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1 Linear Regression

§ Modelling is a decision problem. We will consider 2 examples:
e Modelling a mechanical S-N curve.
¢ Modelling the economic Phillips curve.

§ Mechanical S-N curve:
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Figure 1: S-N curves. Figure 2: S-N curves.

§ Challenge: Two foci of uncertainty:
e Randomness:
o Noisy data (statistics).
e Info-gaps:
o Changing fundamentals.
o Material variability.
o Environmental variability.

& Questions:
e How to use empirical data to model uncertain material?
e Is optimal estimation (e.g. least-squares) a good strategy?
e Can we do better?
e How to manage both statistical and info-gap uncertainty?
e How to evaluate estimate vis a vis info-gaps?

Source: Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan.
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§ Economic Phillips curve:
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Figure 3: Inflation vs. unemploy-
ment in the US, 1961-1967.

§ Inflation vs. unemployment, US, ’'61-'67:
e Approximately linear.

e Slope ~ —0.87 %CPIl/%unemployment.

§ Slopes in other periods:
¢ ’'61-'67: —0.87 ¢ '80—'83: —3.34

§ Challenge: Two foci of uncertainty:
e Randomness:
o Noisy data (statistics).
e Info-gaps:
o Changing fundamentals.
o Data revision.

& Questions:
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Figure 4: Inflation vs. unemploy-
ment in the US, 1961-1993.

¢ '85-'93: —1.08 ®'70-78: 7?7

e How to use historical data to model the future?
e Is optimal estimation (e.g. least-squares) a good strategy?

e Can we do better?

¢ How to manage both statistical and info-gap uncertainty?
e How to evaluate estimate vis a vis info-gaps?

¢ Paired data, fig. 5:
e CPI, system lifetime, etc: ¢y, ..., cp.

e Unemployment, mechanical stress, etc: w1, ..., u,.

Figure 5: Paired data.

13/4



\lib\besanconz022iec05-001.tex  Vibration Suppression with Uncertain Load: Info-Gap Analysis

¢ Least-squares estimate of slope:
e Linear regression:
c=su+b
e Mean squared error:
1 Y )
MSE = N ;[cz — (su; +b)]
e MSE estimate of the slope:
5 = arg msin MSE
One finds:
. cov(u,c)
S = —
var(u)

where:
1 & 1 & 1 &
cov(u,¢) = — Zciui - ( Z ci> < Zuz>
N ) N

and var(u) = cov(u,u).
e In our case, fig. 5, 5 < 0.

¢ Robustness question:
How much can the data err due to info-gaps, and the slope’s error will be acceptable?

¢ Moments:
+ = covariance, cov(u,c). 7 = estimate.
o? = variance, var(u).  &° = estimate.

§ Consider info-gap in data. Specifically, unknown fractional errors of moments:
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¢ Fractional-error info-gap model:

U(h) <h, 0?>0 3, h>0

|
=
Q
N

A
B

§ Least-squares estimate: 5 = 7/5°.
Actual value: s = v/02.

§ Performance requirement: |s(v,0?) — 5| < rc.
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¢ Robustness of LS estimate s:
Max horizon of uncertainty in moments
at which 5 errs no more than r.:

h(3,re) = h: o) =3 | <re
(8,7¢) max{ <%ar§1€az/>l<(h) |s(y,0%) 3]) <r }
¢ Derivation of the robustness:

e m(h) = inner maximum in eq.(7).

e m(h) occurs at y = (1 + h)y, o2 = (1 — h)*t5%

e Thus, for h < 1:

Q+hi 5
N A=
<1+h ) 8
= ([——-1)|=
1—-nh 52
- 2
Tor-a”

e Equate m(h) = r. and solve for h (recall 5 < 0):

2h T ~
T =/ (definition) — 51 (<1)

¢ Robustness of LS estimate s:

Recall: 5 < 0so p > 0.
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Figure 6: Robustness of
estimated slope, K(5, p),
VS. critical error, p.
Eq.(12).

e Best-estimate: zero robustness.
e Trade-off: robustness vs. estim. error.
e Example: p = 0.2, h = 0.09.

§ Can we do better than LS estimate?
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Figure 7: h(3, p) VS. p.

¢ Estimates of Phillips slope:
e 5 = LS estimate, with robustness % (3, r.).
e s.= any estimate, with robustness % (se, ).
e Definitions: {( = s./s, p= —r./s. (Recall: 5 <0.)
¢ Robustness of s, in analogy to eq.(7):
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Robustness

13/7

)
=~

o
w
a

o
w

o
N
a

=)
)

o
o
15}

o
o

o
o
53}

ya
/
0.2

o

0.8 1

S

0.4, 0.6
Critical Error

Figure 9: h(se,p) vs. p. ¢ = 1
(solid), 1.15 (dash), 0.85 (dot-
dash).

/H(Sea rc) = max {h : <%Uglgf{((h) |5(77U2) - 5e‘> < rc} (13)
o Let m(h) denote the inner maximum:
h) = —5 — Se 14
"= B |2 "
o For h < 1 this occurs at one of the following:
Either: ~y=(14+h)7, ¢>=(1—h)5> (15)
Or:  y=(1-h)F, o?=(1+h)s* (16)
o Denote the corresponding m(h)’s:
(14 h)y
h) = |—5 — S 17
(1—h)y
— s — Se 18
o m(h) is the greater of these two alternatives:
m(h) = max[mi(h), ma(h)] (19)
The maximum depends on the value of h.
o After some algebra, and equating m(h) = r., one finds:
-1 .
h(Se, p) = e . (20)
% if > <¢(*—1landp>( -1

~

h(se, p) is zero otherwise. Note 1 < 1.
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¢ Eq.(20) includes eq.(12) as a special case, when ¢ = 1.

e When ¢ > 1, the robustness follows the lower line of eq.(20) (which has greater slope than the
robustness curve for s) for small p, and then follows the upper line of the equation for larger p. This
causes crossing of robustness curves as illustrated by the solid and dashed lines in figs. 8 and 9.
(The two lines in eq.(20) are equal when p? = (2 — 1.)

e LS estimate: 0 error, 0 robustness.

e Trade-off: robustness vs. estim. error.

e Curve crossing: preference reversal.

§ Can we do better than least-squares? Yes, but at a price:
Robust-satisficing estimate is more robust to uncertainty at positive estimation error.
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2 Estimating an Uncertain Probability Density

9§ The problem:

e Estimate parameters of a probability density function (pdf) based on observations.

e Common approach: select parameter values to maximize the likelihood function for the class
of pdfs.

e In this section: simple example of a situation where the form of the pdf is uncertain, not only
parameters.

9 Notation:
e x = random variable.
e X = (x1, ...,xxN) = random sample.

e p(z|\) = be a pdf for « with parameters .

9 Likelihood function:

N
L(X,p) = [ ] pla:|N) (21)
=1
9 Maximum likelihood estimate (MLE):
A = arg max L(X,Dp) (22)
9 Examples of MLE.
e Exponential distribution: The pdf is:
P(x[A) =A™, 2>0 (23)
The likelihood function, from eq.(21), is:
N N
L =[] p(xi|A) = AN exp (—)\ > ac) (24)
=1 =1

Thus:
oL N N
—Z = [ NAN-L - )\NZxZ— exp —)\in (25)
2 =1 =1

Equating to zero and solving for \ yields the MLE:

0=k oAV W ZN: — | - ﬁfj (26)
= —_— = —_ i == —_— gji
O = e N &
Note that: .
B(z) = 1 (27)
e Normal distribution: MLE of the mean. The pdfis:
1
P(al) = =™ /2 (28)

\2mo
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The likelihood function, from eq.(21), is:

N 1 T ,
Note that:
N
HUMLE = arg miuxL = arg IIBH Z(%Z — 11)? = Least Squares Estimate (30)

i=1

Thus MLE and LSE agree. Define the squared error:

Thus:

LN
= =0=-2> (z;—p) = |pMLE= i > (32)
: =1

9 Robust-satisficing:
e Form of the pdf is not certain.
e p(z|\) is most reasonable choice of the form of the pdf. We will estimate A.
e Actual form of the pdf is unknown.
e We wish to choose those parameters to:
o Satisfice the likelihood.
o To be robust to the info-gaps in the shape of the actual pdf which generated the data, or
which might generate data in the future.

9 Info-gap model:
Uh,p) ={p(z) : p(z) € P, |p(x) — p(z[A)| < hip(z)}, h=>0 (33)

e P is the set of all normalized and non-negative pdfs on the domain of .
e ¢(z) is the known envelope function. E.g. ¢(x) = 1, implying severe uncertainty on tail.
e h is the unknown horizon of uncertainty.

9 Question:
Given the random sample X, and the info-gap model U (h, p), how should we choose the param-
eters of the nominal pdf p(x|\)?

9 Robustness:

h(\, Le) = max {h : ( min _ L(X, p)) > LC} (34)
p€U(h,p)
¥ m(h) = inner minimum in eq.(34).
For the info-gap model in eq.(33) m(h) is obtained for the following choices of the pdf at the data
points X:
N 0 else

plai) = { Blas) — hib(w)  if b < Plas) [0 () o
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Choose p(z) = p(x) for all other «’s.

Define:
5(%)
¢(5L“z)

Since m(h) is the product of the densities in eq.(35) we find:

hmax = min
i

N

m(h) = H[ﬁ(mi) —h(z;)] iR < hmax
- 0 else

¢ m(h) and h(\, L):
¢ Robustness is the max h at which m(h) > L.
e m(h) strictly decreases as h increases.
e Hence robustness is the solution of m(h) = Le.
e Hence m(h) is the inverse of h(\, L.):

m(h) = L. implies h(\ L) = h

e Plot of m(h) vs. h is plot of L. vs. h(), L).

13/11

(36)

(38)



\ib\besanconz022iec05-001.tex  Vibration Suppression with Uncertain Load: Info-Gap Analysis
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Figure 10:  Robustness Figure 11: Loci of inter-

curves. \* = 3.4065. §ection of robgstness curves
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9 Robustness curves in fig. 10 based on:
e Eqs.(37) and (38).
e Nominal pdf is exponential, p(z|\) = Aexp(—Az) with A = 3.
e Envelope function is constant, ¢(x) = 1. Note severe uncertainty on the tail.
e Random sample, X, with N = 20.
e MLE of \, eq.(22): \* = 1/z where Z = (1/N) XY, z, is the sample mean.
e Robustness curves for 3 \'s: 0.9\*, A\*, and 1.1)\*.

9 Robustness of the estimated likelihood is zero for any A:
e Likelihood function for A is L[X, p(z|\)].
e Each curve in fig.10, ﬁ(A, L.) vs. L, hits horizontal axis when L. = likelihood:

~

h(/\7 LC) =0 if L.= L[X,ﬁ(l")\)]
e \* is the MLE of \. Thus 2()\*, L) hits horizontal axis to the right of h(), L).

9 Preferences between estimates of \:
o h(M*, L¢) > h(0.9\*, Le) = A* = 0.9\,
e h(\*, L¢) and h(1.1\*, L) cross at (L, hx):
o A* = 1.1X\* for L. > Ly and h < hy.
o L.1A* = \* else.
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9 500 repetitions:
e \* dominates 0.9\*.
¢ Preferences reverse between \* and 1.1\*.
e Normalized (hy, Lx) infig. 11.
e Center of cloud: (0.5, 0.2). Typical cross of robustness curves at:
o L. about half of best-estimated value.
o h about 20% of maximum robustness.

q Past and future data-generating processes:
eData in this example generated from exponential distribution.
¢ Nothing in data to suggest that exponential distribution is wrong.
e Motivation for info-gap model, eq.(33), is that,
o while the past has been exponential,
o the future may not be.
e The robust-satisficing estimate of A accounts not only for the historical evidence (the sample
X) but also for the future uncertainty about relevant family of distributions.



