914 by Gavrilo Princip who chose them precisely because of their high social rank. Likewise,
Steinbruner (1981–1982) emphasized that the nuclear capabilities of both the United States and the
Soviet Union were highly vulnerable to elimination of a relatively small number of critical targets. In
contrast, terrorist violence is usually directed explicitly at ordinary citizens in order to instill fear in
the general populace.

The average loss due to decapitation is a useful measure of the vulnerability of a network.
However, one must consider the choice of the probability distribution. In sections 6.1 and 6.2 we
consider alternative probability distributions for networks with constant and variable branching ratios.
However, the probability distribution may be uncertain, so in section 7 we consider uncertainty in
the probability distributions themselves.

6.1 Networks with Constant Branching Ratio

Let pij denote the probability of removal of the ith node in the jth row counting from the top of a
network with R rows and constant branching ratio B. Recall that N(R,B) in eq.(1) is the number of
nodes in a network with R rows and branching ratio B, and that Nj = Bj−1 is the number of nodes
in the jth row. Generalizing eq.(36) in appendix C, the average loss is:

`(R,B) =
R∑
j=1

Nj∑
i=1

pijN(R− j + 1, B) (9)

=
R∑
j=1

pjN(R− j + 1, B) (10)

where pj is the probability of a decapitation in the jth row counting from the top:

pj =

Nj∑
i=1

pij , j = 1, . . . , R (11)

For notational convenience we define the vector of sub-network sizes:

νT = (N(R,B), N(R− 1, B), . . . , N(1, B)) (12)
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Now the average loss in eq.(10) becomes:

`(R,B) = pT ν (13)

where p is the vector of row probabilities (p1, . . . , pR).
We will also be interested in the average fraction of nodes lost, which is defined as:

f(R,B) =
`(R,B)

N(R,B)
(14)

The results in table 3 were calculated with the uniform distribution:

punij =
Nj

N(R,B)
, j = 1, . . . , R (15)

We now consider two different distributions. The first distribution gives greater weight to higher rows
in the network, and the second distribution preferentially weights lower nodes:

ptopj =
(R− j + 1)2NR−j+1∑R

j=1 j
2Nj

, j = 1, . . . , R (top-heavy) (16)

pbotj =
j2Nj∑R
j=1 j

2Nj

, j = 1, . . . , R (bottom-heavy) (17)

Note that ptopj is the same as pbotj in reverse order:

ptopj = pbotR−j+1 (18)

B= 1 2 3 4 5
R = 1 1.00 1.00 1.00 1.00 1.00

2 1.80 2.77 3.76 4.76 5.76
3 2.57 6.15 11.72 19.28 28.84
4 3.33 12.69 34.94 76.07 142.0
5 4.09 25.47 103.2 299.6 700.7

Table 4: Average number of nodes lost, `(R,B), with the top-heavy probability distribution, eq.(16).

B= 1 2 3 4 5
R = 1 1.00 1.00 1.00 1.00 1.00

2 1.20 1.22 1.23 1.23 1.23
3 1.42 1.48 1.51 1.52 1.52
4 1.66 1.77 1.80 1.82 1.83
5 1.90 2.07 2.11 2.14 2.15

Table 5: Average number of nodes lost, `(R,B), with the bottom-heavy probability distribution,
eq.(17).

Tables 4 and 5 show the average number of nodes lost with the top-heavy and bottom-heavy
probability distributions, respectively. The far greater losses with the top-heavy distribution reflect
the fact that sub-networks below high nodes are much larger than sub-networks below low nodes.
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More importantly, we note that one may get different assessments of the vulnerability to decap-
itation, depending on the probability distribution. Compare the hierarchies with (R,B) = (5, 2) and
(R,B) = (3, 5), which both have 31 nodes. In the top-heavy case the average losses are 25.47 and
28.84 nodes, respectively, indicating slightly greater vulnerability for configuration (3,5) over (5,2).
However, in the bottom-heavy case the average losses for (5,2) and (3,5) are 2.07 and 1.52, respec-
tively, indicating greater vulnerability for (5,2). Which configuration is more vulnerable, as assessed
by the average nodal loss? The answer may depend on what probability distribution is employed.

B= 1 2 3 4 5
R = 1 1.000 1.000 1.000 1.000 1.000

2 0.900 0.925 0.942 0.952 0.960
3 0.857 0.879 0.901 0.918 0.930
4 0.833 0.846 0.873 0.895 0.910
5 0.818 0.821 0.853 0.878 0.897

Table 6: Average fraction of nodes lost, f(R,B), with the top-heavy probability distribution, eq.(16).

B= 1 2 3 4 5
R = 1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.6000 0.4074 0.3077 0.2471 0.2063
3 0.4762 0.2127 0.1162 0.0725 0.0493
4 0.4167 0.1183 0.0452 0.0215 0.0118
5 0.3818 0.0668 0.0175 0.0063 0.0028

Table 7: Average fraction of nodes lost, f(R,B), with the bottom-heavy probability distribution,
eq.(17).

Different assessments of vulnerability also arise when comparing fractional losses of configura-
tions with different numbers of nodes, as seen in tables 6 and 7. Consider for instance (5,3) with
121 nodes, and (4,5) with 156 nodes. The top-heavy distribution results in average fractional losses
of 0.853 for (5,3), and 0.910 for (4,5); thus (4,5) is more vulnerable. However, with the bottom-
heavy distribution the fractional losses are 0.0175 for (5,3), and 0.0118 for (4,5); thus (5,3) is more
vulnerable.

In short, the average loss of nodes due to random decapitation is useful for comparing the
vulnerabilities of different hierarchical configurations, if one knows the probability for decapitation
of the different nodes. However, different assessments of vulnerability may result from different
distributions. In section 7 consider the assessment of vulnerability given uncertainty about this
probability distribution.

6.2 Networks with Variable Branching Ratio: BCTs

We now evaluate the average loss due to random decapitation of 2-brigade, 3-brigade and 4-brigade
hierarchies (fig. 2 in section 2 and fig. 4). As before, R is the number of rows, pj is the probability
that decapitation occurs somewhere in the jth row counting from the top, and we assume equal
probability for decapitation of each node in the jth row. The total number of nodes in the network is
N . Let Nj denote the number of nodes in the jth row from the top, for which the expression prior to
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Figure 4: BCT with 4 brigades per team.

eq.(1) is no longer valid because the branching ratios in the BCT networks are not constant. Let Sij
denote the number of nodes in the subnetwork headed by the ith node in the jth row from the top.
The average fractional loss due to decapitation is:

f =
1

N

R∑
j=1

Nj∑
i=1

pj
Nj

Sij (19)

Recall that the average total loss, `, is related to the average fractional loss, f , as ` = Nf .
We evaluate f for each of the 3 networks in figs. 2 and 4, and for the top-heavy and bottom-

heavy probability distributions in eqs.(16) and (17), ptopj and pbotj . Instead of the distribution punij in
eq.(15), which has equal probability for all nodes, we use a distribution with equal probability for all
rows. This row-uniform distribution is defined:

prunij =
1

R
, j = 1, . . . , R (20)

We find that the 2-brigade network has lower average fractional losses, but higher total losses,
than both the 3- and 4-brigade networks. Specifically, the average fractional losses for the 2-, 3- and
4-brigade networks, with the bottom-heavy, row-uniform, and top-heavy probability distributions, are:

fbot,2 = 0.0362, fbot,3 = 0.0385, fbot,4 = 0.0471 (21)

f runi,2 = 0.3065, f runi,3 = 0.3636, f runi,4 = 0.3828 (22)

f top,2 = 0.7894, f top,3 = 0.8825, f top,4 = 0.9025 (23)

We see that the 3-brigade network is more vulnerable than the 2-brigade network to all three dis-
tributions, as assessed by the average fractional loss. Similarly, the 4-brigade network is more
vulnerable than the 3-brigade network. For instance, with the top-heavy distribution, the 2-brigade
network loses 78.94% of its nodes, while the 3- and 4-brigade networks lose 88.25% and 90.25%
of their nodes.

Assessment of vulnerability with the average total nodal loses is reversed:

`bot,2 = 2.679, `bot,3 = 2.117, `bot,4 = 2.308 (24)

`runi,2 = 22.68, `runi,3 = 20.00, `runi,4 = 18.75 (25)

`top,2 = 58.41, `top,3 = 48.54, `top,4 = 44.22 (26)
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The 2-brigade network loses more nodes on average than either the 3- or 4-brigade networks. The
3-brigade network loses more nodes on average than the 4-brigade network with the row-uniform
and top-heavy distributions, but not with the bottom-heavy distribution. Recall that the 2-brigade
network has 74 nodes while the 3- and 4-brigade networks have 55 and 49 nodes, respectively:

In summary, eqs.(21)–(23) suggest that the 2-brigade network is less vulnerable per unit de-
ployed than the 3- or 4-brigade networks, while eqs.(24)–(26) suggest that the 2-brigade network is
more costly in absolute loss.

7 AVERAGE LOSS WITH UNCERTAIN PROBABILITY DISTRIBUTIONS

We now consider uncertainty in the probability distribution, p, where pi is the probability that decapi-
tation occurs in the ith row from the top. p determines the average number or fraction of lost nodes.
We continue to consider networks in which the branching ratio is not necessarily the same at all
nodes.

Let p̃ denote the best estimate of the probability distribution. This may, for instance, be the row-
uniform distribution in eq.(20), or the top-heavy or bottom-heavy probability distributions in eqs.(16)
and (17). The true distribution, p, is uncertain because it depends on the behavior of adversaries
whose goals and capabilities may be poorly known to us. We do not know how much each ele-
ment of p deviates from the corresponding element of p̃. Our uncertainty about p is unbounded in
the space of mathematically legitimate distributions. That is, we do not know or have a reasonable
estimate of the maximal deviation between p and p̃. While p̃ and p are probability distributions,
our uncertainty about them is non-probabilistic: we know no probability distribution for the devia-
tion between them. The absolute-error info-gap model represents this unbounded non-probabilistic
uncertainty:

U(h) =
{
p :

R∑
i=1

pi = 1, pi ≥ 0, |pi − p̃i| ≤ h, i = 1, . . . , R

}
, h ≥ 0 (27)

U(h) is the set of all mathematically legitimate probability distributions (p1, . . . , pR) whose elements
pi deviate from the corresponding elements p̃i of the nominal distribution by no more than h. The
value of h is unknown and unbounded, so the info-gap model is a family of nested sets of probability
distributions, unbounded in the space of all probability distributions.

The average fractional loss due to decapitation, f , is defined in eq.(19). We require that the
average fraction of lost nodes not exceed a critical value, which we denote f c. Alternatively, the
value of f c might arise from the question: What is the greatest fractional loss, f c, which we can be
quite confident will not be exceeded? Formally, the performance requirement is:

f ≤ f c (28)

The robustness is the greatest horizon of uncertainty, h, up to which all probability vectors p in
the uncertainty set U(h) satisfy the requirement in eq.(28). That is, the definition of the robustness
function is:

ĥf (f c) = max

{
h :

(
max
p∈U(h)

f

)
≤ f c

}
(29)

Robustness curves for average fractional loss with 2-, 3- and 4-brigade BCTs are shown in
figs. 5–7. The putative probability distributions in these 3 figures are bottom-heavy, row-uniform,
and top-heavy respectively, eqs.(17), (20) and (16).
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Figure 5: Robustness
curves for 2-, 3-, and
4-brigade networks net-
works. Bottom-heavy pu-
tative distribution.

Figure 6: Robustness
curves with row-uniform
putative distribution.

Figure 7: Robustness
curves with top-heavy pu-
tative distribution.

Each robustness curve reaches the horizontal axis at the value of average fractional loss that is
predicted with the putative probability distribution. For example, in fig. 7 the robustness curves for 2-,
3- and 4-brigade networks reach zero robustness at f c = 0.79, 0.88 and 0.90, respectively, as we
expect from eq.(23). This is the “zeroing” property, characteristic of all info-gap robustness curves.
It means that predicted outcomes — based on the best available information — have no robustness
to error and uncertainty in that information. Consequently, prioritization of one’s alternatives on the
basis of predicted outcomes is unreliable. So, for instance, if the best estimate of the probability
distribution is that it is top-heavy, as in fig. 7, one might be inclined to prefer the 2-brigade over
the 3-brigade network, and the 3-brigade over the 4-brigade network because the predicted losses
are lowest for BCT2 and highest for BCT4, as in eq.(23). However, those predictions have zero
robustness to error in the probability distribution, so that prioritization is unreliable if the probability
distribution is uncertain.

The positive slopes of the robustness curves in figs. 5–7 express the trade off between robust-
ness and fractional loss due to decapitation: greater robustness against uncertainty, ĥf (f c), is ob-
tained only by allowing greater fractional loss of nodes, f c. For instance, in fig. 5 we see that BCT2
has no robustness for average fractional loss of 0.0326 (the zeroing property), but it has robustness
of ĥf = 0.24 for f c = 0.4 as a result of the trade off: less demanding performance (greater f c) has
greater robustness against uncertainty.

Fractional loss is a proxy for loss of effectiveness, as explained in section 2. Thus the
positive slope of the robustness curves expresses the trade off between robustness to un-
certainty and the effectiveness of the organization: greater effectiveness is guaranteed only
at lower robustness to uncertainty.

In fig. 5 we see that BCT4 is more robust than BCT3, which is more robust than BCT2, over
nearly the entire range of fractional loss. Thus the robust preference is for BCT4 over BCT3, and
for BCT3 over BCT2. However, the robustness increments between the adjacent options are fairly
small, so these robust preferences are not strong, and the options seem roughly equivalent in terms
of their average fractional loss with a putative (but uncertain) bottom-heavy probability distribution.
In terms of fractional loss in the bottom-heavy case, one is roughly indifferent between the options
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(though less so in comparing BCT4 against BCT2).
Fig. 6 shows an even clearer case of equivalence between the 3 options in terms of robustness

to uncertainty in a row-uniform probability distribution: the robustness curves strongly overlap one
another.

Fig. 7 shows a clear robust preference for the 2-brigade option over BCT3, which in turn is
weakly preferred over BCT4, in the case of an uncertain top-heavy probability distribution. We note,
however, that the robustness is much lower than in the previous two figures at the corresponding f c
values (note the different horizontal scales). This means that, while BCT2 is most preferred in this
case, one has less confidence that the corresponding fractional losses will not be exceeded.

Summarizing figures 5–7 one could conclude that the robustness of BCT2 is roughly equal to or
greater than the robustness of BCT3 or BCT4, though BCT2’s robustness is low in the presence of
uncertain top-heavy probability distributions.

8 DISCUSSION

We have studied decapitation in a hierarchical network with unity of command. By decapitation we
mean the removal of a node and of the entire sub-network below that node. Unity of command
means that each node receives a command or message from only one other node. We have fo-
cussed on the question of vulnerability to decapitation: given two different networks, which network
is more vulnerable to decapitation?

One might approach this question by counting the number of nodes lost when decapitating a
specific node. However, the 2 propositions in section 4 present a paradox. A different answer to the
vulnerability question is obtained if one selects the decapitated node in each network by counting
i rows from the top of each network, or i rows from the bottom. The resolution of the paradox
hinges on recognizing that the original question — which of the two networks is more vulnerable to
decapitation — is not well posed. Networks with low branching ratio will be relatively more vulnerable
to decapitation high in the network, but relatively less vulnerable for decapitation low in the network.
Conversely, networks with high branching ratio will be relatively less vulnerable to decapitation high
in the network, but relatively more vulnerable to decapitation low in the network.

We refined the question by examining the average number (or fraction) of nodes lost, given a
specified probability for decapitation of each node. However, in sections 5 and 6 we showed by
example that one can get quite different assessments of vulnerability by using different probability
distributions. This answer to the vulnerability question is satisfactory only if the probability distribu-
tion is well known. However, the probability distribution for decapitation is likely to be highly uncertain
because it reflects goals and capabilities of an adversary.

Hence in section 7 we refined the question once again by exploring the robustness, to uncer-
tainty in the decapitation probability, of average fractional loss of nodes. Specifically, for a given
network topology, we ask the robustness question: how much error in the estimated probability
distribution can be tolerated without the average fractional loss exceeding a critical value? A large
value of robustness implies that the fractional loss will be acceptable even if the estimated probability
distribution errs greatly. Conversely, low robustness implies low tolerance to error in the estimated
distribution. This allows us to compare alternative topologies, as we illustrated by comparing 2-
brigade, 3-brigade and 4-brigade BCTs.

To summarize, vulnerability to decapitation can be assessed by counting the number (or fraction)
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of lost nodes resulting from a specific decapitation if one knows which specific node is at risk. If the
nodal vulnerabilities are uncertain, one can use a probability distribution for nodal decapitation to
assess average loss, assuming knowledge of the probability distribution. If the probability distribution
is uncertain, one can assess vulnerability to decapitation by evaluating the robustness to uncertainty
in the probability distribution, while satisfying a performance requirement on the average loss.

Military and other organizations are exploring alternatives to strict hierarchy, such as
networking sensors, commanders, and end-effectors, in order to relax the hierarchical con-
straint and to expedite action and enhance effectiveness. The methodology developed in
this paper can be adapted to explore the vulnerabilities of these alternative organizational
structures.
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A PROOF OF PROPOSITION 1, SECTION 4

The sub-networks removed from networks T and T ′, by removal of the node, have i+1 rows and B
or B′ branches at each node, respectively, where B′ > B.

The total number nodes removed by the decapitation, in each network, are:

` =
i+1∑
j=1

Bj−1 (30)

`′ =
i+1∑
j=1

B′
j−1

(31)

If i = 0 then ` = 1 = `′. If i > 0 then ` < `′ because B′ > B ≥ 1.

B PROOF OF PROPOSITION 2, SECTION 4

The following lemma will be instrumental in proving proposition 2. The basic idea of this lemma is
that each node in a network is the top of a sub-network with the same number of branches at each
node, but with fewer rows. The 1st row below the top of the network contains B nodes. If the total
number of nodes in the network in N , then each of these B nodes is the top of a sub-network with
(N − 1)/B nodes. The lemma generalizes this to the ith row below the top of the network.

Lemma 1 Given:
1. A hierarchical network with unity of command containing R rows and B branches at each node

except in the bottom row.
2. The total number of nodes in the network is N .
Then the number of nodes below and including a node in the ith row below the top, for i =

0, 1, . . . , R− 1, is:

N(i) =
N −

∑i
j=1B

j−1

Bi
(32)
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Proof of lemma 1.
1. If B = 1 then the network is a single path with N nodes. N(i) in eq.(32) equals N − i which is

the number of nodes below and including the ith node below the top. Thus eq.(32) is correct
for B = 1.

2. Now consider B > 1.

3. A node in the ith row below the top of the network, for i = 0, 1, . . . , R − 1, is the top of a
network with R− i rows and B branches at each branching node. From eq.(1) we see that this
node is the top of a sub-network with (BR−i − 1)/(B − 1) nodes.

4. From eq.(1) we see that N = (BR − 1)/(B − 1) and that
∑i
j=1B

j−1 = (Bi − 1)/(B − 1).

5. Thus the righthand side of eq.(32) becomes:

(BR − 1)/(B − 1)− (Bi − 1)/(B − 1)

Bi
=

BR −Bi

Bi(B − 1)
=
BR−i − 1

B − 1
(33)

6. This agrees with the result in step 3. Thus eq.(32) is correct.

Proof of proposition 2. By lemma 1:

L =
N −

∑i
j=1B

j−1

Bi
(34)

L′ =
N −

∑i
j=1B

′j−1

B′i
(35)

Hence, if i = 0, then L = N = L′. If i ≥ 1, then L > L′ because B′ > B.

C DERIVATION OF EQS.(7) AND (8) IN SECTION 5

Let N(R,B) denote the number of nodes in a network with R rows and branching ratio B, based
on eq.(1). Let Nj = Bj−1 denote the number of nodes in the jth row, counting from the top of the
network, for j = 1, . . . , R.

The probability of removing a node in the jth row from the top is Nj/N(R,B) because each node
is equally likely to be removed.

A node in the jth row from the top is at the top of a sub-network with R − j + 1 rows. Thus,
removal of this node removes N(R− j + 1, B) nodes.

Thus the average number of nodes lost is:

` =
1

N(R,B)

R∑
j=1

NjN(R− j + 1, B) (36)

If B = 1 then Nj = 1 and N(R,B) = R so eq.(36) becomes:

` =
1

R

R∑
j=1

(R− j + 1) =
1

R

R∑
j=1

j =
R+ 1

2
(37)

which is eq.(7).
If B > 1, eq.(36) becomes:

` =
B − 1

BR − 1

R∑
j=1

Bj−1B
R−j+1 − 1

B − 1
(38)
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=
1

BR − 1

R∑
j=1

(
BR −Bj−1

)
(39)

=
RBR

BR − 1
− 1

BR − 1

R∑
j=1

Bj−1

︸ ︷︷ ︸
N(R,B)

(40)

=
RBR

BR − 1
− 1

B − 1
(41)

which is eq.(8).
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