Lecture 3

Probabilistic Reliability

with

Info-Gap Uncertainty

Yakov Ben-Haim

Technion

Israel Institute of Technology

 $^{^0 {\}rm lectures \ lib \ paris 2023 Lec 03-002.tex}$ 15.5.2023 ©Yakov Ben-Haim 2023

Contents

1	Reliability Assessment with Info-Gaps (reliability-assess-shrt001.tex)	3
	1.1 Introduction (reliability-assess-shrt001.tex)	3
	1.2 The Problem (reliability-assess-shrt001.tex)	12
2	Zoonotic Disease (zoonotic-disease001.tex)	24

1 Reliability Assessment with Info-Gaps

1.1 Introduction

 $0_{\rm lectures \ talks \ lib \ reliability-assess-shrt001.tex} \quad 18.5.2023$

- Things go wrong.
- Systems fail.
- Loss or injury occurs.

- Things go wrong.
- Systems fail.
- Loss or injury occurs.
- § Safety and reliability analyst must:
 - Anticipate: forecast.
 - •

- Things go wrong.
- Systems fail.
- Loss or injury occurs.
- § Safety and reliability analyst must:
 - Anticipate: forecast.
 - Prevent: design or plan.

- Things go wrong.
- Systems fail.
- Loss or injury occurs.
- § Safety and reliability analyst must:
 - Anticipate: forecast.
 - Prevent: design or plan.
 - Ameliorate: repair and improve.

§

- Things go wrong.
- Systems fail.
- Loss or injury occurs.
- § Safety and reliability analyst must:
 - Anticipate: forecast.
 - Prevent: design or plan.
 - Ameliorate: repair and improve.
- § Difficulty: Uncertainty, ignorance, surprise.

§

- Things go wrong.
- Systems fail.
- Loss or injury occurs.
- § Safety and reliability analyst must:
 - Anticipate: forecast.
 - Prevent: design or plan.
 - Ameliorate: repair and improve.
- § Difficulty: Uncertainty, ignorance, surprise.
- § Response:
 - Define goals: what must be achieved.

ullet

- Things go wrong.
- Systems fail.
- Loss or injury occurs.
- § Safety and reliability analyst must:
 - Anticipate: forecast.
 - Prevent: design or plan.
 - Ameliorate: repair and improve.
- § Difficulty: Uncertainty, ignorance, surprise.
- § Response:
 - Define goals: what must be achieved.
 - Robustify against uncertainty.

§

- Things go wrong.
- Systems fail.
- Loss or injury occurs.
- § Safety and reliability analyst must:
 - Anticipate: forecast.
 - Prevent: design or plan.
 - Ameliorate: repair and improve.
- § Difficulty: Uncertainty, ignorance, surprise.
- § Response:
 - Define goals: what must be achieved.
 - Robustify against uncertainty.
- § Methodology: Info-gap decision theory.

1.2 The Problem

§ Reliability: Area under no-fail part of curve.

§

- § Reliability: Area under no-fail part of curve.
- § Good news: "Fail" area usually very small.

§

- § Reliability: Area under no-fail part of curve.
- § Good news: "Fail" area usually very small.
- § Bad news:
 - Hard to estimate reliability.
 - Sensitive to error in probability function.

- § Reliability: Area under no-fail part of curve.
- § Good news: "Fail" area usually very small.
- § Bad news:
 - Hard to estimate reliability.
 - Sensitive to error in probability function.
- § Good news: Info-gap theory.

- § The problem:
 - Fat tails of the probability distribution:
 - Extreme outcomes too frequent.
 - High percentiles under-estimated.
 - •

- § The problem:
 - Fat tails of the probability distribution:
 - Extreme outcomes too frequent.
 - High percentiles under-estimated.
 - Past vs future:
 - Processes vary in time.
 - Data are revised.
 - Shackle-Popper indeterminism.

•

- § The problem:
 - Fat tails of the probability distribution:
 - Extreme outcomes too frequent.
 - High percentiles under-estimated.
 - Past vs future:
 - Processes vary in time.
 - Data are revised.
 - Shackle-Popper indeterminism.
 - Joint probabilities:
 - Uncertain common-mode failures.
 - Uncertain correlations.

§ Two foci of uncertainty:

- Statistical fluctuations:
 - Randomness, "noise".
 - Estimation uncertainty.

- § Two foci of uncertainty:
 - Statistical fluctuations:
 - Randomness, "noise".
 - Estimation uncertainty.
 - Knightian uncertainty:
 - Surprises.
 - Structural changes.
 - Historical data used to predict future.

- § Two foci of uncertainty:
 - Statistical fluctuations:
 - Randomness, "noise".
 - Estimation uncertainty.
 - Knightian uncertainty:
 - Surprises.
 - Structural changes.
 - Historical data used to predict future.
- § Info-gap theory to manage

Knightian uncertainty.

 $\sim \sim \sim$

2 Zoonotic Disease

 $0_{lectures \langle talks \rangle lib \langle zoonotic-disease 001.tex}$ 16.5.2023

- Moving up an estuary from the sea.
- •

- Moving up an estuary from the sea.
- Distance of disease front from sea seems to be:

$$x(t) = a\sqrt{t} \tag{1}$$

- Moving up an estuary from the sea.
- Distance of disease front from sea seems to be:

$$x(t) = a\sqrt{t} \tag{2}$$

- Our town located distance x_c from the sea.
- Estimated time of arrival:

$$t_{\rm c} = \left(\frac{x_{\rm c}}{a}\right)^2 \tag{3}$$

 \S

- Moving up an estuary from the sea.
- Distance of disease front from sea seems to be:

$$x(t) = a\sqrt{t} \tag{4}$$

- Our town located distance x_c from the sea.
- Estimated time of arrival:

$$t_{\rm c} = \left(\frac{x_{\rm c}}{a}\right)^2 \tag{5}$$

§ The problem: eq.(1) highly uncertain.

- Moving up an estuary from the sea.
- Distance of disease front from sea seems to be:

$$x(t) = a\sqrt{t} \tag{6}$$

- Our town located distance $x_{\rm c}$ from the sea.
- Estimated time of arrival:

$$t_{\rm c} = \left(\frac{x_{\rm c}}{a}\right)^2 \tag{7}$$

- § The problem: eq.(6) highly uncertain.
 - We require time T for intervention.
 - **Probability of failure:** $P_{\rm f}(T) = {\rm Prob}(t_{\rm c} < T)$.

$$p(a) = \lambda e^{-\lambda a}, \quad a \ge 0$$
 (8)

$$p(a) = \lambda e^{-\lambda a}, \quad a \ge 0 \tag{9}$$

• Probability of failure: $P_{\rm f}(T) = \exp(-\lambda x_{\rm c}/\sqrt{T})$

$$p(a) = \lambda e^{-\lambda a}, \quad a \ge 0 \tag{10}$$

- Probability of failure: $P_{\rm f}(T) = \exp(-\lambda x_{\rm c}/\sqrt{T})$
- The problem: $\tilde{\lambda} = \text{estimate of } \lambda; \text{ highly uncertain.}$

§

$$p(a) = \lambda e^{-\lambda a}, \quad a \ge 0 \tag{11}$$

- Probability of failure: $P_{\rm f}(T) = \exp(-\lambda x_{\rm c}/\sqrt{T})$
- The problem: $\tilde{\lambda} = \text{estimate of } \lambda; \text{ highly uncertain.}$
- § Info-gap model of uncertain λ :

$$\mathcal{U}(h) = \left\{ \lambda : \ \lambda \ge 0, \ \left| \frac{\lambda - \widetilde{\lambda}}{s} \right| \le h \right\}, \quad h \ge 0$$
 (12)

- Non-probabilistic uncertainty.
- No known worst case.

§

$$p(a) = \lambda e^{-\lambda a}, \quad a \ge 0$$
 (13)

- Probability of failure: $P_{\rm f}(T) = \exp(-\lambda x_{\rm c}/\sqrt{T})$
- The problem: $\tilde{\lambda} = \text{estimate of } \lambda; \text{ highly uncertain.}$
- § Info-gap model of uncertain λ :

$$\mathcal{U}(h) = \left\{ \lambda : \ \lambda \ge 0, \ \left| \frac{\lambda - \widetilde{\lambda}}{s} \right| \le h \right\}, \quad h \ge 0$$
(14)

- Non-probabilistic uncertainty.
- No known worst case.
- § Robustness: maximum tolerable uncertainty.

$$\widehat{h}(T) = \max\left\{h: \left(\max_{\lambda \in \mathcal{U}(h)} P_{\mathrm{f}}(T)\right) \le P_{\mathrm{c}}\right\}$$
(15)

$$\widehat{h}(T) = \max\left\{h: \left(\max_{\lambda \in \mathcal{U}(h)} P_{\mathrm{f}}(T)\right) \le P_{\mathrm{c}}\right\}$$
 (16)

• Recall info-gap model of uncertainty:

$$\mathcal{U}(h) = \left\{ \lambda : \ \lambda \ge 0, \ \left| \frac{\lambda - \widetilde{\lambda}}{s} \right| \le h \right\}, \quad h \ge 0$$
 (17)

§

$$\widehat{h}(T) = \max\left\{h: \left(\max_{\lambda \in \mathcal{U}(h)} P_{\mathrm{f}}(T)\right) \le P_{\mathrm{c}}\right\}$$
(18)

• Recall info-gap model of uncertainty:

$$\mathcal{U}(h) = \left\{ \lambda : \ \lambda \ge 0, \ \left| \frac{\lambda - \widetilde{\lambda}}{s} \right| \le h \right\}, \quad h \ge 0$$
 (19)

- § Robust satisficing:
 - Satisfice performance and
 - Maximize robustness to uncertainty.

$$\widehat{h}(T) = \max\left\{h: \left(\max_{\lambda \in \mathcal{U}(h)} P_{\mathrm{f}}(T)\right) \le P_{\mathrm{c}}\right\}$$
 (20)

• Recall info-gap model of uncertainty:

$$\mathcal{U}(h) = \left\{ \lambda : \ \lambda \ge 0, \ \left| \frac{\lambda - \widetilde{\lambda}}{s} \right| \le h \right\}, \quad h \ge 0$$
 (21)

- § Robust satisficing:
 - Satisfice performance and
 - Maximize robustness to uncertainty.
 - Not min-max (minimizing a worst case).
 - Not putative outcome optimization: $\min P_{\rm f}$.

Figure 1: Robustness curves with T = 1 (solid), T = 5 (dash) and T = 10 (dot-dash) with parameter values: $\tilde{\lambda} = 1/2$, s = 0.3, $x_c = 10$.

§ Robustness function:

$$\widehat{h}(T) = \frac{1}{s} \left(\widetilde{\lambda} + \frac{\sqrt{T}}{x_{\rm c}} \ln P_{\rm c} \right)$$
(22)

- Trade off: P_c up (bad) $\iff \hat{h}$ up (good).

Figure 2: Robustness curves with T = 1 (solid), T = 5 (dash) and T = 10 (dot-dash) with parameter values: $\tilde{\lambda} = 1/2$, s = 0.3, $x_c = 10$.

§ Robustness function:

$$\widehat{h}(T) = \frac{1}{s} \left(\widetilde{\lambda} + \frac{\sqrt{T}}{x_{\rm c}} \ln P_{\rm c} \right)$$
(23)

- Trade off: P_c up (bad) $\iff \hat{h}$ up (good).
- Zeroing: No robustness at predicted $P_{\rm f}$.
- lacksquare

Figure 3: Robustness curves with T = 1 (solid), T = 5 (dash) and T = 10 (dot-dash) with parameter values: $\tilde{\lambda} = 1/2$, s = 0.3, $x_c = 10$.

§ Robustness function:

$$\widehat{h}(T) = \frac{1}{s} \left(\widetilde{\lambda} + \frac{\sqrt{T}}{x_{\rm c}} \ln P_{\rm c} \right)$$
(24)

- Trade off: P_c up (bad) $\iff \hat{h}$ up (good).
- Zeroing: No robustness at predicted $P_{\rm f}$.
- \hat{h} up as required intervention time, T, reduced.

•

Figure 4: Robustness curves with T = 1 (solid), T = 5 (dash) and T = 10 (dot-dash) with parameter values: $\tilde{\lambda} = 1/2$, s = 0.3, $x_c = 10$.

§ What do the robustness numbers mean?

Figure 5: Robustness curves with T = 1 (solid), T = 5 (dash) and T = 10 (dot-dash) with parameter values: $\tilde{\lambda} = 1/2$, s = 0.3, $x_c = 10$.

- § What do the robustness numbers mean?
 - **Example:** $(P_c, \hat{h}, T) = (0.2, 0.45, 5)$.
 - lacksquare

Figure 6: Robustness curves with T = 1 (solid), T = 5 (dash) and T = 10 (dot-dash) with parameter values: $\tilde{\lambda} = 1/2$, s = 0.3, $x_c = 10$.

- § What do the robustness numbers mean?
 - **Example:** $(P_c, \hat{h}, T) = (0.2, 0.45, 5)$.
 - If $P_{\rm f} = 0.2$ is ok, then prep time T guaranteed if $\tilde{\lambda}$ errs no more than $\pm 0.45s$.

Figure 7: Robustness curves with T = 1 (solid), T = 5 (dash) and T = 10 (dot-dash) with parameter values: $\tilde{\lambda} = 1/2$, s = 0.3, $x_c = 10$.

- § What do the robustness numbers mean?
 - **Example:** $(P_c, \hat{h}, T) = (0.2, 0.45, 5)$.
 - If $P_{\rm f} = 0.2$ is ok, then prep time T guaranteed if $\tilde{\lambda}$ errs no more than $\pm 0.45s$.
 - s is prior error estimate on λ .

Figure 8: Robustness curves with T = 1 (solid), T = 5 (dash) and T = 10 (dot-dash) with parameter values: $\tilde{\lambda} = 1/2$, s = 0.3, $x_c = 10$.

- § What do the robustness numbers mean?
 - **Example:** $(P_c, \hat{h}, T) = (0.2, 0.45, 5)$.
 - If $P_{\rm f} = 0.2$ is ok, then prep time T guaranteed if $\tilde{\lambda}$ errs no more than $\pm 0.45s$.
 - s is prior error estimate on $\tilde{\lambda}$.
 - Low robustness for this T and P_c .

Figure 9: Robustness curves with T = 1 (solid), T = 5 (dash) and T = 10 (dot-dash) with parameter values: $\tilde{\lambda} = 1/2$, s = 0.3, $x_c = 10$.

- § What do the robustness numbers mean?
 - **Example:** $(P_c, \hat{h}, T) = (0.2, 0.45, 5)$.
 - If $P_{\rm f} = 0.2$ is ok, then prep time T guaranteed if $\tilde{\lambda}$ errs no more than $\pm 0.45s$.
 - s is prior error estimate on λ .
 - Low robustness for this T and P_c .
 - Expl: $(P_c, \hat{h}, T) = (0.2, 1.1, 1)$: moderate robustness.

§ Innovation dilemma:

• Choose between two possible interventions:

0

§ Innovation dilemma:

• Choose between two possible interventions: • I_1 : new and innovative technologies (NaI).

0

§ Innovation dilemma:

- Choose between two possible interventions:
 - \circ I_1 : new and innovative technologies (NaI).
 - \circ I_2 : State of the Art (SotA).

§ Innovation dilemma:

- Choose between two possible interventions:
 - \circ I_1 : new and innovative technologies (NaI).
 - \circ I_2 : State of the Art (SotA).
- I_1 predicted to be better than I_2 :

$$\widetilde{\lambda}_1 > \widetilde{\lambda}_2 \tag{25}$$

Recall: $P_{\rm f}(T) = \exp(-\lambda x_{\rm c}/\sqrt{T})$.

an dilamana

§ Innovation dilemma:

- Choose between two possible interventions:
 - \circ I_1 : new and innovative technologies (NaI).
 - \circ I_2 : State of the Art (SotA).
- I_1 predicted to be better than I_2 :

$$\widetilde{\lambda}_1 > \widetilde{\lambda}_2 \tag{26}$$

Recall: $P_{\rm f}(T) = \exp(-\lambda x_{\rm c}/\sqrt{T})$.

• I_1 more uncertain than I_2 :

$$\frac{s_1}{\overline{\lambda}_1} > \frac{s_2}{\overline{\lambda}_2} \tag{27}$$

Hence the dilemma.

Figure 10: Crossing robustness curves showing preference reversal.

• Robustness curves cross: Potential for preference reversal.

Figure 11: Crossing robustness curves showing preference reversal.

- Robustness curves cross: Potential for preference reversal.
- How to choose? Robust satisficing.

Satisfice probability of failure. Maximize robustness:

Figure 12: Crossing robustness curves showing preference reversal.

- Robustness curves cross: Potential for preference reversal.
- How to choose? Robust satisficing.

Satisfice probability of failure. Maximize robustness:

- I_1 preferred if $P_c < P_{\times}$.
- I_2 preferred if $P_c > P_{\times}$.

§ Summary:

- New zoonotic disease.
- Uncertain rate of spread.
- Uncertain time for intervention.
- •

$60/_{59}/57$

§ Summary:

- New zoonotic disease.
- Uncertain rate of spread.
- Uncertain time for intervention.
- Choose between alternative interventions.

§ Summary:

- New zoonotic disease.
- Uncertain rate of spread.
- Uncertain time for intervention.
- Choose between alternative interventions.
- Innovation dilemma:
 - New & innovative: seems better, more uncertain.
 - State of the Art: seems worse, less uncertain.

60/59/59

§ Summary:

- New zoonotic disease.
- Uncertain rate of spread.
- Uncertain time for intervention.
- Choose between alternative interventions.
- Innovation dilemma:
 - New & innovative: seems better, more uncertain.
 - State of the Art: seems worse, less uncertain.
- Resolution: robust satisficing.

 $\sim \sim \sim$

Any Questions?