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1 Highlights

§ Info-Gap Robustness Analysis of:
• Random Loads on a Beam.
• Random Events and Failure.
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2 Random Load on a Cantilever: Info-Gap Robustness Analysis
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2.1 Problem Statement

• Rigid beam.
• F = load at free end at angle φ.
• k = rotational stiffness at base.
• θ = angular rotation of beam:

θ =
F sinφ

k
(1)

• Design requirement:
|θ| ≤ θc (2)

• Problem: Load uncertain, F .

2.2 Uniform-Bound Info-Gap Model

§We know:
• F is nominally zero.
• F may deviate greatly from zero.

§We do not know:
• Maximum deviation from zero.
• Probability distribution of F .

§ Info-gap model of uncertainty in F :

U(h) = {F : |F | ≤ h} , h ≥ 0 (3)

Two levels of uncertainty:
◦ F unknown.
◦ Horizon of uncertainty, h, unknown.

§ Derive the robustness by combining:
• System model: eq.(1).
• Performance requirement: eq.(2).
• Uncertainty model: eq.(3).

ĥ(θc) = max

{
h :

(
max
F∈U(h)

|θ|
)
≤ θc

}
(4)
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§ Solution method. Start from the inside:
Let m(h) denote the inner maximum in eq.(4) that occurs for F = ±h:

m(h) =

∣∣∣∣h sinφk

∣∣∣∣ ≤ θc =⇒ ĥ(θc) =
kθc
sinφ

(5)

§ Two properties of all info-gap robustness functions, ĥ(θc):
• Trade off: Better performance (smaller θc) has worse robustness (lower ĥ).
• Zeroing: Predicted performance (no rotation) has zero robustness.

§ Inverse of robustness: m(h) is the inverse function of ĥ(θc):

m(h) = θc if and only if ĥ(θc) = h (6)

Hence: plot of m(h) vs h is the same as plot of θc vs ĥ(θc).

2.3 Fractional-Error Info-Gap Model

§ Different information, different robustness.

§We know:
• F nominally equals F̃ , a known positive value.
• F may deviate greatly from F̃ .
• k nominally equals k̃, a known positive value.
• k may deviate greatly from k̃.
• k is non-negative.

§We do not know:
• Maximum fractional deviation of F from F̃ , or of k from k̃.
• Probability distribution of F or of k.

§ Info-gap model of uncertainty in F and k:

U(h) =
{
F, k :

∣∣∣∣∣F − F̃F̃

∣∣∣∣∣ ≤ h, k > 0,

∣∣∣∣∣k − k̃k̃
∣∣∣∣∣ ≤ h

}
, h ≥ 0 (7)

§ Derive the robustness by combining:
• System model: eq.(1), p.4: θ = (F sinφ)/k.
• Performance requirement: eq.(2), p.4: |θ| ≤ θc.
• Uncertainty model: eq.(7).

ĥ(θc) = max

{
h :

(
max

F,k∈U(h)
|θ|
)
≤ θc

}
(8)

§ Solution method: start with the inner maximum of eq.(8).
The inner maximum, m(h), occurs at:

F = (1 + h)F̃ , k = max[0, (1− h)k̃] (9)
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Thus, for h < 1:

m(h) =
(1 + h)F̃ sinφ

(1− h)k̃
≤ θc =⇒ (1 + h)F̃ sinφ ≤ (1− h)k̃θc =⇒ ĥ =

k̃θc − F̃ sinφ

k̃θc + F̃ sinφ
(10)

or zero if this is negative. Note that ĥ is less than 1.

§ Two properties:
• Trade off: greater robustness only at greater allowed deflection.
• Zero robustness at estimated deflection.

§ Meaning of numerical values of ĥ:
• ĥ = 0.2 implies performance guaranteed up to 20% error in both F̃ and k̃.
• ĥ = 0.7 implies performance guaranteed up to 70% error in both F̃ and k̃.
• Asymptotic robustness:

lim
θc→∞

ĥ(θc) = 1 (11)

• Max possible robustness (in this problem:) immunity to 100% error.
◦ Small? Large? Large enough?
◦ Important and difficult value judgment.

2.4 Probability of Failure

§ Different prior knowledge:
• k is known.
• F is exponentially distributed random variable:

p(F ) = λe−λF , F ≥ 0 (12)

§ Failure of failure:
• Mechanical failure [violating design requirement, eq.(2)]:

|θ| > θc (13)

• Probability of failure:
Pf = Prob(|θ| > θc) (14)

§ Deriving probability of failure:
F is non-negative so θ is also non-negative. Hence the probability of failure is:

Pf(λ) = Prob(|θ| > θc) = Prob(θ > θc) = Prob
(
F sinφ

k
> θc

)
= Prob

(
F >

kθc
sinφ

)
= exp

(
−λkθc
sinφ

)
(15)
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2.5 Hybrid Uncertainty: Probability with Info-Gaps

§ Continue from section 2.4, but with λ uncertain.

§We know:
• λ̃, an estimate of λ.
• λ is positive.

§We do not know:
• Maximum fractional error of the estimate.
• Probability distribution of λ.

§ Info-gap model for uncertainty in λ:

U(h) =
{
λ : λ > 0,

∣∣∣∣∣λ− λ̃λ̃
∣∣∣∣∣ ≤ h

}
, h ≥ 0 (16)

§ Two types of failure:
• Mechanical failure. Rotation too large:

|θ| > θc (17)

• Probabilistic failure. Probability of failure too large:

Prob(|θ| > θc) > Pc (18)

§ Evaluate robustness with respect to probabilistic failure:

ĥ = max

{
h :

(
max
λ∈U(h)

Pf(λ)

)
≤ Pc

}
(19)

• Start with the inner maximum of eq.(19), m(h).
• From eq.(15), p.6, the inner maximum occurs at λ = max[0, (1− h)λ̃]:

m(h) = exp

(
−(1− h)λ̃kθc

sinφ

)
≤ Pc =⇒ (1− h)λ̃kθc

sinφ
≥ − lnPc =⇒ ĥ(Pc) = 1 +

sinφ

λ̃kθc
lnPc

(20)
or zero if this is negative.

§ Two properties:
• Trade off: ĥ(Pc) decreases (gets worse) as Pc decreases (gets better).
• Zeroing: Robustness vanishes at nominal Pf :

ĥ(Pc) = 0 if Pc = Pf(λ̃) = exp

(
− λ̃kθc
sinφ

)
(21)
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3 Random Events and Failure: Info-Gap Robustness Analysis

3.1 Formulation

§ Problem Statement:
• Adverse events occur randomly, independently, with average rate λ/sec.
• System fails if n or more events occur within time T .

§ Questions:
•What is probability of failure if n = 1 or n = 2?
• Suppose λ is uncertain. Evaluate robustness of failure probability.

3.2 Probabilities of Failure

§ Adverse events occur according to a Poisson process:
• Independent random events, constant average rate.
• Probability of exactly n events in duration T is:

Pn(T ) =
(λT )n

n!
e−λT , n = 0, 1, 2, . . . (22)

§ Failure probability for n = 1:
• The probability of no events up to time T is P0(T ).
• Thus, for n = 1, the probability of failure is 1− P0(T ):

Pf,1 = 1− e−λT (23)

§ Failure probability for n = 2:
• The probability of less than 2 events up to time T is P0(T ) + P1(T ).
• Thus, for n = 2, the probability of failure is 1− P0(T )− P1(T ):

Pf,2 = 1− e−λT − λT e−λT (24)

\lectures\talks\lib\ps2p70-001.tex. Based on problem 70 in ps2-02.tex. 7.5.2016
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3.3 Uncertain Poisson Process

§We know:
• λ̃ = estimate of failure rate, λ.
• s = estimate of error of λ̃.
• λ is positive.

§We do not know:
• True value of λ.
• Maximum fractional error of estimate.
• Probability distribution for λ.

§ Info-gap model for uncertainty in λ:

U(h) =
{
λ : λ > 0,

∣∣∣∣∣λ− λ̃s
∣∣∣∣∣ ≤ h

}
, h ≥ 0 (25)

§ Two properties of all info-gap models:
• Contraction:

U(h) =
{
λ̃
}

(26)

• Nesting:
h < h′ =⇒ U(h) ⊆ U(h′) (27)

3.4 Robustness to Info-Gap Uncertainty in Poisson Process

§ System model: Pf,n in eq.(23) or (24).

§ Performance requirement. Failure probability acceptably small:

Pf,n ≤ Pc (28)

§ Uncertainty model: eq.(25).

§Robustness function combines system model, performance requirement, and uncertainty model.

§ Evaluating the robustness for n = 1.
• The robustness is defined as:

ĥ1(Pc) = max

{
h :

(
max
λ∈U(h)

Pf,1

)
≤ Pc

}
(29)

• Let m1(h) denote the inner maximum of eq.(29).
• According to eq.(23), m(h) occurs when λ is as large as possible: λ = λ̃+ sh. Thus:

m1(h) = 1− e−(λ̃+sh)T ≤ Pc =⇒ ĥ1(Pc) =
−λ̃T − ln(1− Pc)

sT
(30)
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or zero if this is negative.
• Note trade off and zeroing.

§ Evaluating the inverse of the robustness for n = 2.
• The robustness is defined as:

ĥ2 = max

{
h :

(
max
λ∈U(h)

Pf,2

)
≤ Pc

}
(31)

• Let m2(h) denote the inner maximum of eq.(31), which is the inverse of the robustness.
• From eq.(24), p.8, we find:

∂Pf,2

∂λ
= λT 2e−λT > 0 (32)

• Thus m2(h) occurs when λ is as large as possible: λ = λ̃+ sh.
• Thus, from eq.(24):

m2(h) = 1− e−(λ̃+sh)T − (λ̃+ sh)T e−(λ̃+sh)T (33)

• The robustness is the greatest h at which:

m2(h) ≤ Pc (34)

• Problem: We can’t solve eq.(34) for h.
• Solution: No need to.
◦ m2(h) is the inverse of ĥ(Pc).
◦ Plot of h vs m2(h) equivalent to plot of ĥ(Pc) vs Pc.
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4 Conclusion
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In Conclusion
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In Conclusion

§ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.

§ Info-gap uncertainty is unbounded.

§ Optimism: our models get better all the time.

§ Realism: our models are wrong now

(and we don’t know where or how much).

§ Responsible decision making:

• Specify your goals.

• Maximize your robustness to uncertainty.

• Study the trade offs.

• Exploit windfall opportunities.


