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Figure 9: Cantilever for problem 53.

53. Cantilever–2. (p.231) Consider the cantilever in fig. 9. The force F is applied perpendicular to
the elastic beam of length L which is rigidly constrained at the base. The bending stiffness of
the beam is EI and the end deflection is y = FL3/(3EI).

(a) The anticipated force is F̃, which is positive. The uncertainty in the true force, F, is repre-
sented by the info-gap model:

U (h) =
{

F :

∣∣∣∣∣
F− F̃

σ

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (172)

where σ is known and positive. The performance requirement is that the end deflection be no
less than the critical value yc. Derive an explicit expression for the robustness to uncertainty.

(b) Continue part (a) and compare two designs with different bending stiffnesses and load
uncertainties:

(EI)1 > (EI)2 and σ1 < σ2 (173)

For what values of critical deflection, yc, is design [(EI)1, σ1] preferred over design [(EI)2, σ2]?

(c) Now consider a different performance requirement: the bending moment at the base of the
beam must not exceed the critical value Mc. Use the info-gap model of eq.(172) to derive an
explicit expression for the robustness to uncertainty.

(d) Derive an expression, based on parts (a) and (c), for the robustness to uncertainty when
both of the performance requirements must be satisfied.

(e) Let F be a non-negative random variable with probability density function (pdf) p(F)
whose estimated form is exponential: p̃(F) = λe−λF. The uncertainty in the pdf is represented
by:

U (h) =
{

p(F) : p(F) ≥ 0,
∫ ∞

0
p(F)dF = 1, |p(F)− p̃(F)| ≤ hp̃(F)

}
, h ≥ 0 (174)

The mechanical system fails if the deflection, y, is less than yc. The performance requirement is
that the probability of failure must not exceed Pc. Derive an explicit expression for the robust-
ness of this performance function, for Pc much less than 1.

(f) Now suppose that N forces, f = ( f1, . . . , fN), are applied perpendicularly to the beam,
where fi is applied at a distance `i from the base. As in part (c), the performance requirement
is that the bending moment at the base of the beam must not exceed the critical value Mc. The
nominal force vector is f̃ , and uncertainty is represented as:

U (h) =
{

f : ( f − f̃ )TW( f − f̃ ) ≤ h2
}

, h ≥ 0 (175)
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where W is a known, positive definite, symmetric matrix. Derive an explicit expression for the
robustness.

(g) Return to part (a) and denote the robustness ĥy. Suppose that the horizon of uncertainty, h,
is a random variable with exponential distribution: p(h) = λe−λh. The system fails if the end
deflection is less than yc. Derive an upper bound for the probability of failure, as a function of
ĥy. This upper bound is less than one.

(h) Consider the end-loaded beam in fig. 9, where L = 1m and F = 1000N. The end deflection
was measured 5 times with normal noise, and the observed deflections are 0.016, 0.010, 0.013,
0.011 and 0.012m. Use a statistical test to decide between the following two hypotheses:

H0 : EI = 2× 104Nm2 (176)

H1 : EI > 2× 104Nm2 (177)

Do you reject H0 at 0.05 level of significance?

(i) The beam in fig. 9 is loaded repeatedly and the deflection is measured and categorized as
“low”, “medium” or “high”. Under normal conditions the probabilities of these categories are:

plow = 0.35, pmed = 0.55, phigh = 0.10 (178)

In the last batch of loadings the observations are:

nlow = 55, nmed = 75, nhigh = 20 (179)

The null hypothesis is that the conditions are normal. Do you reject the null hypothesis at 0.05
level of significance?
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Solution for problem 53: Cantilever. (p.51)
(a) The definition of the robustness is:

ĥy = max
{

h :
(

min
F∈U (h)

y
)
≥ yc

}
(1348)

Let µy(h) denote the inner minimum, which is the inverse of the robustness. This minimum occurs
when F is as small as possible at horizon of uncertainty h: F = F̃− σh. Thus:

µy =
(F̃− σh)L3

3EI
(1349)

Equating this to yc and solving for h yields the robustness:

ĥy =
1
σ

(
F̃− 3EIyc

L3

)
(1350)

or zero if this is negative. This robustness curve is shown schematically in fig. 69.
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Figure 69: Robustness
curve, eq.(1350), prob-
lem 53(a), indicating slope
and intercepts.

Figure 70: Two robust-
ness curves, eq.(1350), prob-
lem 53(b), where (EI)1 >
(EI)2 and σ1 < σ2.

(b) The robustness curves, eq.(1350), are shown schematically in fig. 70. They cross when yc

equals:

y× =
(σ2 − σ1)F̃L3

3(EI)1σ2 − 3(EI)2σ1
(1351)

Design [(EI)1, σ1] is preferred over design [(EI)2, σ2] for those values of yc for which design [(EI)1, σ1]

is more robust. Thus design [(EI)1, σ1] is preferred for yc < y×.
(c) The bending moment at the base of the beam is M = FL. The definition of the robustness is:

ĥM = max
{

h :
(

max
F∈U (h)

M
)
≤ Mc

}
(1352)

Let µM(h) denote the inner maximum, which is the inverse of the robustness. This minimum occurs
when F is as large as possible at horizon of uncertainty h: F = F̃ + σh. Thus:

µM = (F̃ + σh)L (1353)

Equating this to Mc and solving for h yields the robustness:

ĥM =
1
σ

(
Mc

L
− F̃

)
(1354)

or zero if this is negative.
(d) The joint robustness is the lesser of the two marginal robustnesses:

ĥ = min[ĥy, ĥM] (1355)
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(e) The probability of failure is:

Pf(p) = Prob(y ≤ yc) = Prob
(

FL3

3EI
≤ yc

)
= Prob

(
F ≤ 3EIyc

L3

)
(1356)

Denote Fc = 3EIyc/L3. Thus the probability of failure is:

Pf(p) =
∫ Fc

0
p(F)dF (1357)

The definition of the robustness is:

ĥ = max
{

h :
(

max
P∈U (h)

Pf(p)
)
≤ Pc

}
(1358)

Let µ(h) denote the inner maximum, which occurs, for very small Pc, when p(F) is as large as possible
for F ≤ Fc: p(F) = (1 + h) p̃(F). Thus:

µ(h) =
∫ Fc

0
(1 + h) p̃(F)dF = (1 + h)[1− e−λFc ] (1359)

Equating this to Pc and solving for h yields the robustness:

ĥ =
Pc

1− e−λFc
− 1 (1360)

or zero if this is negative.
(f) Denote ` = (`1, . . . , `N). The bending moment at the base is M = ∑N

i=1 `i fi = `T f . As in
eq.(1352), the definition of the robustness is:

ĥM = max
{

h :
(

max
f∈U (h)

M
)
≤ Mc

}
(1361)

Let µM(h) denote the inner maximum, which we evaluate using Lagrange optimization.

H = `T f + λ[h2 − ( f − f̃ )TW( f − f̃ )] (1362)

The extremum of H is obtained from:

∂H
∂ f

= `− 2λW( f − f̃ ) =⇒ f − f̃ =
1

2λ
W−1` (1363)

=⇒ h2 =
1

4λ2 `
TW−1WW−1` =⇒ 1

2λ
=

±h√
`TW−1`

(1364)

=⇒ f = f̃ ± h√
`TW−1`

W−1` (1365)

=⇒ µM(h) = `T f = `T f̃ + h
√
`TW−1` (1366)

Equating this to Mc and solving for h yields the robustness:

ĥM =
Mc − `T f̃√
`TW−1`

(1367)

or zero if this is negative.
(g) We argue as follows:
(i) Failure cannot occur if the horizon of uncertainty, h, is no greater than the robustness, ĥy.
(ii) Failure can but need not occur if the horizon of uncertainty, h, exceeds the robustness, ĥy.
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(iii) Hence, the probability of failure is less than the probability that the horizon of uncertainty, h,
exceeds the robustness, ĥy.

Thus:
Pf ≤ Prob(h > ĥy) = e−λĥy (1368)

(h) The sample mean and standard deviation are:

y =
1
N

N

∑
i=1

yi = 0.0136m (1369)

s =

√√√√ 1
N − 1

N

∑
i=1

(yi − y)2 = 0.002881m (1370)

If H0 holds, then:

y(H0) =
FL3

3EI
=

1000N× 13m3

3× 2× 104Nm2 = 0.0166666m (1371)

The t statistic, with N − 1 = 4 DoF’s, is:

t =
y− y(H0)

s/
√

N
= −2.380 (1372)

The level of significance is:

α = Prob(t ≤ tobs|H0) = Prob(t(4) ≤ −2.380) < 0.05 (1373)

Thus reject H0 at the 5% level of significance.
(i) The total number of observations is N = 150 and the number of categories is k = 3. Use the

χ2 statistic, which is:

χ2 =
k

∑
i=1

(ni − Npi)
2

Npi
(1374)

=
(55− 150(0.35))2

150(0.35
+

(75− 150(0.55))2

150(0.55)
+

(20− 150(0.1))2

150(0.1)
(1375)

= 2.4675 (1376)

The level of significance for this 2-DoF χ2 variable is:

α = Prob(χ2
(2) > 2.4675) > 0.2 (1377)

Do not reject H0 at 0.05 level of significance.




