Lecture 5 Estimation with Info-Gap Uncertainties

Yakov Ben-Haim
Technion
Israel Institute of Technology

Contents

1	Linear Regression	3
2	Estimating an Uncertain Probability Density	9

1 Linear Regression

§ **Modelling is a decision problem.** We will consider 2 examples:

- Modelling a mechanical S-N curve.
- Modelling the economic Phillips curve.

§ Mechanical S-N curve:

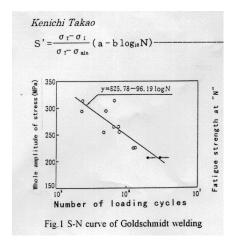


Figure 1: S-N curves.

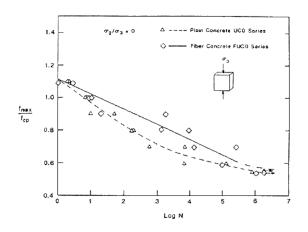


Figure 2: S-N curves.

- \S Challenge: Two foci of uncertainty:
 - Randomness:
 - Noisy data (statistics).
 - Info-gaps:
 - o Changing fundamentals.
 - o Material variability.
 - o Environmental variability.

§ Questions:

- How to use empirical data to model uncertain material?
- Is optimal estimation (e.g. least-squares) a good strategy?
- Can we do better?
- How to manage both statistical and info-gap uncertainty?
- How to evaluate estimate vis a vis info-gaps?

§ Economic Phillips curve:

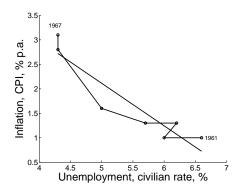


Figure 3: Inflation vs. unemployment in the US, 1961–1967.

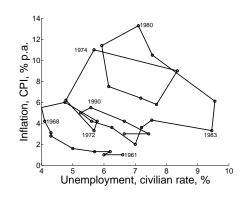


Figure 4: Inflation vs. unemployment in the US, 1961–1993.

- § Inflation vs. unemployment, US, '61-'67:
 - Approximately linear.
 - Slope ≈ -0.87 %CPI/%unemployment.
- § Slopes in other periods:
 - '61−'67: −0.87
- '80−'83: −3.34
- '85−'93: −1.08
- '70-'78: ???

- § Challenge: Two foci of uncertainty:
 - Randomness:
 - o Noisy data (statistics).
 - Info-gaps:
 - o Changing fundamentals.
 - o Data revision.
- § Questions:
 - How to use historical data to model the future?
 - Is optimal estimation (e.g. least-squares) a good strategy?
 - Can we do better?
 - How to manage both statistical and info-gap uncertainty?
 - How to evaluate estimate vis a vis info-gaps?
- § Paired data, fig. 5:
 - CPI, system lifetime, etc: c_1, \ldots, c_n .
 - Unemployment, mechanical stress, etc: u_1, \ldots, u_n .

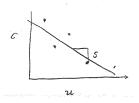


Figure 5: Paired data.

§ Least-squares estimate of slope:

• Linear regression:

$$c = su + b \tag{1}$$

Mean squared error:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} [c_i - (su_i + b)]^2$$
 (2)

MSE estimate of the slope:

$$\widetilde{s} = \arg\min_{s} \mathsf{MSE}$$
 (3)

One finds:

$$\widetilde{s} = \frac{\operatorname{cov}(u, c)}{\operatorname{var}(u)} \tag{4}$$

where:

$$cov(u,c) = \frac{1}{n} \sum_{i=1}^{n} c_i u_i - \left(\frac{1}{n} \sum_{i=1}^{n} c_i\right) \left(\frac{1}{n} \sum_{i=1}^{n} u_i\right)$$
 (5)

and var(u) = cov(u, u).

• In our case, fig. 5, $\tilde{s} < 0$.

§ Robustness question:

How much can the data err due to info-gaps, and the slope's error will be acceptable?

§ Moments:

 $\gamma=$ covariance, $\mathrm{cov}(u,c)$. $\widetilde{\gamma}=$ estimate. $\sigma^2=$ variance, $\mathrm{var}(u)$. $\widetilde{\sigma}^2=$ estimate.

§ Consider info-gap in data. Specifically, unknown fractional errors of moments:

$$\left| \frac{\gamma - \widetilde{\gamma}}{\widetilde{\gamma}} \right|, \quad \left| \frac{\sigma^2 - \widetilde{\sigma}^2}{\widetilde{\sigma}^2} \right|$$
 (6)

§ Fractional-error info-gap model:

$$\mathcal{U}(h) = \left\{ \left. (\gamma, \sigma^2) : \left. \left| \frac{\gamma - \widetilde{\gamma}}{\widetilde{\gamma}} \right| \le h, \right. \left| \frac{\sigma^2 - \widetilde{\sigma}^2}{\widetilde{\sigma}^2} \right| \le h, \, \sigma^2 \ge 0 \right. \right\}, \quad h \ge 0$$

§ Least-squares estimate: $\tilde{s} = \tilde{\gamma}/\tilde{\sigma}^2$.

Actual value: $s = \gamma/\sigma^2$.

§ Performance requirement: $|s(\gamma, \sigma^2) - \tilde{s}| \le r_c$.

\S Robustness of LS estimate \widetilde{s} :

Max horizon of uncertainty in moments at which \tilde{s} errs no more than r_c :

$$\widehat{h}(\widetilde{s}, r_{c}) = \max \left\{ h : \left(\max_{\gamma, \sigma^{2} \in \mathcal{U}(h)} |s(\gamma, \sigma^{2}) - \widetilde{s}| \right) \le r_{c} \right\}$$
(7)

§ Derivation of the robustness:

- m(h) = inner maximum in eq.(7).
- m(h) occurs at $\gamma = (1+h)\widetilde{\gamma}$, $\sigma^2 = (1-h)^+\widetilde{\sigma}^2$.
- Thus, for $h \le 1$:

$$m(h) = \left| \frac{(1+h)\widetilde{\gamma}}{(1-h)\widetilde{\sigma}^2} - \frac{\widetilde{\gamma}}{\widetilde{\sigma}^2} \right|$$
 (8)

$$= \left(\frac{1+h}{1-h}-1\right)\left|\frac{\widetilde{\gamma}}{\widetilde{\sigma}^2}\right| \tag{9}$$

$$= \frac{2h}{1-h}|\widetilde{s}| \tag{10}$$

• Equate $m(h) = r_c$ and solve for h (recall $\tilde{s} < 0$):

$$\frac{2h}{1-h} = -\frac{r_{\rm c}}{\widetilde{s}} = \rho \text{ (definition)} \implies \widehat{h} = \frac{\rho}{2+\rho} \ (\leq 1) \tag{11}$$

\S Robustness of LS estimate \widetilde{s} :

$$\hat{h}(\tilde{s}, \rho) = \frac{\rho}{2+\rho}, \quad \rho = -r_{\rm c}/\tilde{s}$$
 (12)

Recall: $\tilde{s} < 0$ so $\rho > 0$.

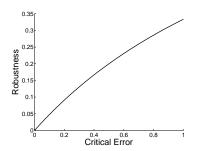
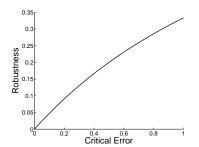
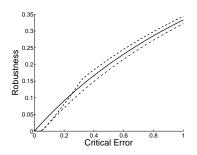


Figure 6: Robustness of estimated slope, $\widehat{h}(\widetilde{s}, \rho)$, vs. critical error, ρ . Eq.(12).

- Best-estimate: zero robustness.
- Trade-off: robustness vs. estim. error.
- Example: $\rho = 0.2, \ \hat{h} = 0.09.$

§ Can we do better than LS estimate?





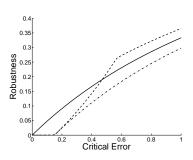


Figure 7: $\widehat{h}(\widetilde{s},\rho)$ vs. ρ .

Figure 8: $\hat{h}(s_{\rm e},\rho)$ vs. ρ . $\zeta=1$ (solid), 1.05 (dash), 0.95 (dot dash).

Figure 9: $\hat{h}(s_{\rm e},\rho)$ vs. ρ . $\zeta=1$ (solid), 1.15 (dash), 0.85 (dot-dash).

§ Estimates of Phillips slope:

- \widetilde{s} = LS estimate, with robustness $\widehat{h}(\widetilde{s}, r_{\rm c})$.
- $s_{\rm e}$ = any estimate, with robustness $\widehat{h}(s_{\rm e},r_{\rm c})$.
- Definitions: $\zeta = s_{\rm e}/\widetilde{s}, \quad \rho = -r_{\rm c}/\widetilde{s}.$ (Recall: $\widetilde{s} < 0.$)
- Robustness of s_e , in analogy to eq.(7):

$$\widehat{h}(s_{e}, r_{c}) = \max \left\{ h : \left(\max_{\gamma, \sigma^{2} \in \mathcal{U}(h)} |s(\gamma, \sigma^{2}) - s_{e}| \right) \le r_{c} \right\}$$
(13)

 \circ Let m(h) denote the inner maximum:

$$m(h) = \max_{\gamma, \sigma^2 \in \mathcal{U}(h)} \left| \frac{\gamma}{\sigma^2} - s_{e} \right| \tag{14}$$

 \circ For $h \le 1$ this occurs at one of the following:

Either:
$$\gamma = (1+h)\widetilde{\gamma}, \ \sigma^2 = (1-h)\widetilde{\sigma}^2$$
 (15)

Or:
$$\gamma = (1-h)\widetilde{\gamma}, \quad \sigma^2 = (1+h)\widetilde{\sigma}^2$$
 (16)

 \circ Denote the corresponding m(h)'s:

$$m_1(h) = \left| \frac{(1+h)\widetilde{\gamma}}{(1-h)\widetilde{\sigma}^2} - s_e \right|$$
 (17)

$$m_2(h) = \left| \frac{(1-h)\widetilde{\gamma}}{(1+h)\widetilde{\sigma}^2} - s_e \right|$$
 (18)

 $\circ m(h)$ is the greater of these two alternatives:

$$m(h) = \max[m_1(h), m_2(h)]$$
 (19)

The maximum depends on the value of h.

 \circ After some algebra, and equating $m(h) = r_c$, one finds:

$$\widehat{h}(s_{\mathrm{e}},\rho) = \begin{cases} & \frac{\rho + \zeta - 1}{\rho + \zeta + 1} & \text{if } \rho^2 \ge \zeta^2 - 1 \text{ and } \rho \ge 1 - \zeta \\ & \frac{\rho - \zeta + 1}{-\rho + \zeta + 1} & \text{if } \rho^2 \le \zeta^2 - 1 \text{ and } \rho \ge \zeta - 1 \end{cases}$$
 (20)

 $\widehat{h}(s_{\mathrm{e}},\rho)$ is zero otherwise. Note $\widehat{h}\leq 1.$

- Eq.(20) includes eq.(12) as a special case, when $\zeta = 1$.
- When $\zeta > 1$, the robustness follows the lower line of eq.(20) (which has greater slope than the robustness curve for \widetilde{s}) for small ρ , and then follows the upper line of the equation for larger ρ . This causes crossing of robustness curves as illustrated by the solid and dashed lines in figs. 8 and 9. (The two lines in eq.(20) are equal when $\rho^2 = \zeta^2 1$.)
 - LS estimate: 0 error, 0 robustness.
 - Trade-off: robustness vs. estim. error.
 - Curve crossing: preference reversal.

§ Can we do better than least-squares? Yes, but at a price:

Robust-satisficing estimate is more robust to uncertainty at positive estimation error.

2 Estimating an Uncertain Probability Density

¶ The problem:

- Estimate parameters of a probability density function (pdf) based on observations.
- Common approach: select parameter values to maximize the likelihood function for the class of pdfs.
- In this section: simple example of a situation where the **form** of the pdf is uncertain, not only **parameters**.

¶ Notation:

- $\bullet x = \text{random variable}.$
- $X = (x_1, \ldots, x_N) = \text{random sample}.$
- $\widetilde{p}(x|\lambda) = \text{be a pdf for } x \text{ with parameters } \lambda.$

¶ Likelihood function:

$$L(X, \widetilde{p}) = \prod_{i=1}^{N} \widetilde{p}(x_i | \lambda)$$
 (21)

¶ Maximum likelihood estimate (MLE):

$$\lambda^* = \arg\max_{\lambda} L(X, \tilde{p}) \tag{22}$$

¶ Examples of MLE.

• Exponential distribution: The pdf is:

$$\widetilde{p}(x|\lambda) = \lambda e^{-\lambda x}, \ x \ge 0$$
 (23)

The likelihood function, from eq.(21), is:

$$L = \prod_{i=1}^{N} \widetilde{p}(x_i|\lambda) = \lambda^N \exp\left(-\lambda \sum_{i=1}^{N} x_i\right)$$
 (24)

Thus:

$$\frac{\partial L}{\partial \lambda} = \left(N \lambda^{N-1} - \lambda^N \sum_{i=1}^{N} x_i \right) \exp\left(-\lambda \sum_{i=1}^{N} x_i \right) \tag{25}$$

Equating to zero and solving for λ yields the MLE:

$$0 = \frac{\partial L}{\partial \lambda} \implies 0 = N\lambda^{N-1} - \lambda^N \sum_{i=1}^N x_i \implies \boxed{\frac{1}{\lambda_{\text{MLE}}} = \frac{1}{N} \sum_{i=1}^N x_i}$$
 (26)

Note that:

$$E(x) = \frac{1}{\lambda} \tag{27}$$

• Normal distribution: MLE of the mean. The pdf is

$$\widetilde{p}(x|\lambda) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$
(28)

The likelihood function, from eq.(21), is:

$$L = \prod_{i=1}^{N} \widetilde{p}(x_i|\lambda) = \frac{1}{(2\pi)^{N/2} \sigma^N} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2\right)$$
 (29)

Note that:

$$\mu_{\text{MLE}} = \arg \max_{\mu} L = \arg \min_{\mu} \sum_{i=1}^{N} (x_i - \mu)^2 = \text{Least Squares Estimate}$$
 (30)

Thus MLE and LSE agree. Define the squared error:

$$S = \sum_{i=1}^{N} (x_i - \mu)^2 \tag{31}$$

Thus:

$$\frac{\partial S}{\partial \mu} = 0 = -2\sum_{i=1}^{N} (x_i - \mu) \implies \boxed{\mu_{\text{MLE}} = \frac{1}{N}\sum_{i=1}^{N} x_i}$$
(32)

¶ Robust-satisficing:

- Form of the pdf is not certain.
- $\widetilde{p}(x|\lambda)$ is most reasonable choice of the form of the pdf. We will estimate λ .
- Actual form of the pdf is unknown.
- We wish to choose those parameters to:
 - Satisfice the likelihood.
- o To be *robust* to the info-gaps in the shape of the actual pdf which generated the data, or which might generate data in the future.

¶ Info-gap model:

$$\mathcal{U}(h,\widetilde{p}) = \{ p(x) : \ p(x) \in \mathcal{P}, \ |p(x) - \widetilde{p}(x|\lambda)| \le h\psi(x) \}, \quad h \ge 0$$
(33)

- \bullet \mathcal{P} is the set of all normalized and non-negative pdfs on the domain of x.
- $\psi(x)$ is the known envelope function. E.g. $\psi(x) = 1$, implying severe uncertainty on tail.
- h is the unknown horizon of uncertainty.

¶ Question:

Given the random sample X, and the info-gap model $\mathcal{U}(h,\tilde{p})$, how should we choose the parameters of the nominal pdf $\tilde{p}(x|\lambda)$?

¶ Robustness:

$$\widehat{h}(\lambda, L_{c}) = \max \left\{ h : \left(\min_{p \in \mathcal{U}(h, \widetilde{p})} L(X, p) \right) \ge L_{c} \right\}$$
(34)

\P m(h) =**inner minimum** in eq.(34).

For the info-gap model in eq.(33) m(h) is obtained for the following choices of the pdf at the data points X:

$$p(x_i) = \begin{cases} \widetilde{p}(x_i) - h\psi(x_i) & \text{if } h \le \widetilde{p}(x_i)/\psi(x_i) \\ 0 & \text{else} \end{cases}$$
 (35)

Choose $p(x) = \tilde{p}(x)$ for all other x's.

Define:

$$h_{\max} = \min_{i} \frac{\widetilde{p}(x_i)}{\psi(x_i)} \tag{36}$$

Since m(h) is the product of the densities in eq.(35) we find:

$$m(h) = \begin{cases} \prod_{i=1}^{N} [\widetilde{p}(x_i) - h\psi(x_i)] & \text{if } h \le h_{\text{max}} \\ 0 & \text{else} \end{cases}$$
 (37)

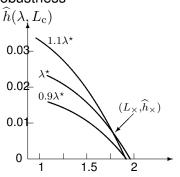
$\P \ m(h)$ and $\widehat{h}(\lambda, L_{\rm c})$:

- Robustness is the max h at which $m(h) \geq L_c$.
- m(h) strictly decreases as h increases.
- ullet Hence robustness is the solution of $m(h)=L_{
 m c}.$
- Hence m(h) is the inverse of $\widehat{h}(\lambda, L_c)$:

$$m(h) = L_{\rm c}$$
 implies $\hat{h}(\lambda, L_{\rm c}) = h$ (38)

• Plot of m(h) vs. h is plot of L_c vs. $\widehat{h}(\lambda, L_c)$.

Robustness



Critical likelihood, $\log_{10} L_{\rm c}$ Figure 10: Robustness curves. $\lambda^{\star}=3.4065$.

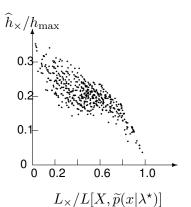


Figure 11: Loci of intersection of robustness curves $\hat{h}(\lambda^{\star}, L_{c})$ and $\hat{h}(1.1\lambda^{\star}, L_{c})$.

¶ Robustness curves in fig. 10 based on:

- Eqs.(37) and (38).
- Nominal pdf is exponential, $\widetilde{p}(x|\lambda) = \lambda \exp(-\lambda x)$ with $\lambda = 3$.
- Envelope function is constant, $\psi(x) = 1$. Note severe uncertainty on the tail.
- Random sample, X, with N=20.
- MLE of λ , eq.(22): $\lambda^* = 1/\overline{x}$ where $\overline{x} = (1/N) \sum_{i=1}^N x_i$ is the sample mean.
- Robustness curves for 3 λ 's: $0.9\lambda^*$, λ^* , and $1.1\lambda^*$.

¶ Robustness of the estimated likelihood is zero for any λ :

- Likelihood function for λ is $L[X, \widetilde{p}(x|\lambda)]$.
- Each curve in fig.10, $\hat{h}(\lambda, L_c)$ vs. L_c , hits horizontal axis when L_c = likelihood:

$$\widehat{h}(\lambda, L_{\rm c}) = 0$$
 if $L_{\rm c} = L[X, \widetilde{p}(x|\lambda)]$ (39)

ullet λ^{\star} is the MLE of λ . Thus $\widehat{h}(\lambda^{\star}, L_{\rm c})$ hits horizontal axis to the right of $\widehat{h}(\lambda, L_{\rm c})$.

¶ Preferences between estimates of λ :

- $\hat{h}(\lambda^*, L_c) > \hat{h}(0.9\lambda^*, L_c) \implies \lambda^* > 0.9\lambda^*$.
- $\widehat{h}(\lambda^{\star}, L_{\mathrm{c}})$ and $\widehat{h}(1.1\lambda^{\star}, L_{\mathrm{c}})$ cross at $(L_{\times}, \widehat{h}_{\times})$: $\circ \lambda^{\star} \succ 1.1\lambda^{\star} \text{ for } L_{\mathrm{c}} > L_{\times} \text{ and } h < h_{\times}.$ $\circ 1.1\lambda^{\star} \succ \lambda^{\star} \text{ else.}$

¶ 500 repetitions:

- λ^* dominates $0.9\lambda^*$.
- Preferences reverse between λ^* and $1.1\lambda^*$.
- Normalized (h_{\times}, L_{\times}) in fig. 11.
- Center of cloud: (0.5, 0.2). Typical cross of robustness curves at:
 - \circ $L_{\rm c}$ about half of best-estimated value.
 - \circ \widehat{h} about 20% of maximum robustness.

¶ Past and future data-generating processes:

- •Data in this example generated from exponential distribution.
- Nothing in data to suggest that exponential distribution is wrong.
- Motivation for info-gap model, eq.(33), is that,
 - o while the past has been exponential,
 - o the future may not be.
- The robust-satisficing estimate of λ accounts not only for the historical evidence (the sample X) but also for the future uncertainty about relevant family of distributions.