- 105. **Epidemiology 1** (p.364). Consider a disease (or a signal or a material object) that can be transmitted from position 1 to position 2 with probability *p*. This probability is uncertain. Its estimated value is \tilde{p} with estimated error of $\pm w$ or more (subject to *p* being between 0 and 1). We require that the probability of infection at position 2 not exceed the critical value p_c .
 - (a) Derive an explicit algebraic expression for the robustness function.
 - (b) Two different interventions are available for reducing the transmission probability, where intervention 1 is newer but less familiar and more uncertain than intervention 2. The *i*th intervention has estimated transmission probability \tilde{p}_i and error w_i for i = 1, 2, where:

$$\widetilde{p}_1 < \widetilde{p}_2$$
 (554)

$$w_1 > w_2$$
 (555)

Identify values of p_c for which intervention 1 is preferred over intervention 2, based on the robustness function from part 105a. Discuss the concept of an innovation dilemma.