13. Single hypothesis test, p. 6 (p.19). A particular property, x, (e.g. height, temperature, longevity, etc.) of a healthy population is a random variable with known mean and variance μ and σ^{2}. The central limit theorem asserts that, regardless of the distribution of x, the mean, \bar{x}, of a large random sample of size N is normally distributed with mean μ and variance σ^{2} / N. Given an observed value of the sample mean, $\bar{x}_{\text {obs }}$, we want to test the hypothesis that the population is healthy:

$$
\begin{equation*}
H_{0}: \quad \bar{x} \sim \mathcal{N}\left(\mu, \sigma^{2} / N\right) \tag{17}
\end{equation*}
$$

We will reject H_{0} if $\bar{x}_{\text {obs }}$ is an implausible value, conditioned on H_{0}. Specifically, we reject H_{0} if, conditioned on H_{0} :

$$
\begin{equation*}
\operatorname{Prob}\left(\left|\frac{\bar{x}-\mu}{\sigma / \sqrt{N}}\right|>\left|\frac{\bar{x}_{\mathrm{obs}}-\mu}{\sigma / \sqrt{N}}\right| ; H_{0}\right) \leq \alpha \tag{18}
\end{equation*}
$$

where α is a 'level of significance'. If H_{0} holds and if the sample is statistically random, then the distribution of $\frac{\bar{x}-\mu}{\sigma / \sqrt{N}}$ would be standard normal, $\mathcal{N}(0,1)$. Let $\Phi(z)$ denote the cumulative probability distribution (CPD) for $\mathcal{N}(0,1)$. The problem is that we are unsure that the sample is truly random: statistically independent measurements from the same population. Thus we are unsure that the true distribution of $\frac{\bar{x}-\mu}{\sigma / \sqrt{N}}$, call it $F(\cdot)$, is actually $\Phi(\cdot)$. We represent this uncertainty with the following info-gap model in which we introduce a simplifying assumption that the distributions are symmetric around the origin:
$\mathcal{U}(h)=\left\{F(z): F(-\infty)=0, F(\infty)=1, F(z)=1-F(-z), \frac{\mathrm{d} F}{\mathrm{~d} z} \geq 0,|F(z)-\Phi(z)| \leq h\right\}, \quad h \geq 0$
(a) We have an observed value of the sample mean, $\bar{x}_{\text {obs. }}$. Suppose that eq.(18) holds based on this observation, implying that we should reject H_{0}. How much can the distribution of $\frac{\bar{x}-\mu}{\sigma / \sqrt{N}}$ deviate from $\mathcal{N}(0,1)$ without changing this decision? That is, derive the robustness as a function of the rejection threshold, α.
(b) In contrast to part 13a, suppose that we have observed a sample mean, $\bar{x}_{\text {obs }}$, for which eq.(18) does not hold, implying that we should accept H_{0}. Derive the robustness as a function of the rejection threshold, α.

