Lecture 1 Info-Gap Theory: Overview and Examples Yakov Ben-Haim Technion Israel Institute of Technology

[\]lectures\talks\lib\paris2023Lec01-001.tex 19.4.2023 (C)Yakov Ben-Haim 2022

Contents

1	Highlights (paris2023Lec01-001.tex)	3
2	Info-Gap Uncertainty: Examples (ig-unc01intro.tex)	6
3	Principle of Indifference (indif5a-intro.tex) 3.1 Keynes' Example(indif5c-keynes.tex) 3.2 2-Envelope Riddle(indif5b-envelop.tex)	17 23 35
4	Conclusion (paris2023Lec01-001.tex)	40

1 *Highlights*

Highlights

§ What is an info-gap? (Uncertainty is unbounded)

Highlights

§ What is an info-gap? (Uncertainty is unbounded)

§ Examples

2 Info-Gap Uncertainty: Examples

 $\sim\sim\!Covid\text{-}19\!\sim\!\sim$

- § The issue:
 - Severely infectious virus.
 - Origin: Late 2019. Chinese research lab?
 - Rapid spread world-wide.

$\sim\sim Covid-19 \sim\sim$

- § The issue:
 - Severely infectious virus.
 - Origin: Late 2019. Chinese research lab?
 - Rapid spread world-wide.
- § Uncertainties in early 2020:
 - Transmission mechanism: unknown.
 - Severity: perhaps great.
 - Treatment: symptomatic only.
 - Public health policy: lock down.
 - Economic and social impact: severe.
- § Info-gaps abound!

$\sim \sim Thames \ Flood \ Barrier \sim \sim$

Figure 1: 1953 barrier breach.

Figure 2: Barrier element.

§ Some facts:

- 1953: worst storm surge of century.
- Flood defences breached.
- 307 dead. Thousands evacuated.
- Canvey Island in Estuary devastated.
- Current barrier opened May 1984.

§ Thames 2100:

Major re-design of flood defences.

§ Uncertainties:

- **Statistics** of surge height:
 - Fairly complete: most years since 1819.
 - \circ Planning for 1000-year surge.
- Global warming: sea level rise.
- Tectonic settling of s. England.
- Damage vs flood depth.
- Human action: dredging, embanking.
- Urban development.
- § Severe Knightian uncertainties: Gaps in knowledge, understanding and goals.

$\sim \sim$ Fukushima Nuclear Reactor $\sim \sim$

Figure 3: Sea wall breach.

Figure 4: Hydrogen explosion.

§ Some facts:

- 11.3.2011: Richter-9 earthquake in NE Japan.
- Tsunami followed shortly.
- Sea wall breached: fig. $3.^{\ddagger}$
- Hydrogen explosion several days later. Fig. 4.[‡]
- Slow disaster recovery.
- § Info-gaps:
 - Sub-system interactions.
 - Institutional constraints.

[\]lectures\talks\lib\ig-unc01fukushima.tex 17.7.2015

 $[\]ddagger http://www.dailymail.co.uk/news/article-1388629/Japan-tsunami-destroyed-wall-designed-protect-Fukushima-nuclear-plant.html$

 $\sim\sim Climate \ Change \sim\sim$

§ The issue:

Sustained rise in green house gases results in temperature $r^{i^{s^e}}$ which results in adverse economic $im_{a_{c_t}}$.

- § Models:
 - Temperature change: $\Delta \mathbf{CO}_2 \Longrightarrow \Delta T$.
 - Economic impact: $\Delta T \Longrightarrow \Delta GDP$.

§ The problems:

- Models highly uncertain.
- Data controversial.

§ E.g., IPCC model for

Uncertainty in Equil'm Clim. Sensi'ty, S.

- Likely range: $1.5^{\circ}C$ to $4.5^{\circ}C$.
- Extreme values highly uncertain.
- 95th quantile of S in 10 studies: Mean: 7.1°C. St. Dev: 2.8°C.

Figure 5: IPCC ch.10, p.799.

$\sim\sim$ Summary $\sim\sim$

§ Deep Knightian uncertainties: Gaps in knowledge, understanding and goals.

$\sim\sim$ Summary $\sim\sim$

- § Deep Knightian uncertainties: Gaps in knowledge, understanding and goals.
- § Info-Gap models of uncertainty:
 - Disparity between what is known and what needs to be known for responsible decision.

$\sim\sim$ Summary $\sim\sim$

- § Deep Knightian uncertainties: Gaps in knowledge, understanding and goals.
- § Info-Gap models of uncertainty:
 - Disparity between what is known and what needs to be known for responsible decision.
 - Unbounded family of sets of events (points, functions or sets).
 - No known worst case.
 - No functions of probability, plausibility, likelihood, etc.
 - Hybrid: info-gap model of probabilities.

3 Principle of Indifference

§ Question: Is ignorance probabilistic?

- § Principle of indifference (Bayes, LaPlace, Jaynes, \ldots):
 - Elementary events, about which nothing is known, are assigned equal probabilities.

- § Principle of indifference (Bayes, LaPlace, Jaynes, \ldots):
 - Elementary events, about which nothing is known, are assigned equal probabilities.
 - Uniform distribution represents complete ignorance.

- § Principle of indifference (Bayes, LaPlace, Jaynes, \ldots):
 - Elementary events, about which nothing is known, are assigned equal probabilities.
 - Uniform distribution represents complete ignorance.
- § The info-gap contention:

The probabilistic domain of discourse does not encompass all epistemic uncertainty.

- § Principle of indifference (Bayes, LaPlace, Jaynes, ...):
 - Elementary events, about which nothing is known, are assigned equal probabilities.
 - Uniform distribution represents complete ignorance.
- § The info-gap contention:

The probabilistic domain of discourse does not encompass all epistemic uncertainty.

§ We will consider common misuses of probability.

3.1 Keynes' Example

§ ρ = specific gravity [g/cm³] is unknown: 1 $\leq \rho \leq 3$

§ ρ = specific gravity [g/cm³] is unknown: 1 $\leq \rho \leq 3$

§ Principle of indifference:

Uniform distribution in [1, 3], so:

§ Uniform distribution in [1, 3], so:

$$\operatorname{Prob} \begin{pmatrix} \frac{3}{2} \leq \rho \leq 3 \\ \end{pmatrix} = \frac{3}{4}$$

$$P(\rho) \begin{bmatrix} 1 & 3 \\ 4 & 4 \\ & 1 & 3 \\ & 2 \end{bmatrix} \xrightarrow{\rho} \rho$$

§ ϕ = specific volume [cm³/g] is unknown: $\frac{1}{3} \leq \phi \leq 1$

§ ϕ = specific volume [cm³/g] is unknown: $\frac{1}{3} \leq \phi \leq 1$

§ Principle of indifference:

Uniform distribution in $\begin{bmatrix} 1\\ 3 \end{bmatrix}$, 1, so:

§ Principle of indifference:

Uniform distribution in $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, 1, so:

$$\operatorname{Prob}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right) = \frac{1}{2}$$

$$F(\phi)\left(\begin{array}{c|c} 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 \\ 3 & 3 \end{array}\right) \rightarrow \phi$$

$$\underbrace{\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right)}_{\text{Specific volume}} \equiv \underbrace{\left(\frac{3}{2} \leq \rho \leq 3\right)}_{\text{Specific gravity}} \tag{1}$$

$$\underbrace{\begin{pmatrix} \frac{1}{3} \leq \phi \leq \frac{2}{3} \\ \text{Specific volume} \end{pmatrix}}_{\text{Specific gravity}} \equiv \underbrace{\begin{pmatrix} \frac{3}{2} \leq \rho \leq 3 \\ \\ \text{Specific gravity} \end{pmatrix}}_{\text{Specific gravity}}$$
(2)

§ Hence their probabilities are equal:

$$\underbrace{\operatorname{\mathbf{Prob}}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right)}_{\alpha \to \alpha} = \underbrace{\operatorname{\mathbf{Prob}}\left(\frac{3}{2} \leq \rho \leq 3\right)}_{\alpha \to \alpha} \tag{3}$$

Specific volume

Specific gravity

$$\underbrace{\begin{pmatrix} \frac{1}{3} \leq \phi \leq \frac{2}{3} \\ \text{Specific volume} \end{pmatrix}}_{\text{Specific gravity}} \equiv \underbrace{\begin{pmatrix} \frac{3}{2} \leq \rho \leq 3 \\ \\ \text{Specific gravity} \end{pmatrix}}_{\text{Specific gravity}}$$
(4)

§ Hence their probabilities are equal:

$$\underbrace{\operatorname{Prob}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right)}_{\operatorname{Specific volume}} = \underbrace{\operatorname{Prob}\left(\frac{3}{2} \leq \rho \leq 3\right)}_{\operatorname{Specific gravity}}$$
(5)
§ Hence:

$$\frac{1}{2} = \frac{3}{4}$$

$$\frac{1}{2} = \underbrace{\operatorname{Prob}\left(\frac{1}{3} \leq \phi \leq \frac{2}{3}\right)}_{\operatorname{Specific volume}} = \underbrace{\operatorname{Prob}\left(\frac{3}{2} \leq \rho \leq 3\right)}_{\operatorname{Specific gravity}} = \frac{3}{4}$$

$$\underbrace{\begin{pmatrix} \frac{1}{3} \leq \phi \leq \frac{2}{3} \\ \text{Specific volume} \end{pmatrix}}_{\text{Specific gravity}} \equiv \underbrace{\begin{pmatrix} \frac{3}{2} \leq \rho \leq 3 \\ \\ \text{Specific gravity} \end{pmatrix}}_{\text{Specific gravity}}$$
(6)

§ Hence their probabilities are equal:

§ The Culprit: Principle of indifference.

$$\underbrace{\begin{pmatrix} \frac{1}{3} \leq \phi \leq \frac{2}{3} \\ \text{Specific volume} \end{pmatrix}}_{\text{Specific gravity}} \equiv \underbrace{\begin{pmatrix} \frac{3}{2} \leq \rho \leq 3 \\ \\ \text{Specific gravity} \end{pmatrix}}_{\text{Specific gravity}}$$
(8)

§ Hence their probabilities are equal:

- § The Culprit: Principle of indifference.
- § Ignorance is not probabilistic. It's an info-gap.

3.2 2-Envelope Riddle

§ The riddle:

- You are presented with two envelopes.
 - \circ Each contains a positive sum of money.
 - \circ One contains twice the contents of the other.
- You choose an envelope, open it, and find \$50.
- Would you like to switch envelopes?

- § You reason as follows:
 - Other envelope contains either \$25 or \$100.
 - Principle of indifference:
 - Assume equal probabilities.

The expected value upon switching is:

E.V. = $\frac{1}{2}$ \$25 + $\frac{1}{2}$ \$100 = \$62.50. \$62.50 > \$50.

• Yes! Let's switch, you say.

§ The riddle, re-visited:

- You are presented with two envelopes.
 - Each contains a positive sum of money.
 - \circ One contains twice the contents of the other.
- You choose an envelope, but do not open it.
- Would you like to switch envelopes?

45/39/38

- § You reason as follows:
 - This envelope contains X > 0.
 - Other envelope contains either 2X or $\frac{1}{2}X$.
 - Principle of indifference:
 - Assume equal probabilities.

The expected value upon switching is:

E.V. = $\frac{1}{2}$ \$2X + $\frac{1}{2}$ \$ $\frac{1}{2}X$ = \$ $\left(1 + \frac{1}{4}\right)X$ > X.

• Yes! Let's switch, you say.

- § You reason as follows:
 - This envelope contains X > 0.
 - Other envelope contains either 2X or $\frac{1}{2}X$.
 - Principle of indifference:
 - Assume equal probabilities.

The expected value upon switching is:

E.V. = $\frac{1}{2}$ \$2X + $\frac{1}{2}$ \$ $\frac{1}{2}X$ = \$ $\left(1 + \frac{1}{4}\right)X$ > X.

• Yes! Let's switch, you say.

§ You wanna switch again? And again? And again?

4 Conclusion

§ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.

§ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.

§ Info-gap uncertainty is unbounded.

§ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.

- § Info-gap uncertainty is unbounded.
- § Optimism: our models get better all the time.

§ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.

- § Info-gap uncertainty is unbounded.
- § Optimism: our models get better all the time.
- § Realism: our models are wrong now (and we don't know where or how much).

§ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.

- § Info-gap uncertainty is unbounded.
- § Optimism: our models get better all the time.
- § Realism: our models are wrong now (and we don't know where or how much).
- § Responsible decision making:
 - Specify your goals.
 - Maximize your robustness to uncertainty.
 - Study the trade offs.
 - Exploit windfall opportunities.