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Decisions in many disciplines are based on understanding and evidence. More evi-
dence is better than less when it enhances the decision-maker’s understanding. This
is achieved by reducing uncertainty confronting the decision-maker and reducing the
potential for misunderstanding and failure. However, some evidence may actually aug-
ment uncertainty by revealing prior error or ignorance. True evidence that augments
uncertainty is important because it identifies inadequacies of current understanding
and may suggest directions for rectifying this. True evidence that reduces uncertainty
may simply reconfirm or strengthen prior understanding. Uncertainty-augmenting evi-
dence, when it is true, can support the expansion of one’s previously incomplete
understanding. A dilemma arises because both reduction and enhancement of uncer-
tainty can be beneficial, and both are not simultaneously possible on the same issue.
That is, uncertainty can be either pernicious or propitious. Info-gap theory provides a
response. The info-gap robustness function enables protection against pernicious uncer-
tainty by inhibiting failure. The info-gap opportuneness function enables exploitation
of propitious uncertainty by facilitating wonderful windfall outcomes. The dilemma of
uncertainty-augmenting evidence is that robustness and opportuneness are in conflict;
a decision that enhances one, worsens the other. This antagonism between robustness
and opportuneness—between protecting against pernicious uncertainty and exploiting
propitious uncertainty—is characterized in a generic proposition and corollary. These
results are illustrated in an example of allocation of limited resources.
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1 THE PROBLEM

Decisions in many disciplines are based on understand-
ing and evidence. For example, evidence-based medicine
attempts to ground medical decisions on solid scientific evi-
dence. Many other fields advocate evidence-based practice,
including architecture, education, engineering, law, man-
agement, and public policy, among others. In engineering,
for instance, designs are based on science-based models of
the processes involved, and evidence—data—relevant to the
problem at hand.
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Evidence is intended to enhance decision-makers’ under-
standing. This is often achieved by reducing uncertainty
confronting the decision-maker. However, some evidence
may actually augment uncertainty. Febrile episodes are com-
mon in patients with acute leukemia, usually caused by
infection (Bodey et al., 1978). After detecting fever, the diag-
nosis proceeds by characterizing the infection, until evidence
shows absence of infection; something else is causing the
fever. The engineering designer thought that stiffening the
structure would enhance stability, until evidence revealed
harmonic oscillations in the environment of the structure;

Risk Analysis. 2024;1–11. wileyonlinelibrary.com/journal/risa 1

mailto:yakov@technion.ac.il
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/risa
http://crossmark.crossref.org/dialog/?doi=10.1111%2Frisa.14346&domain=pdf&date_stamp=2024-06-06


2 BEN-HAIM

stiffening may not shift the structure’s natural frequencies of
vibration away from the environmental frequencies. Evidence
that augments uncertainty is important because it identi-
fies inadequacies of current understanding and may suggest
directions for rectifying this.

Curiosity is a desire for new information. This curiosity
may occur in two types. Interest-type curiosity “is motivated
by stimulating positive feelings of enjoyment and excitement
associated with discovery and understanding. Deprivation-
type curiosity… is motivated by reducing negative feelings
of frustration and tension associated with a specific source of
uncertainty, ignorance, and misunderstanding” (Whitecross
& Smithson, 2023, p. 2).

Interest-type curiosity seeks pleasures from new and
unfamiliar knowledge. Deprivation-type curiosity seeks pro-
tection against adverse feelings that arise from uncertainty
and misunderstanding. Interest-type curiosity seeks to benefit
from the unknown, while deprivation-type curiosity seeks to
limit the adverse impact of ignorance.

Interest-type curiosity could motivate the individual to
enhance the opportuneness of uncertainty, while deprivation-
type curiosity could motivate the individual to enhance the
robustness against uncertainty. Interest-type curiosity may
motivate the engineer to apply very large loads in attempting
to discover conceptual flaws in the design model, or moti-
vate the central bank to dramatically lower interest rates to
explore market responsiveness, or motivate the physician to
reduce therapy to test the patient’s resilience. These actions
motivated by interest-type curiosity are all seeking informa-
tive results. Deprivation-type curiosity would motivate the
agent—engineer, economist, physician—to the other extreme
in seeking to assure stable or adequate outcomes. Oppor-
tuneness from uncertainty and robustness against uncertainty
underlie our exploration of decision making when facing the
dilemma of evidence and uncertainty.

Thekdi and Aven (2023) discuss a range of liabilities fac-
ing risk analysts, stressing that “[t]he practice of risk analysis
is critical for directing investments toward prevention and
mitigation for uncertain risk events” (p. 1212). Part of the
risk analyst’s task is addressing “[w]eak knowledge of the
system” (p. 1215). Thus, part of the risk analyst’s task is
directing investments to obtaining new evidence that will
improve knowledge of the system. Decisions that enhance
robustness against failure are important, but decisions that
enable wonderful outcomes are also relevant in situations
of deep uncertainty about significant outcomes. We will
see an inherent conflict in these two types of decisions,
which must be balanced by the risk analyst in managing
uncertainty.

Uncertainty can be either pernicious or propitious. Wu
and Trump (2023) write that “[e]very decision carries some
prospect of possible gains or harms, with our efforts intended
to seek the former and mitigate the latter…. Through a
combination of choice and chance, we may achieve far
better outcomes when selecting a promising but more uncer-
tain choice than what is conventional. Of course, bad luck
can lead to losses” (p. 871). Our study of robustness and

opportuneness, as formulated in info-gap theory, will expose
an inherent conflict between these two possibilities when
managing uncertainty in support of decision.

Hagiwara et al. (2023) discuss a value-of-information
methodology “to compare and rank different tests that could
be used to characterize the toxicity of chemical substances…
for consideration of the value of the public health benefits
derived from risk mitigation actions that may be taken based
on the test results” (p. 512). They focus on “the degree of
uncertainty reduction provided by different tests for chemical
toxicity” (p. 499). Public health benefits can result not only
from uncertainty reduction, but also from opportunities for
exploiting uncertainty for surprisingly favorable outcomes.
We explore the tension between robustly reducing the impact
of pernicious uncertainty and exploiting the opportunities of
propitious uncertainty.

It is not surprising that evidence can augment uncertainty
in situations where meanings or intentions are of primary
importance. Discovery of Soviet nuclear missiles in Cuba
in 1962 induced great uncertainty regarding Soviet inten-
tions (Allison & Zelikow, 1999, pp. 33, 49). Discovering in
1994 that CIA agent Aldrich Ames had been a double agent
for the KGB since 1985 raised great uncertainty about the
implications of revealed secrets (Diamond, 2008).

It is perhaps more surprising that evidence can aug-
ment uncertainty when mathematical structure—rather than
semantic meaning—is dominant. Such situations are preva-
lent in engineering design and analysis, or in quantitative
modeling of physical or social systems, or in economic policy
formulation based on macroeconomic models, and so forth.

It is not surprising that conflicting evidence augments
uncertainty. In conflicting evidence, one part asserts “Propo-
sition X is true” while another part asserts “Proposition X is
not true.” One of these assertions is not correct. However,
we are considering true evidence from which such conflict
is precluded.

Decision making under uncertainty has confronted human-
ity since ancient times, inducing a plethora of methodological
responses ranging from many forms of divination to modern
probability originating in the early 17th century (Hacking,
1975), fuzzy logic (Klir & Folger, 1988), Dempster–Shafer
theory (Shafer, 1966), info-gap theory (Ben-Haim, 2006),
and more. Each methodology presumes specific types of
prior knowledge. Probability and resulting statistical deci-
sion tools presume knowledge of probability distributions, or
at least knowledge of properties of the uncertain process such
as independence, identical distribution, and so forth. Fuzzy
logic uses membership functions rather than probability
distributions, and Dempster–Shafer theory replaces proba-
bility distributions with belief functions, where each type
of function reflects different ambiguous semantic contextual
understanding. Info-gap theory is motivated by substantial
lack of understanding of the phenomena of interest, and
represents uncertainty with an unbounded family of nested
sets of possible realizations of the uncertain entity. Info-gap
theory usually provides less insight into the uncertainty
than the other methods, but nonetheless supports systematic
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decision making when the other methods are inaccessible
due to limited prior knowledge. This paper employs info-gap
theory.

We briefly review a range of different responses to uncer-
tainty, explaining their similarities and differences from the
info-gap approach.

Taleb’s concept of antifragility presents a distinctive
approach to human response to uncertainty. Taleb writes:
“Antifragility is beyond resilience or robustness. The resilient
resists shocks and stays the same; the antifragile gets bet-
ter.” (Taleb, 2014, p. 3). Antifragility is the idea that one
can improve in response to adverse challenges. This is
different from the concepts of robustness and opportune-
ness developed in info-gap theory and employed in this
paper. Robustness, here, is the idea of confidently achieving
essential goals despite uncertain challenges. Opportuneness
is the idea of exploiting uncertainty to obtain better than
anticipated outcomes. Info-gap robustness responds to per-
nicious uncertainty while info-gap opportuneness responds
to propitious uncertainty. Antifragility is somewhat a com-
bination, leading to positive outcomes (getting better) in
response to adverse shocks, but differs from both info-gap
concepts of robustness and opportuneness. Furthermore, info-
gap theory provides a systematic quantitative methodology
for modeling the unbounded unknown, and then prioritiz-
ing decisions in two ways: according to robustness against
that uncertainty, or according to opportunities inherent in that
uncertainty.

Hall and Solomatine (2008) present a broad framework
for analyzing uncertainty in the study of flood risks. Their
analysis “encompasses all of the natural, human and techno-
logical processes that may influence flood risk.” Referring
to Knight (1921), they distinguish between decision mak-
ing under certainty, decision making under risk for which
probability models are known, and decision making under
uncertainty in which probabilities are unknown which Knight
called “true uncertainty.” They discuss a range of methods,
including scenario analysis, sensitivity analysis, fuzzy set the-
ory (Zadeh, 1965), evidence theory (Shafer, 1976), the theory
of imprecise probabilities (Walley, 1991) and info-gap deci-
sion theory. In each case, the method is tailored to specific
types of prior knowledge about the system and its uncertain-
ties. Info-gap theory is usually the epistemically minimalistic
of these approaches because it presumes no knowledge of
a scalar function of probability, membership, or belief in
describing one’s ignorance or uncertainty. An info-gap model
of uncertainty is an unbounded family of nested sets of pos-
sible realizations of the uncertain entity. Similarities exist,
for instance, with Walley’s imprecise probabilities that are
described by sets of probability distributions.

Similarly, Li et al. (2013) compare a range of theories for
decision making under uncertainty, including probability,
fuzzy logic, and info-gap theory, explaining that “[d]ifferent
kinds of uncertainty call for different handling methods.”
They explain that info-gap theory addresses “severe uncer-
tainty… [that] is usually immeasurable or uncalculated with
probability distributions and is… an incomplete understand-

ing of the system being managed” (p. 2467). Info-gap theory
“applies to the situations of limited information, especially
when there is not enough data for other uncertainty handling
techniques such as probability theory” (p. 2468).

Hall et al. (2012) compare and contrast Robust Decision
Making as developed at RAND Corporation, and info-gap
decision theory. Their analysis is both generic and applied to
formulating policies for responding to climate change. They
identify similarities of these methods, including nonproba-
bilistic representation of uncertainty with “sets of multiple
plausible representations of the future, rather than a unique
probability density function.” Both methods “incorporate the
concept of robust satisficing,” that is, achieving specified
required outcomes while protecting against adverse uncer-
tainty. Both methods use “quantified system models” relating
decisions to consequences. Both methods support decision
making with “trade-off curves comparing alternative strate-
gies rather than provide any definitive, unique ordering of
options” though the axes differ in the two methods. Both
methods “make broadly similar recommendations [regard-
ing greenhouse gas management] that nonetheless differ in
their particulars.” However, the methods treat gains and
losses differently, they take “different approaches to impre-
cise information,” and perform analysis in different orders
(pp. 13–14).

Roach et al. (2016) compare info-gap theory and robust
optimization (RO) as developed by Ben-Tal et al. (2009).
In their water resource example, info-gap theory analyses
the robustness to uncertainty of a “set of prespecified strate-
gies” while RO uses optimization algorithms to automatically
generate and evaluate solutions. In this formulation, they con-
clude that RO produces “lower cost strategies” while info-gap
theory “produced the more expensive Pareto strategies due to
its more selective and stringent robustness analysis.” (p. 1)
They note, however, that they do not explore optimization of
the info-gap robustness analysis (p. 11).

Rezaei et al. (2019) compare “stochastic programming,
fuzzy optimization, interval optimization, and robust opti-
mization for managing electrical energy systems. Each of
these approaches has their advantages and drawbacks,”
requiring probability densities, membership functions, or
specified uncertainty sets (p. 12). In contrast, they explain
that info-gap theory requires less constrained or detailed prior
knowledge of uncertainty.

Chebila (2023) studies design of “safety instrumented sys-
tems” in which “robustness assessment… [is] the heart of the
framework” (p. 873). Chebila stresses that robustness analy-
ses emphasize either regret or satisficing, identifying info-gap
theory with the latter. (One notes, however, the regret
can be satisficed rather than minimized with the info-gap
approach.)

This brings us to the central questions of this paper. How
to characterize, model, and manage the dilemma that arises
from uncertainty that may be either pernicious or propitious,
in support of decision making? This is illustrated in the exam-
ple in Section 2. Proposition 1 and Corollary 1 in Section 3
generalize this example.
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4 BEN-HAIM

2 EXAMPLE: ALLOCATION OF
RESOURCES

Consider allocation of limited resources among N categories.
The categories may be different endangered species and
the resources are hectares of added nature reserve in each
species’ habitat. Or the categories may be distinct financial
assets and the resources are financial investments. The cat-
egories may be locations on a mechanical structure and the
resources are forces applied at each location. In any case, S
is the vector of N returns or benefits for each unit of resource
allocated to each category: number of surviving individuals
per hectare allocated for each species, or dollar return per
dollar invested in each asset, or displacement of the structure
per unit load at each location. Uncertainty often accom-
panies the allocation in these and other applications. This
uncertainty may be pernicious or propitious, and this paper
explores the methodological implications of these distinct
facets of uncertainty and how to make decisions in managing
them.

Section 2.1 formulates the info-gap model for uncertainty
in return vector S. Section 2.2 formulates the generic robust-
ness and opportuneness functions—collectively referred to
as immunity functions—and Section 2.3 presents explicit
expressions for these immunity functions for a specific
info-gap model of uncertainty. Section 2.4 discusses the
antagonism between the robustness and opportuneness func-
tions and Section 2.5 explores the phenomenon of preference
reversal in the context of our example. Finally, Section 2.6
touches on the implications of the analysis for choosing
evidence to acquire.

2.1 Info-gap uncertainty

The vector S is uncertain and the best available estimate
is S̃. The uncertainty in S is represented by an info-gap
model,  (h), for h ≥ 0, which is an unbounded family of
nested sets of S vectors (Ben-Haim, 2006). The sets become
more inclusive as h increases, so h is called the horizon
of uncertainty.

There are many specific forms of info-gap models, each
representing different (though limited) prior knowledge about
the uncertain entity. For instance, consider allocation between
two categories, where prior knowledge provides estimated
benefits and indicates a tendency for positive association
between the benefits from allocations to these two categories.
The positive association may be expressed by historical
covariances whose present or future values are uncertain. Or,
the covariances may be from related but different popula-
tions or circumstances. In any case, even knowledge of mean
and covariance is insufficient to specify a probability distri-
bution. That is, we consider information that is insufficient to
support the choice of a specific probability distribution. We
will employ an info-gap model to represent uncertainty in the
benefits.

F I G U R E 1 Schematic uncertainty sets of a two-dimensional
ellipsoidal info-gap model of uncertainty.

The estimated vector of benefits is S̃ = (S̃1, S̃2), but the
actual benefit vector, S = (S1, S2), is unknown. Figure 1 is
a schematic illustration of an ellipsoidal info-gap model for
uncertainty in S. The solid dot in the center is the estimated
benefit vector, S̃. The sequence of increasingly larger ellipses
display discrete sets in the continuous family of sets repre-
senting increasingly uncertain deviation of S from S̃. Greater
uncertainty is entailed in larger ellipses. There is no known
worst case—maximum deviation between S and S̃—so the
family of uncertainty sets grows continuously and without
bound. This info-gap model for uncertainty is the unbounded
family of nested ellipsoidal sets of possible vectors S.

Return to the generic case where S is the vector of N returns
or benefits for each unit of resource allocated to each of N
categories. An info-gap model (not necessarily ellipsoidal)
for uncertainty in S is a family of sets of possible S vectors,
 (h) for h ≥ 0, that obeys two axioms. The first is the nesting
axiom:

h < h′ ⟹  (h) ⊆  (h′). (1)

This means that the range of S vectors in the uncertainty sets
 (h) increases as h increases.

The second is the contraction axiom that asserts that, in the
absence of uncertainty (namely, when h = 0), the uncertainty
set contains only the estimated vector, S̃. That is:

 (0) =
{

S̃
}
. (2)

S̃ is called the center point of the info-gap model, and it is
indeed the center point in Figure 1.

The info-gap model is unbounded: the sets  (h) become
increasingly inclusive as the horizon of uncertainty, h,
increases. The sets cover increasingly larger domains of the
space as h increases, asymptotically covering the entire space
as h approaches infinity. Thus, for any realization of the
uncertain vector, S, there is a value of h for which S is
included in the sets at all horizons of uncertainty at and
beyond this value of h.
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2.2 Formulation of the robustness and
opportuneness functions

The decision, D, is a vector whose nth element is the resource
allocation to category n, and the consequence is the over-
all benefit, assessed as the sum of the benefits from each
allocation:

C(S,D) = DTS. (3)

We require that the benefit be no less than an essential value,
Ce:

C(S,D) ≥ Ce. (4)

The robustness of decision D is defined as the greatest hori-
zon of uncertainty at which the benefit is guaranteed to
achieve no less than an essential value, Ce:

ĥ(Ce,D) = max

{
h :

(
min

S∈ (h)
C(S,D)

)
≥ Ce

}
. (5)

A large value of the benefit function, C(S,D), is a desirable
response to inputs D. A small value of C(S,D) is undesirable.
However, a surprisingly small value of C(S,D) is informative
because it reveals a lacuna in our understanding. Our knowl-
edge and understanding of the uncertain response vector, S,
are enhanced by a decision, D, at which C(S,D) is low, no
greater than a surprisingly small and informative value Ci:

C(S,D) ≤ Ci. (6)

The opportuneness is the lowest horizon of uncertainty at
which C(S,D) may be less than Ci:

𝛽′(Ci,D) = min

{
h :

(
min

S∈ (h)
C(S,D)

)
≤ Ci

}
. (7)

Let Do be a decision vector for which the opportuneness func-
tion, 𝛽′(Ci,D), takes a desirably small value. It would be
informative to allocate resources according to Do, perhaps
on a test case, and to observe the responses of the various
categories. One expects substantial differences between the
observed outcomes in the N categories, S1D1, , … , SNDN ,
and the anticipated outcomes, S̃1D1, , … , S̃NDN . These dif-
ferences could reveal insight into the limitation of the
estimated response vector S̃.

The inner minima in Equations (5) and (7) are the same,
though their meanings are different. The inner minimum in
Equation (5) is interpreted as the smallest—least desirable—
benefit from allocation D. Thus, ĥ(Ce,D) is the greatest
horizon of uncertainty at which essential benefit no less than
Ce is guaranteed. The inner minimum in Equation (7) is inter-
preted as the smallest—most informative—benefit at horizon
of uncertainty h; minimal benefit is maximally informative
because it reveals the potential limitation of allocation D.

Thus, 𝛽′(Ci,D) is the lowest horizon of uncertainty at which
the informativeness of D may be great as expressed by Ci
(which is a small and hence informative value).

The opportuneness function that is complementary to the
robustness in Equation (5), in the usual (ĥ, 𝛽) pair in info-gap
theory (Ben-Haim, 2006, eqs. 3.15 and 3.17), is the lowest
horizon of uncertainty at which allocation D is able to achieve
a wonderfully large benefit, Cw:

𝛽(Cw,D) = min

{
h :

(
max

S∈ (h)
C(S,D)

)
≥ Cw

}
. (8)

The robustness function that is complementary to the oppor-
tuneness in Equation (7), in the usual (ĥ, 𝛽) pair, is the
greatest horizon of uncertainty at which allocation D is guar-
anteed to achieve an informativeness (modest benefit) no
worse (no greater) than Ce:

ĥ′(Ce,D) = max

{
h :

(
max

S∈ (h)
C(S,D)

)
≤ Ce

}
. (9)

Our analysis is based on ĥ(Ce,D) in Equation (5) and
𝛽′(Ci,D) in Equation (7).

2.3 Robustness and opportuneness
functions with an ellipsoidal info-gap model

The ellipsoid-bound info-gap model, illustrated schemati-
cally in Figure 1 for the two-dimensional case, is commonly
used to describe uncertainty in vectors, such as S, including
information about uncertain positive associations among the
elements of the vector:

 (h) =
{

S :
(
S − S̃

)T
W
(
S − S̃

)
≤ h2

}
, h ≥ 0, (10)

where W is a known real, symmetric, positive definite matrix
whose eigenvalues are 𝜇1, … , 𝜇N with corresponding eigen-
vectors v1, … , vN . Each set,  (h), is an ellipsoid of possible
realizations of S. These sets become more inclusive as
the horizon of uncertainty, h, increases. The value of h is
unbounded, so the range of uncertainty about the true value
of S is unbounded.

Expressions for the robustness and opportuneness func-
tions defined in Equations (5) and (7), and based on the
ellipsoid-bound info-gap model in Equation (10), are readily
derived:

ĥ(Ce,D) =
DTS̃ − Ce√

DTW−1D
, (11)

𝛽′(Ci,D) =
DTS̃ − Ci√
DTW−1D

. (12)

Either function is defined to equal zero if the corresponding
expression is negative.
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6 BEN-HAIM

F I G U R E 2 Robustness and opportuneness curves, Equations (11) and
(12), illustrating the antagonism between robustness and opportuneness as
the decision vector, D, changes.

2.4 Antagonism of robustness and
opportuneness

Examination of Equations (11) and (12) shows that these
two immunity functions, ĥ(Ce,D) and 𝛽′(Ci,D), are the same
when each is plotted versus its performance parameter Ce or
Ci. Their meanings, however, are different, and they provide
different tools supporting the decision-maker as illustrated in
the following numerical example.

Recall that large values of ĥ(Ce,D) are desirable, while
small values of 𝛽′(Ci,D) are desirable. Because these immu-
nity functions are numerically the same, this means that
robustness and opportuneness in this example are antago-
nistic: any change in the decision, D, that improves one
of these functions, worsens the other. A change in D that
improves the robustness (enlarges ĥ(Ce,D), which is desir-
able) also worsens the opportuneness (enlarges 𝛽′(Ci,D),
which is undesirable). Likewise, any change in D that
improves 𝛽′(Ci,D) also worsens ĥ(Ce,D). Proposition 1 and
Corollary 1 are generic assertions of this antagonism between
the robustness and opportuneness functions in Equations (5)
and (7). We note that the usual pair of info-gap robustness
and opportuneness functions are not necessarily antagonistic,
and may be sympathetic: both functions can, in some situa-
tions, improve as a result of a change in decision (Ben-Haim,
2006).

This antagonism between robustness and opportuneness is
illustrated in Figure 2 for a specific example, where the total
allocation increases from the lower to the upper curve. Specif-
ically, W is the identity matrix, there are N = 5 categories,
and S̃ and D are:

S̃ = (1.4, 1.3, 1.2, 1.1, 1.0), (13)

D0 = S̃, (14)

D = 𝛿D0, (15)

where 𝛿 = 0.8, 1.0, and 1.2 for the bottom, middle, and
top curve, respectively. We see that the robustness function
increases (which is desirable) as the total allocation increases,
while the opportuneness function also increases (which is
undesirable).

For instance, referring to Figure 2, consider an essential
benefit no less than 6. The lowest robustness curve is zero
at this value, so allocation of 0.8D0 cannot guarantee benefit
as large at 6. The robustness of the middle curve is 0.5 so
allocation D0 is guaranteed to yield a benefit at least as large
as 6 provided that the horizon of uncertainty is no greater
than 0.5. The robustness on the upper robustness curve is even
larger, implying greater confidence in achieving a benefit no
less than 6.

Now interpret the curves in Figure 2 as opportuneness
curves and consider an informatively small benefit no greater
than 6. With allocation as low as 0.8D0 (lowest curve) no
uncertainty is required to enable (though not guarantee) a
result no greater than 6; this allocation is quite opportune
in this respect. The middle curve shows that, with allocation
D0 it is possible to achieve benefit as low as 6 only if the
horizon of uncertainty is no less than 0.5, and allocation of
1.2D0 (upper curve) requires uncertainty as large as 0.8 to
enable benefit as low as 6. By increasing the allocation, the
opportunity for informatively low benefit diminishes.

In short, robustness and opportuneness are antagonistic
as the allocation changes. This antagonism has an opera-
tional implication for the decision-maker who must choose
the vector D of allocations among the N categories. The
decision-maker must balance between the robustness require-
ment in Equation (4) that the overall benefit be no less than
the essential value Ce, and the opportuneness aspiration in
Equation (6) that the overall benefit be no greater than the
small and informative value Ci.

The decision-maker may be inclined to employ the largest
available budget in order to maximize the confidence in
achieving an essential outcome by maximizing the robustness
to uncertainty. However, surprising and informative outcomes
are also valuable, and the immunity functions in Figure 2
show how to one can “buy” informative opportuneness by
“selling” robustness that guarantees essential outcomes. For
instance, if robustness of 0.5 is adequate (based on con-
textual understanding) for the essential outcome of 6, then
the decision-maker may choose to allocate D0 (rather than
1.2D0), thus reducing the robustness function from 0.8 to 0.5
(which is undesirable) while also reducing the opportuneness
function for smaller and more informative outcomes (which
is beneficial).

The assessment of how much robustness is adequate is
a delicate judgment that can employ several alternative
approaches: normalization of the robustness function to a
dimensionless form whose value is intuitively interpretable;
reasoning in analogy to similar but different situations;
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EVIDENCE AND UNCERTAINTY: AN INFO-GAP ANALYSIS OF UNCERTAINTY-AUGMENTING EVIDENCE 7

F I G U R E 3 Robustness and opportuneness curves illustrating
preference reversal between two allocations, D and D′.

and assessing the severity of the consequences of the out-
come. These approaches are discussed extensively elsewhere
(Ben-Haim, 2006, Chap. 4).

2.5 Preference reversal

In Section 2.4, we illustrated the trade-off between robustness
against uncertainty and opportuneness from uncertainty. We
explained that the analyst can alter the allocation in order to
“sell” some robustness and thereby “buy” some opportune-
ness. It is important, however, to appreciate that a change in
the allocation vector D may reduce the robustness for some
levels of essential benefit (as expressed by the requirement in
Equation 4) and also increase the robustness for other levels
of essential benefit. This is manifested in the phenomenon
of preference reversal that we now illustrate. Apprecia-
tion of preference reversal is important in the analyst’s
choice between alternative allocations while considering the
antagonism between robustness and opportuneness.

Figure 3 shows two immunity functions: The robustness,
ĥ(Ce,D), or opportuneness, 𝛽′(Ci,D), on the vertical axis,
versus the required or aspired benefit, Ce or Ci, on the hor-
izontal axis. These immunity functions are calculated for two
different allocation vectors, specified below.

Considering them as robustness functions, the negative
slopes of the curves express an irrevocable trade-off: as
the required benefit, Ce, increases (becoming more demand-
ing), the robustness for guaranteeing that benefit decreases
(becoming more vulnerable to uncertainty). Furthermore,
each robustness curve reaches the horizontal axis (zero
robustness) precisely at the predicted benefit for that alloca-
tion.

Likewise, considering them as opportuneness functions,
the negative slopes of the curves express a different irrevoca-

ble trade-off: as the aspired benefit, Ci, decreases (becoming
more informative at low and unusual values), the opportune-
ness function for enabling that benefit increases (requiring
greater uncertainty). Each curve reaches the horizontal axis
(zero opportuneness) precisely at the predicted benefit for
that allocation.

The curves in Figure 3 are evaluated with the following
values for allocation among N = 5 categories:

S̃ = [1, 2, 3, 4, 5], (16)

D = [5, 4, 3, 2, 1], (17)

D′ = [1, 2, 3, 4, 5], (18)

W = diag(5, 4, 3, 2, 1). (19)

Recall that the curves in Figure 3 are both robust-
ness and opportuneness functions, ĥ(Ce,D) and 𝛽′(Ci,D),
and that large values of robustness are preferred over
small values, while small values of opportuneness are pre-
ferred over large values. Let C× denote the value of Ce
at which the curves cross one another. Thus allocation
D′ is robust-preferred for essential benefit exceeding C×,
while D is opportune-preferred for aspired benefit exceed-
ing C×. Thus, the antagonism between robustness and
opportuneness is observed for the upper range of benefit
values.

Likewise, allocation D is robust-preferred for requirements
less than C×, while D′ is opportune-preferred for the same
range of aspirations, again demonstrating the antagonism
between robustness and opportuneness for benefits less than
C×.

The antagonism between robustness and opportuneness,
with the associated decision dilemmas discussed earlier,
arises in the present example. However, the intersection
between the immunity functions causes the robust and oppor-
tune preferences to switch, depending on the range of benefits
that are considered. Crossing robustness (and opportune-
ness) curves entails a reversal of preference between the
allocations, but retains the antagonism between robustness
and opportuneness.

2.6 What type of new evidence to seek?

We now briefly touch on implications of this analysis for
acquiring new evidence.

Let us suppose that we can seek evidence that may alter
our estimate, S̃, of the vector of returns or benefits. True evi-
dence will improve the estimate S̃. This change in S̃ will
(usually) either increase or decrease the value of DTS̃ and
thus, correspondingly, either improve or worsen the robust-
ness in Equation (11). However, this change in S̃ will also,
correspondingly, either worsen or improve the opportuneness
in Equation (12). No evidence about S̃ can simultaneously
improve both robustness and opportuneness, or simultane-
ously worsen both. Evidence that reduces the impact of
uncertainty by increasing ĥ(Ce), also reduces the ability to
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8 BEN-HAIM

exploit uncertainty by increasing 𝛽′(Ci). This antagonism
between robustness and opportuneness presents one with
a dilemma. The sequential choice of increments of evi-
dence about S̃ must address this dilemma by managing the
antagonism between robustness and opportuneness.

An analogous dilemma arises if we consider evidence that
alters the structure of the info-gap model of uncertainty in
Equation (10), as represented by the matrix W. The axes of
the ellipsoid in the info-gap model of Equation (10) are along
the eigenvectors of W, denoted v1, … , vN , and the length of

the nth semiaxis, at horizon of uncertainty h, is
h√
𝜇n

where 𝜇n

is the nth eigenvalue of W. Thus, the ellipsoid at horizon of
uncertainty h contracts as the eigenvalues increase: evidence
that increases the eigenvalues reduces the uncertainty.

The eigenvectors of W−1 are the same as those of W,
while the eigenvalues of W−1 are the inverses of those of W.
Thus:

DTW−1D =

N∑
n=1

1
𝜇n

DTvnvT
n D. (20)

The value of DTW−1D is reduced by increasing the eigen-
values of W. From Equations (11) and (12), we see that the
robustness and the opportuneness functions both increase by
acquiring evidence that reduces the uncertainty by increas-
ing the eigenvalues of W. Evidence that reduces the impact
of adverse uncertainty (by enlarging ĥ) also reduces the
informativeness (by enlarging 𝛽′). Conversely, decreasing the
robustness function also decreases the opportuneness func-
tion and increases the informativeness. Any increment of
evidence cannot improve both robustness and opportune-
ness. This antagonism is addressed by sequentially balancing
between these conflicting trends.

This antagonism between robustness and opportuneness—
when identifying evidence to obtain—expresses the dilemma
of uncertainty. Should one protect against adverse uncer-
tainty by enhancing the robustness function, or should one
exploit favorable uncertainty by diminishing the opportune-
ness function? Equivalently, should one attempt to reduce
uncertainty and thereby enhance the robustness function,
or should one attempt to augment uncertainty and thereby
enhance the potential informativeness of new evidence? The
functions of robustness and opportuneness are the same,
which means that one cannot do both with the same evidence.
The challenge of managing the two faces of uncertainty—
adverse and favorable—entails balancing these conflicting
requirements. This challenge is the dilemma one faces in
managing uncertainty when selecting the next evidence to
seek.

3 FORMULATION AND
PROPOSITIONS

In this section, we present a proposition and a corollary that
are generalizations of the example in Section 2.

3.1 Basic definitions

D = a decision; a choice among various options.
C = the consequence of the decision; a scalar value.
S = the system impacted by the decision.
S̃ = an approximate model of system S.
The consequence is a function of the system and of the

decision, so we write C(S,D).
Ce is an essential or critical value of the consequence. If

the outcome has adverse consequence then Ce is the greatest
acceptable consequence and we require:

C(S,D) ≤ Ce. (21)

If the outcome has propitious consequence, then Ce is the
least acceptable consequence and we require:

C(S,D) ≥ Ce. (22)

Definition of the robustness function in the subsequent propo-
sitions uses Equation (22), but these propositions can be
proven based on Equation (21) with minor modification.

Various entities may be uncertain. The approximate sys-
tem model S̃ may err substantially and in unknown ways. The
functional form of the consequence function C(S,D) may err.
For instance, one may assume that C(S,D) = STD if S and D
are vectors, ignoring interactions between different elements
of the system. Let u denote the vector of uncertain entities
(e.g., S, C(S,D), etc.), where ũ is the best available estimate
of u.

 (h) is an info-gap model for uncertainty in u. The center
point is ũ.

3.2 Definitions of robustness and
opportuneness

We are concerned with epistemic uncertainty: the uncertainty
that confronts a decision-maker. Epistemic uncertainty is
distinguished from ontological uncertainty that is an indeter-
minism in the real world, independent of any decision-maker.

The performance requirement in Equation (22) assumes
that a large value of the consequence, C(S,D), is better than a
small value. The robustness of decision D is the greatest hori-
zon of uncertainty up to which the propitious impact of the
decision is guaranteed to be no less than the essential value
Ce:

ĥ(Ce,D) = max

{
h :

(
min

u∈ (h)
C(S,D)

)
≥ Ce

}
. (23)

The opportuneness that is complementary to the robustness
of Equation (23) is the lowest horizon of uncertainty at which
it is possible that the propitious impact of the decision will be
as great as the wonderfully large value Cw:

𝛽(Cw,D) = min

{
h :

(
max

u∈ (h)
C(S,D)

)
≥ Cw

}
. (24)
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EVIDENCE AND UNCERTAINTY: AN INFO-GAP ANALYSIS OF UNCERTAINTY-AUGMENTING EVIDENCE 9

However, we will consider a different opportuneness func-
tion than Equation (24). We are interested in evidence that
is informative. New insight is obtained by outcomes that are
particularly severe and contrary to the anticipated outcome.
Thus, the opportuneness of new evidence is the lowest hori-
zon of uncertainty at which the outcome may be as small,
severe, and informative as the value Ci:

𝛽′(Ci,D) = min

{
h :

(
min

u∈ (h)
C(S,D)

)
≤ Ci

}
. (25)

The robustness function that is the conventional complement
of 𝛽′(Ci,D) is the greatest horizon of uncertainty at which the
consequence is guaranteed to be no larger than Ce:

ĥ′(Ce,D) = max

{
h :

(
max

u∈ (h)
C(S,D)

)
≤ Ce

}
. (26)

We employ ĥ(Ce,D) in Equation (23) and 𝛽′(Ci,D) in Equa-
tion (25). We note that the inner minima in these immunity
functions are the same. However, these minima are inter-
preted differently. In Equation (23), the inner minimum
identifies the smallest—worst—outcome of the decision.
The robustness, ĥ(Ce,D), is the greatest horizon of uncer-
tainty up to which worse outcomes are guaranteed not to
occur. In Equation (25), the inner minimum identifies the
smallest—most informative—outcome of the decision. The
opportuneness, 𝛽′(Ci,D), is the lowest horizon of uncer-
tainty at which such informatively surprising outcomes can
occur.

The robustness and opportuneness functions are both
immunity functions. ĥ(Ce,D) is the immunity against uncer-
tainty that would cause unacceptably poor outcome. 𝛽′(Ci,D)
is the immunity against uncertainty that could enable a
wonderfully useful and informative outcome. A large value
of ĥ(Ce,D) is desirable, while a small value of 𝛽′(Ci,D)
is desirable.

3.3 Proposition and corollary

Proposition 1. Robustness and opportuneness are antago-
nistic: A change in the decision that improves one at a specific
performance value, worsens the other at this value.

Given:

∙ An info-gap model,  (h), obeying the axioms of
nesting and contraction.

∙ A robustness function, ĥ(Ce,D), defined in Equa-
tion (23).

∙ An opportuneness function, 𝛽′(Ci,D), defined in
Equation (25).

∙ Two decisions, D1 and D2.
∙ A performance value, C⋆, which may be adopted for

either Ce or Ci.

Then, D2 is more robust than D1 at C⋆ if and only if D2 is
less opportune than D1 at C⋆. Specifically:

ĥ(Ce,D1) ≤ ĥ(Ce,D2) for Ce = C⋆ (27)

if and only if:

𝛽′(Ci,D1) ≤ 𝛽′(Ci,D2) for Ci = C⋆. (28)

Proof of Proposition 1. Define m(h,D) as:

m(h,D) = min
u∈ (h)

C(S,D) for all h ≥ 0. (29)

m(h,D) is the inner minimum in the definitions of the
immunity functions in Equations (23) and (25).

m(h,Dk) is the inverse function of ĥ(Ce,Dk) for k =
1, 2. That is, a plot of h versus m(h,Dk) is identical to a
plot of ĥ(Ce,Dk) versus Ce.

Likewise, m(h,Dk) is the inverse function of 𝛽′(Ci,Dk)
for k = 1, 2. That is, a plot of h versus m(h,Dk) is
identical to a plot of 𝛽′(Ci,Dk) versus Ci.

In other words, the curve ĥ(Ce,Dk) versus Ce is identi-
cal to the curve 𝛽′(Ci,Dk) versus Ci because their inverse
functions are identical.

The equivalence of Equations (27) and (28) results
immediately. □

Proposition 1 establishes the antagonism between robust-
ness and opportuneness at any specific performance value
for Ce and Ci. The proposition does not presume that D2 is
robust dominant over D1, namely, it does not assume that
ĥ(Ce,D2) exceeds ĥ(Ce,D1) throughout the domain of Ce.
These robustness curves may in fact cross one another. The
proposition asserts that at any performance value where one
decision is more robust than the other, that decision is also
less opportune than the other at the same performance value.

The following corollary derives immediately from Propo-
sition 1.

Corollary 1. Robustness and opportuneness are antagonis-
tic: Robust dominance and opportune dominance are oppo-
sites.

Given:

∙ An info-gap model,  (h), obeying the axioms of nesting
and contraction.

∙ A robustness function, ĥ(Ce,D), defined in Equation (23).
∙ An opportuneness function, 𝛽′(Ci,D), defined in Equa-

tion (25).
∙ Two decisions, D1 and D2.

Then, D2 is robust dominant over D1 if and only if D1 is
opportune dominant over D2. Specifically:

ĥ(Ce,D1) ≤ ĥ(Ce,D2) for all Ce (30)
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10 BEN-HAIM

if and only if:

𝛽′(Ci,D1) ≤ 𝛽′(Ci,D2) for all Ci. (31)

Proof of Corollary 1. The proof derives immediately by
applying Proposition 1 throughout the domain of definition
of the performance values Ce and Ci. □

4 DISCUSSION AND CONCLUSION

Decision making based on evidence and understanding is
standard in many disciplines. True evidence can reduce
uncertainty, enhance understanding, and lead to reliable
and responsible decisions. However, true evidence can
augment one’s uncertainty by uncovering mistaken or defi-
cient prior knowledge. Uncertainty-augmenting evidence is
important because it also can lead to improved under-
standing, better decisions, and exploitation of previously
unrecognized opportunities.

Evidence can either reduce or enhance the uncertainty
that confronts a decision-maker. The dilemma facing the
decision-maker is that both reduction and augmentation of
uncertainty have desirable attributes because uncertainty can
be pernicious or propitious: threatening failure or enabling
windfall, respectively.

Different methodologies are appropriate for decision mak-
ing when facing these two modes of uncertainty. Pernicious
uncertainty can be managed with the info-gap robustness
function that satisfices the outcome and maximizes the
immunity to surprise. Propitious uncertainty can be man-
aged with the info-gap opportuneness function that facilitates
better-than-anticipated windfall outcome.

Decision-makers seek to manage both pernicious and pro-
pitious uncertainty, but this creates a dilemma. Robustness
and opportuneness impose conflicting demands: a decision
that enhances one, worsens the other. No decision can
improve robustness against surprise as well as opportune-
ness from surprise. No decision can both protect against
adverse uncertainty and exploit favorable uncertainty. This is
demonstrated in a generic proposition and its corollary, and
illustrated in an example of allocation of limited resources
for achieving collective benefit.

Recognizing and quantifying the conflict between robust-
ness and opportuneness enables the decision-maker to
balance between two goals: robustly satisficing critical
requirements, or opportunely enabling potential windfalls.
The balance is not unique, and the decision-maker selects the
balance according to the goals.

Feduzi (2010) discusses “the ‘stopping problem’ of find-
ing a rational principle to decide where to stop the process
of acquiring information in forming a probability judg-
ment before making a decision” (p. 338). Feduzi argues
that the stopping problem “sheds light on… the deci-
sion maker’s subjective assessment of relevant ignorance in
the process of rational decision making” (p. 350). Future
research can explore how the balancing between robust-
ness and opportuneness can assist in both characterizing and

supporting decision-makers’ assessments in addressing the
stopping problem.
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