101. Energy conservation by feedback (based on exam in 035018, 22.5.2019), (p.352). People change their energy consumption in response to feedback about their prior energy use. Define:

n(c) dc = number of consumers whose prior energy consumption was in the interval [c, c + dc]. The estimated consumption in the next time interval, for a consumer whose prior consumption was in the interval [c, c + dc], is denoted $\tilde{f}(c, \rho)$, where ρ is a parameter expressing the intensity of the feedback; greater ρ implies greater intensity.

The true consumption function is $f(c, \rho)$, whose uncertainty is represented by an info-gap model, U(h). The response of the entire population to feedback at intensity ρ is:

$$R(\rho, f) = \int_0^\infty f(c, \rho) n(c) \,\mathrm{d}c \tag{505}$$

We require that the population response be no greater than the critical value, R_c :

$$R(\rho, f) \le R_{\rm c} \tag{506}$$

(a) Derive an explicit algebraic expression for the robustness function for the following fractionalerror info-gap model:

$$\mathcal{U}(h) = \left\{ f(c,\rho) : f(c,\rho) \ge 0, \left| \frac{f(c,\rho) - \tilde{f}(c,\rho)}{\tilde{f}(c,\rho)} \right| \le h \right\}, \quad h \ge 0$$
(507)

(b) Derive an explicit algebraic expression for the robustness function for the following fractionalerror info-gap model:

$$\mathcal{U}(h) = \left\{ f(c,\rho) : f(c,\rho) \ge 0, \left| \frac{f(c,\rho) - \widetilde{f}(c,\rho)}{w} \right| \le h \right\}, \quad h \ge 0$$
(508)

where *w* is a known positive constant.

(c) Continuing from part 101b, consider two different situations, (ρ_1, w_1) and (ρ_2, w_2) , where:

$$\rho_2 < \rho_1 \quad \text{and} \quad 0 < w_2 < w_1$$
(509)

That is, the feedback in situation 1 is more intensive, but the uncertainty in this situation is greater. For what values of R_c is situation 2 robust-preferred? Assume that $\tilde{f}(c, \rho) = (1 - \rho)c$.

(d) For a particular info-gap model, the robustness function takes this form:

$$\widehat{h}(R_{\rm c},\rho) = (R_{\rm c} - w)\rho \tag{510}$$

or zero if this is negative, where ρ and w are positive constants. Consider two different situations, (ρ_1 , w_1) and (ρ_2 , w_2), where:

$$0 < \rho_2 < \rho_1 \quad \text{and} \quad 0 < w_2 < w_1$$
 (511)

For what values of R_c is situation 1 robust-preferred?

(e) The true and estimated consumption functions are related as:

$$f(c,\rho) = \tilde{f}(c,\rho) + \sum_{j=1}^{J} a_j \sin \frac{j\pi c}{c_{\max}}$$
(512)

$$= \tilde{f}(c,\rho) + a^T \sigma(c)$$
(513)

where c_{max} is a known positive number, and *a* and $\sigma(c)$ are the vectors of Fourier coefficients and sine functions in eq.(512). The uncertainty in $f(c, \rho)$ is represented by this Fourier-ellipsoid info-gap model:

$$\mathcal{U}(h) = \left\{ f(c,\rho) = \widetilde{f}(c,\rho) + a^T \sigma(c) : a^T W a \le h^2 \right\}, \quad h \ge 0$$
(514)

where *W* is a known, positive definite, real, symmetric matrix. Derive an explicit algebraic expression for the robustness function.