Lecture 1 Info-Gap Theory: Overview and Examples

Yakov Ben-Haim
Technion
Israel Institute of Technology

Contents

1	Highlights (besancon2022lec01-001.tex)	3
2	Info-Gap Uncertainty: Examples (ig-unc01intro.tex)	6
3	Principle of Indifference (indif5a-intro.tex) 3.1 Keynes' Example(indif5c-keynes.tex)	
4	Conclusion (besancon2022lec01-001.tex)	39

${\bf 1} \quad Highlights$

Highlights

§ What is an info-gap? (Uncertainty is unbounded)

 \S

Highlights

- § What is an info-gap? (Uncertainty is unbounded)
- § Examples

2 Info-Gap Uncertainty: Examples

$\sim \sim Thames\ Flood\ Barrier \sim \sim$

Figure 1: 1953 barrier breach.

Figure 2: Barrier element.

§ Some facts:

- 1953: worst storm surge of century.
- Flood defences breached.
- 307 dead. Thousands evacuated.
- Canvey Island in Estuary devastated.
- Current barrier opened May 1984.

§ Thames 2100:

Major re-design of flood defences.

§ Uncertainties:

- Statistics of surge height:
 - o Fairly complete: most years since 1819.
 - o Planning for 1000-year surge.
- Global warming: sea level rise.
- Tectonic settling of s. England.
- Damage vs flood depth.
- Human action: dredging, embanking.
- Urban development.
- § Severe Knightian uncertainties: Gaps in knowledge, understanding and goals.

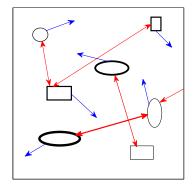
$\sim \sim Fukushima\ Nuclear\ Reactor \sim \sim$

Figure 3: Sea wall breach.

Figure 4: Hydrogen explosion.

§ Some facts:

- 11.3.2011: Richter-9 earthquake in NE Japan.
- Tsunami followed shortly.
- Sea wall breached: fig. 3.[‡]
- ullet Hydrogen explosion several days later. Fig. 4. $^{\ddag}$
- Slow disaster recovery.


§ Info-gaps:

- Sub-system interactions.
- Institutional constraints.

 $[\]verb|\label{lib}ig-unc01fukushima.tex| 17.7.2015$

 $[\]ddagger http://www.dailymail.co.uk/news/article-1388629/Japan-tsunami-destroyed-wall-designed-protect-Fukushima-nuclear-plant.html$

$\sim \sim Managing\ Mobile\ Wireless\ Network \sim \sim$

 $\label{eq:figure 5: Mobile wireless network.}$

Red: talk. Blue: motion.

- Manage resources.
- Info-gaps:
 - o Node number, motion, transmission.
 - o Barriers.
 - o Cross talk.

$\sim \sim Climate\ Change \sim \sim$

§ The issue:

Sustained rise in green house gases results in temperature r^{is} which results in adverse economic $imp_{a_{c_t}}$.

§ Models:

- Temperature change: $\Delta \mathbf{CO}_2 \Longrightarrow \Delta T$.
- Economic impact: $\Delta T \Longrightarrow \Delta \mathbf{GDP}$.

§ The problems:

- Models highly uncertain.
- Data controversial.

§ E.g., IPCC model for

Uncertainty in Equil'm Clim. Sensi'ty, S.

- Likely range: 1.5° C to 4.5° C.
- Extreme values highly uncertain.
- \bullet 95th quantile of S in 10 studies:

Mean: 7.1°C. St. Dev: 2.8°C.

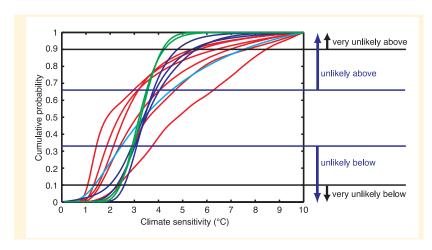


Figure 6: IPCC ch.10, p.799.

$\sim \sim Summary \sim \sim$

§ Deep Knightian uncertainties: Gaps in knowledge, understanding and goals.

δ

${\sim}{\sim}Summary{\sim}{\sim}$

- § Deep Knightian uncertainties: Gaps in knowledge, understanding and goals.
- § Info-Gap models of uncertainty:
 - Disparity between what is known and what needs to be known for responsible decision.

lacktriangle

$\sim \sim Summary \sim \sim$

- § Deep Knightian uncertainties: Gaps in knowledge, understanding and goals.
- § Info-Gap models of uncertainty:
 - Disparity between what is known and what needs to be known for responsible decision.
 - Unbounded family of sets of events (points, functions or sets).
 - No known worst case.
 - No functions of probability, plausibility, likelihood, etc.
 - Hybrid: info-gap model of probabilities.

3 Principle of Indifference

§ Question: Is ignorance probabilistic?

 \S

```
§ Question: Is ignorance probabilistic?
```

```
§ Principle of indifference (Bayes, LaPlace, Jaynes, ...):
```

• Elementary events,
about which nothing is known,
are assigned equal probabilities.

§ Question: Is ignorance probabilistic?

- § Principle of indifference (Bayes, LaPlace, Jaynes, ...):
 - Elementary events,
 about which nothing is known,
 are assigned equal probabilities.
 - Uniform distribution represents complete ignorance.

 \S

§ Question: Is ignorance probabilistic?

- § Principle of indifference (Bayes, LaPlace, Jaynes, ...):
 - Elementary events,
 about which nothing is known,
 are assigned equal probabilities.
 - Uniform distribution represents complete ignorance.
- § The info-gap contention:

The probabilistic domain of discourse does not encompass all epistemic uncertainty.

- § Question: Is ignorance probabilistic?
- § Principle of indifference (Bayes, LaPlace, Jaynes, ...):
 - Elementary events,
 about which nothing is known,
 are assigned equal probabilities.
 - Uniform distribution represents complete ignorance.
- § The info-gap contention:

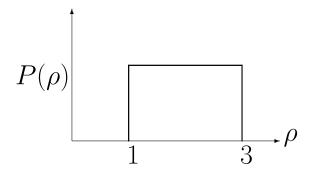
The probabilistic domain of discourse does not encompass all epistemic uncertainty.

§ We will consider common misuses of probability.

3.1 Keynes' Example

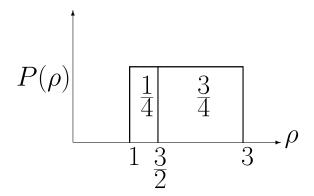
§ $\rho = \text{specific gravity } [g/\text{cm}^3] \text{ is unknown:}$

$$1 \leq \rho \leq 3$$


 \S

§ $\rho = \text{specific gravity } [g/\text{cm}^3] \text{ is unknown:}$

$$1 \leq \rho \leq 3$$

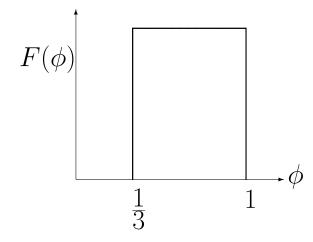

§ Principle of indifference:

Uniform distribution in [1, 3], so:

§ Uniform distribution in [1, 3], so:

$$\mathbf{Prob}\left(\frac{3}{2} \le \rho \le 3\right) = \frac{3}{4}$$

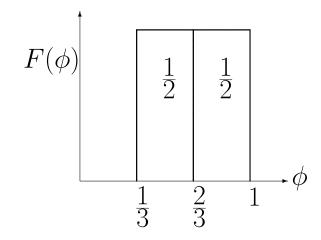
§ $\phi = \text{specific volume } [\text{cm}^3/\text{g}] \text{ is unknown:}$


$$\frac{1}{3} \le \phi \le 1$$

§ $\phi = \text{specific volume } [\text{cm}^3/\text{g}] \text{ is unknown:}$

$$\frac{1}{3} \le \phi \le 1$$

§ Principle of indifference:


Uniform distribution in $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, so:

§ Principle of indifference:

Uniform distribution in $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, so:

$$\mathbf{Prob}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right) = \frac{1}{2}$$

$$\underbrace{\left(\frac{1}{3} \le \phi \le \frac{2}{3}\right)}_{\text{Specific volume}} \equiv \underbrace{\left(\frac{3}{2} \le \rho \le 3\right)}_{\text{Specific gravity}} \tag{1}$$

$$\underbrace{\left(\frac{1}{3} \le \phi \le \frac{2}{3}\right)}_{\text{Specific volume}} \equiv \underbrace{\left(\frac{3}{2} \le \rho \le 3\right)}_{\text{Specific gravity}} \tag{2}$$

§ Hence their probabilities are equal:

$$\underbrace{\mathbf{Prob}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right)}_{\mathbf{Specific volume}} = \underbrace{\mathbf{Prob}\left(\frac{3}{2} \leq \rho \leq 3\right)}_{\mathbf{Specific gravity}} \tag{3}$$

$$\underbrace{\left(\frac{1}{3} \le \phi \le \frac{2}{3}\right)}_{\text{Specific volume}} \equiv \underbrace{\left(\frac{3}{2} \le \rho \le 3\right)}_{\text{Specific gravity}} \tag{4}$$

§ Hence their probabilities are equal:

$$\underbrace{\mathbf{Prob}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right)}_{\mathbf{Specific volume}} = \underbrace{\mathbf{Prob}\left(\frac{3}{2} \leq \rho \leq 3\right)}_{\mathbf{Specific gravity}} \tag{5}$$

$$\frac{1}{2} = \frac{3}{4}$$

$$\frac{1}{2} = \underbrace{\mathbf{Prob} \left(\frac{1}{3} \leq \phi \leq \frac{2}{3} \right)}_{\mathbf{Specific volume}} = \underbrace{\mathbf{Prob} \left(\frac{3}{2} \leq \rho \leq 3 \right)}_{\mathbf{Specific gravity}} = \frac{3}{4}$$

$$\underbrace{\left(\frac{1}{3} \le \phi \le \frac{2}{3}\right)}_{\text{Specific volume}} \equiv \underbrace{\left(\frac{3}{2} \le \rho \le 3\right)}_{\text{Specific gravity}} \tag{6}$$

§ Hence their probabilities are equal:

$$\underbrace{\mathbf{Prob}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right)}_{\mathbf{Specific volume}} = \underbrace{\mathbf{Prob}\left(\frac{3}{2} \leq \rho \leq 3\right)}_{\mathbf{Specific gravity}} \tag{7}$$

§ Hence:

$$\frac{1}{2} = \frac{3}{4}$$

$$\frac{1}{2} = \underbrace{\mathbf{Prob} \left(\frac{1}{3} \leq \phi \leq \frac{2}{3} \right)}_{\mathbf{Specific volume}} = \underbrace{\mathbf{Prob} \left(\frac{3}{2} \leq \rho \leq 3 \right)}_{\mathbf{Specific gravity}} = \frac{3}{4}$$

§ The Culprit: Principle of indifference.

$$\underbrace{\left(\frac{1}{3} \le \phi \le \frac{2}{3}\right)}_{\text{Specific volume}} \equiv \underbrace{\left(\frac{3}{2} \le \rho \le 3\right)}_{\text{Specific gravity}} \tag{8}$$

§ Hence their probabilities are equal:

$$\underbrace{\mathbf{Prob}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right)}_{\mathbf{Specific volume}} = \underbrace{\mathbf{Prob}\left(\frac{3}{2} \leq \rho \leq 3\right)}_{\mathbf{Specific gravity}} \tag{9}$$

§ Hence:

$$\frac{1}{2} = \frac{3}{4}$$

$$\frac{1}{2} = \underbrace{\mathbf{Prob}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right)}_{\mathbf{Specific volume}} = \underbrace{\mathbf{Prob}\left(\frac{3}{2} \leq \rho \leq 3\right)}_{\mathbf{Specific gravity}} = \frac{3}{4}$$

- § The Culprit: Principle of indifference.
- § Ignorance is not probabilistic. It's an info-gap.

3.2 2-Envelope Riddle

§ The riddle:

- You are presented with two envelopes.
 - o Each contains a positive sum of money.
 - o One contains twice the contents of the other.
- You choose an envelope, open it, and find \$50.
- Would you like to switch envelopes?

§ You reason as follows:

- Other envelope contains either \$25 or \$100.
- Principle of indifference:
- Assume equal probabilities.

The expected value upon switching is:

E.V. =
$$\frac{1}{2}$$
 \$ 25 + $\frac{1}{2}$ \$ 100= \$ 62.50. \$ 62.50 > \$ 50.

• Yes! Let's switch, you say.

§ The riddle, re-visited:

- You are presented with two envelopes.
 - Each contains a positive sum of money.
 - o One contains twice the contents of the other.
- You choose an envelope, but do not open it.
- Would you like to switch envelopes?

§ You reason as follows:

- This envelope contains X > 0.
- Other envelope contains either \$2X or $\frac{1}{2}X$.
- Principle of indifference:
- Assume equal probabilities.

The expected value upon switching is:

E.V. =
$$\frac{1}{2} \$ 2X + \frac{1}{2} \$ \frac{1}{2}X = \$ (1 + \frac{1}{4})X > X$$
.

• Yes! Let's switch, you say.

§ You reason as follows:

- This envelope contains X > 0.
- Other envelope contains either \$2X or $\frac{1}{2}X$.
- Principle of indifference:
- Assume equal probabilities.

The expected value upon switching is:

E.V. =
$$\frac{1}{2} \$ 2X + \frac{1}{2} \$ \frac{1}{2}X = \$ \left(1 + \frac{1}{4}\right)X > X$$
.

• Yes! Let's switch, you say.

§ You wanna switch again? And again? And again?

4 Conclusion

§ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.

8

- § Info-gap uncertainty: innovation, discovery, ignorance, surprise.
- § Info-gap uncertainty is unbounded.

 \S

- § Info-gap uncertainty: innovation, discovery, ignorance, surprise.
- § Info-gap uncertainty is unbounded.
- § Optimism: our models get better all the time.

 \S

- § Info-gap uncertainty: innovation, discovery, ignorance, surprise.
- § Info-gap uncertainty is unbounded.
- § Optimism: our models get better all the time.
- § Realism: our models are wrong now (and we don't know where or how much).

δ

- § Info-gap uncertainty: innovation, discovery, ignorance, surprise.
- § Info-gap uncertainty is unbounded.
- § Optimism: our models get better all the time.
- § Realism: our models are wrong now (and we don't know where or how much).
- § Responsible decision making:
 - Specify your goals.
 - Maximize your robustness to uncertainty.
 - Study the trade offs.
 - Exploit windfall opportunities.