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94. Allocation of scarce resource (based on exam in 036057, 16.1.2017), (p.313). Consider
allocation of a scarce resource, such as time or money, among a number of different items.
Given N > 1 items and a total resource budget R, let rn denote the allocation to item n, for
n = 1, . . . , N , where rn ≥ 0. The benefit resulting from allocating rn to item n is rnbn where the
benefit per unit allocation, bn, is uncertain. The total benefit is B =

∑N
n=1 rnbn, and we require

that the total benefit be no less than the critical value Bc.

(a) The benefit per unit allocation is estimated as b̃n ± sn, but it may be either less or more,
where b̃n > 0 and sn > 0 are known. The info-gap model for uncertainty is:

U(h) =
{
b :

∣∣∣∣∣
bn − b̃n
sn

∣∣∣∣∣ ≤ h, n = 1, . . . , N

}
, h ≥ 0 (453)

Derive an explicit algebraic expression for the robustness function.
(b) Let b̃ and s denote the vectors of estimated benefits per unit allocation, b̃n, and error

weights, sn, respectively. Consider two different vectors of allocations r = (r1, . . . , rN )

and ρ = (ρ1, . . . , ρN ). These allocations satisfy the following relations:

rT b̃ > ρT b̃ (454)

rT b̃

rT s
<

ρT b̃

ρT s
(455)

What is an intuitive interpretation of these relations? Specifically, how do they reflect a
dilemma facing the decision maker? Using the answer to part 94a, derive an explicit
algebraic expression for the values of critical benefit, Bc, for which allocation r is robust-
preferred over allocation ρ.

(c) Return to the basic formulation of the problem, prior to part 94a, and consider two different
programs within which the resource can be allocated. Program 1 has nominal predicted
total benefit B1 which is a known positive number. However, the actual benefits are uncer-
tain and the robustness function for allocation vector r in program 1 is known and finite for
all values of Bc. Program 2 has exactly known benefits, and the total benefit is guaranteed
to be B2 for the same allocation vector, r. However, B2 < B1. Derive an explicit algebraic
expression for the values of critical benefit, Bc, for which program 1 is robust-preferred
over program 2.

(d) Return to the basic formulation of the problem, prior to part 94a, and consider the following
ellipsoid-bound info-gap model for uncertainty in the benefit vector:

U(h) =
{
b : (b− b̃)TW−1(b− b̃) ≤ h2

}
, h ≥ 0 (456)

where W is a real, symmetric, positive definite N ×N matrix. Derive an explicit algebraic
expression for the robustness function.

(e) Suppose that the total benefit, B, is an exponentially distributed random variable, whose
probability density function is:

p(B) = λe−λB, B ≥ 0 (457)

What is the probability that the total benefit exceeds the critical value Bc?
(f) Continuing part 94e, suppose that you require that the probability of exceeding the critical

benefit, Bc, must be no less than the critical probability Pc. However, the critical benefit,
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Bc, is uncertain (you don’t really know what you need). Use the following fractional-error
info-gap model:

U(h) =
{
Bc :

∣∣∣∣∣
Bc − B̃c

B̃c

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (458)

Derive an explicit algebraic expression for the robustness function for satisfying the prob-
abilistic requirement.

(g) Repeat part 94a with the following info-gap model:

U(h) =
{
b :

(
b− b̃

)T
W−1

(
b− b̃

)
≤ h2

}
, h ≥ 0 (459)

where W is a real, symmetric positive definite matrix. W and b̃ are known. Derive an
explicit algebraic expression for the robustness function.



ps2-02.tex PROBLEM SET ON ROBUSTNESS AND OPPORTUNENESS 313

Solution for problem 94: Allocation of scarce resource (p.112).
Part 94a. The robustness function is defined as

ĥ(r,Bc) = max

{
h :

(
min

b∈U(h)
B(b)

)
≥ Bc

}
(2054)

Let m(h) denote the inner minimum, which is the inverse of the robustness function. Because the
allocations, rn, are non-negative, this inner minimum occurs when each benefit is as small as possible
at horizon of uncertainty h:

m(h) =
N∑

n=1

rn(b̃n − snh) = rT b̃− hrT s ≥ Bc =⇒ ĥ(r,Bc) =
rT b̃−Bc

rT s
(2055)

or zero if this is negative. Note zeroing and trade off.
Part 94b. Eq.(454) implies that allocation r is purportedly better than allocation ρ. To understand

the decision-maker’s dilemma we can re-write eq.(455) as:

rT b̃

ρT b̃
<
rT s

ρT s
(2056)

The left hand side is the ratio of putative benefits, and it exceeds unity: r is putatively better than ρ.
However, the righthand side is the ratio of weighted errors, and here we see that r is more uncertain
than ρ. The decision maker’s dilemma is that r is putatively better but more uncertain than ρ.

Considering the robustness curves in fig. 127 based on eq.(2055), together with the conditions in
eqs(454) and (455) on p.112, we see that the robustness curves cross in the positive quadrant. It is
clear that allocation r is robust-preferred over allocation ρ for all values of Bc in the interval:

B× < Bc < rT b̃ (2057)

The value of B× is obtained by solving:

ĥ(r,B×) = ĥ(ρ,B×) ⇐⇒ rT b̃−B×
rT s

=
ρT b̃−B×
ρT s

(2058)

⇐⇒ B× =

(
1

ρT s
− 1

rT s

)−1
(
ρT b

ρT s
− rT b

rT s

)
(2059)

Figure 127: Robustness curves for solution of problem 94b, based on eq.(2055).

Part 94c. The robustness function for program 1 is known and finite for all values of Bc. The
robustness function for program 2 is:

ĥ2(Bc) =

{ ∞ if Bc ≤ B2

0 else
(2060)
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Both robustness functions are shown schematically in fig. 128, employing the fact that B2 < B1.
Program 1 is robust-preferred over Program 2 for:

B2 < Bc < B1 (2061)

Program 2 is robust preferred for:
Bc ≤ B2 (2062)

We are indifferent for other values of Bc.

Figure 128: Schematic robustness
curves for solution of problem 94c.

Part 94d. The robustness function is defined as in eq.(2054) on p.313, with the new info-gap
model. Let m(h) denote the inner minimum, which is obtained by Lagrange optimization. Define the
objective function:

H = rT b+ λ
[
h2 − (b− b̃)TW−1(b− b̃)

]
(2063)

Extremal values are obtained as follows:

∂H

∂b
= 0 = r − 2λW−1(b− b̃) =⇒ b− b̃ =

1

2λ
Wr (2064)

We solve for the Lagrange multiplier by imposing the constraint:

(b− b̃)TW−1(b− b̃) = h2 ⇐⇒ 1

4λ2
(Wr)TW−1(Wr) = h2 ⇐⇒ 1

2λ
=

±h√
rTWr

(2065)

Thus extremal values of H are obtained with:

b− b̃ =
±h√
rTWr

Wr (2066)

Thus the inner minimum in the definition of the robustness is:

m(h) = rT b̃− h√
rTWr

rTWr = rT b̃− h
√
rTWr ≥ Bc (2067)

Solving for h at equality yields the robustness:

ĥ(Bc, r) =
rT b̃−Bc√
rTWr

(2068)
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or zero if this is negative. Note the structural similarity to eq.(2055): putative value and requirement
in the numerator, weighted uncertainty in the denominator.

Part 94e. We integrate the pdf:

P (B > Bc) =

∫ ∞

Bc

λe−λB dB = − e−λB
∣∣∣
∞

Bc

= e−λBc (2069)

Part 94f. Let Ps(Bc) denote the probability of success, which is P (B > Bc) in eq.(2069). The
performance requirement is Ps(Bc) ≥ Pc and the robustness function is defined as:

ĥ(Pc) = max

{
h :

(
min

Bc∈U(h)
Ps(Bc)

)
≥ Pc

}
(2070)

where the info-gap model, U(h), is specified in eq.(458) on p.113. Letm(h) denote the inner minimum
in eq.(2070). From eq.(2069) we see that m(h) occurs when Bc is maximal at horizon of uncertainty
h:

m(h) = e−λ(1+h)B̃c ≥ Pc ⇐⇒ λ(1 + h)B̃c ≤ − lnPc ⇐⇒ ĥ(Pc) = − lnPc

λB̃c

− 1 (2071)

or zero if this is negative. Note zeroing and trade off in fig. 129.
Zeroing: ĥ(Pc) = 0 if Pc = e−λB̃c which is the estimated probability of success.
Trade off:

◦ lnPc approaches −∞ as Pc approaches 0.
◦ lnPc becomes less negative as Pc increases from 0 to e−λB̃c .
◦ Hence ĥ(Pc) decreases as Pc increases, as in fig. 129.

Figure 129: Robustness curve for solution of problem 94f, based on eq.(2071).

Part 94g. The robustness is defined in eq.(2054) with the info-gap model in eq.(459) on p.113.
Recall that B = rT b. Let m(h) denote the inner minimum, which is the inverse of the robustness func-
tion. We derive an expression for m(h) using Lagrange optimization. Define the objective function:

H = rT b+ λ

[
h2 −

(
b− b̃

)T
W−1

(
b− b̃

)]
(2072)

Extrema are obtained from:

0 =
∂H

∂b
= r − 2λW−1

(
b− b̃

)
=⇒ b− b̃ =

1

2λ
Wr (2073)

We solve for λ by using the constraint from the info-gap model:

h2 =
1

4λ2
rTWW−1Wr =⇒ 1

2λ
= ± h√

rTWr
(2074)

Thus the total benefit, B, is minimized by:

b = b̃− h√
rTWr

Wr (2075)
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Finally we obtain:

m(h) = rT b̃− h√
rTWr

rTWr = rT b̃− h
√
rTWr (2076)

The robustness is the greatest horizon of uncertainty, h, up to which m(h) ≤ Bc:

ĥ(r,Bc) =
rT b̃−Bc√
rTWr

(2077)

or zero if this is negative.




