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1 Online Appendix S1: Formulation and Derivation of Robustness Func-
tions for Section 5

Derivations quite similar to those in this section and the next can be found in Ben-Haim (2006,
section 3.2).

1.1 Scalar Performance Function

We consider the selection between several alternative decisions. Let d denote a specific decision and
let B denote the set of available decisions. For any decision, d, the decision performance is expressed
by a scalar function M(d). However, the form of this function is poorly known. The best known
estimate of this function is M̃(d), but the accuracy of this estimate is highly uncertain. We assume
that the estimate, M̃(d), is positive.

We face deep uncertainty regarding the accuracy of the estimated performance function, M̃(d).
We have no knowledge, probabilistic or otherwise, about how greatly M̃(d) errs. The absolute

fractional error of the estimated function is

∣∣∣∣∣M(d)− M̃(d)
M̃(d)

∣∣∣∣∣, but the value of this fractional error is

unknown. It may be small, or large, but we have no information about its value or how this error
varies as the decision, d, is changed. Our uncertainty about the estimated performance function is
non-probabilistic and unbounded. We represent this deep uncertainty about the estimated perfor-
mance function of decision d with the following fractional-error info-gap model of uncertainty:

U (h, b) =

{
M(d) :

∣∣∣∣∣M(d)− M̃(d)
M̃(d)

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (1)

For any value of h, the set U (h, b) contains all performance functions for which the absolute frac-
tional error of the estimated performance is never greater than h. However, the value of h is un-
known and unbounded because there is no known worst case or greatest possible error of the
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estimated function. The info-gap model of uncertainty is thus not a single set, but rather an un-
bounded family of nested sets of possible performance functions for decision d. The parameter h
has the meaning of an horizon of uncertainty because the range of possible performance functions
increases as h increases. The info-gap uncertainty is non-probabilistic because no probability func-
tions are involved. Recall that we are assuming that the estimated performance function, M̃(d), is
positive, though this is not assumed of M(d).

We first consider effectiveness (not cost) as the performance function, for which we would prefer
a greater value over a lesser value. When facing deep uncertainty it is wise to ask: What is the least
effectiveness that would be acceptable, or equivalently, how good is good enough, or how bad is
still acceptable? These questions focus on satisficing the effectiveness, rather than optimizing it.

We express the satisficing requirement by demanding that the actual effectiveness of a decision
that we are considering, M(d), be no less than a critical value, Mc:

M(d) ≥ Mc (2)

The critical effectiveness, Mc, is a parameter, and we explore the feasibility and reliability of satisfy-
ing the requirement in eq.(2), as Mc varies, in light of the uncertainty about M(d).

Because the true effectiveness function, M(d), is unknown, we cannot know whether or not a
proposed decision, d, is good enough according to eq.(2). However, we can evaluate the degree
of robustness to uncertainty of a proposed decision. That is, if the estimated effectiveness, M̃(d),
exceeds Mc, then we ask: how much error in the function M̃(d) can we tolerate, and the correct
function, M(d), still satisfies the requirement in eq.(2) with decision d? The answer to this question
is the robustness of decision d. If the robustness is large then we have high confidence that this
decision will satisfy the requirement; small robustness implies low confidence.

The robustness function for decision d with required effectiveness Mc is defined as:

ĥ(d, Mc) = max
{

h :
(

min
M∈U (h,b)

M(d)
)
≥ Mc

}
(3)

Reading this equation from left to right: the robustness, ĥ(d, Mc), of decision d with critical effective-
ness Mc, is the maximum horizon of uncertainty, h, up to which all realizations of the effectiveness
function, M(d), are acceptable.

Let s(h) denote the inner minimum in the definition of the robustness function, eq.(3). This min-
imum occurs, for the info-gap model of eq.(1), when M(d) = (1− h)M̃(d). Equating this minimum
to the critical value, Mc, and solving for h yields the robustness function:

ĥ(d, Mc) = 1− Mc

M̃(d)
(4)

or zero if this expression is negative, which would occur if the estimated effectiveness, M̃(d), does
not satisfy eq.(2).

A knowledge-based strategy can employ any combination of scientific models, empirical rela-
tions, or expert judgment. A knowledge-based strategy chooses the decision, d, that maximizes the
best estimate of the effectiveness function, M̃(d). We denote this knowledge-based selection dk, and
it is formally defined as:

dk = arg max
b∈B

M̃(d) (5)

Thus M̃(dk) is no less than M̃(d) for any available decision, d.
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From eqs.(4) and (5) we see that the knowledge-based selection, dk, maximizes the robustness
to uncertainty in the decision effectiveness. That is, the robustness of dk is strictly greater than the
robustness of any available decision, d, that does not maximize the predicted effectiveness:

ĥ(dk, Mc) > ĥ(d, Mc) for all 0 < Mc < M̃(dk) (6)

Eq.(6) asserts the robust dominance of the knowledge-based strategy for decision making, over any
other strategy, when effectiveness is assessed with a single scalar function and when M̃(d) is the
best known estimate of the effectiveness.

If the performance function is loss rather than effectiveness then we require that M(d) not exceed
the critical value Mc. Hence the inequalities in eqs.(2) and (3) are reversed and the inner minimum
in eq.(3) becomes a maximum. Following analogous reasoning one find the robustness function for
loss:

ĥ(d, Mc) =
Mc

M̃(d)
− 1 (7)

or zero if this is negative. The robust dominance of the knowledge-based strategy that minimizes
the estimated loss holds in this case as well.

Other than assuming that the best known performance function for either effectiveness or loss,
M̃(d), is a positive scalar function, we have made no assumptions about either the true or the es-
timated scalar performance functions, M(d) or M̃(d), nor about the class of available decisions B.
This very general result — that knowledge-based decision making strategies are more robust than
all other strategies — holds because of the extreme paucity of information about the scalar per-
formance function as expressed by the info-gap model of eq.(1). This is a somewhat ironic result:
extreme lack of knowledge justifies the knowledge-based decision making strategy. From a contrar-
ian perspective one might say that the knowledge-based strategy is better than any other strategy
simply because we know so little about the processes involved. We will explore the limits of this
conclusion. This ironic result is also a note of caution against overconfidence in knowledge-based
optimization of decision performance.

1.2 Scalar Effectiveness Function with an Error Estimate: Innovation Dilemma

We now continue the previous development, but consider further information. In addition to an
estimate of the scalar performance function, M̃(d), as a function of the decision, d, we also have a
positive error estimate, w(d). That is, it is thought that the true performance, M(d), may deviate
from M̃(d) by as much as±w(d) or more. The error function w(d) does not provide an upper bound
or worst case of the error, but it does compare the anticipated errors for different decisions d: some
decisions have lower estimated error than other decisions.

For instance, w(d) could quantify contextual understanding that suggests that the estimated per-
formance is less uncertain for a decision with large support to human development and small sup-
port to physical infrastructure, than the reverse. More generally, the error estimate w(d) can reflect
relatively lower uncertainty about the capabilities of specific agents or organizations, as demon-
strated by those entities in their past behavior.

We incorporate the additional information provided by the error function w(d) by modifying
the info-gap model for uncertainty in the scalar performance, eq.(1), as follows:

U (h, b) =

{
M(d) :

∣∣∣∣∣M(d)− M̃(d)
w(d)

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (8)
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This is the same as eq.(1) if w(d) = M̃(d).
When the performance is assessed as effectiveness, the performance requirement is the same

as eq.(2), and eq.(3) is the definition of the robustness function. Arguing as before, we obtain the
following expression for the robustness to uncertainty in the estimated performance function:

ĥ(d, Mc) =
M̃(d)−Mc

w(d)
(9)

or zero if this expression is negative. This reduces to eq.(4) if w(d) = M̃(d).
When the performance is measured as a loss the robustness function becomes:

ĥ(d, Mc) =
Mc − M̃(d)

w(d)
(10)

or zero if this expression is negative. This reduces to eq.(7) if w(d) = M̃(d).
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ĥ(bc) = max
{

h :
(

min
Tf, b∈U (h)

b(Tf)

)
≥ bc

}
(11)

Let m(h) denote the inner minimum in eq.(11). This is the inverse function of the robustness
function, ĥ(bc). That is, a plot of h vs. m(h) is identical to a plot of ĥ(bc) vs. bc. It is thus sufficient to
derive an expression for m(h).

The inner minimum in eq.(11) occurs when the reproductive output function is as low as possible
at horizon of uncertainty h. According to the info-gap model, and for h ≤ 1, this is:

b(Tf) = (1− h)b̃(Tf) (12)

Because the estimated reproductive output function, b̃(T), is unimodal, and still considering h ≤ 1,
the value of Tf that produces the inner minimum is either the minimum or the maximum value: (1−
h)T̃f or (1 + h)T̃f. Thus the inner minimum in eq.(11) is the lesser of the following two alternatives:

m1(h) = (1− h)b̃
(
(1− h)T̃f

)
(13)

m2(h) = (1− h)b̃
(
(1 + h)T̃f

)
(14)

That is, the inverse of the robustness function, for h ≤ 1, is:

m(h) = min[m1(h), m2(h)] (15)

Eqs.(13)–(15), together with the specification of b̃(T), provide the numerical basis for evaluating and
plotting the robustness function, ĥ(bc).
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